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ABSTRACT
Cytochrome P450 (P450)-derived epoxyeicosatrienoic acids
(EETs) exert well recognized vasodilatory, diuretic, and tubular
fluid-electrolyte transport actions that are predictive of a hypo-
tensive effect. The study sought to determine the improvement
of hypertension and cardiac function by overexpressing P450
epoxygenases in vivo. Long-term expression of CYP102 F87V
or CYP2J2 in spontaneously hypertensive rats (SHR) was me-
diated by using a type 8 recombinant adeno-associated virus
(rAAV8) vector. Hemodynamics was measured by a Millar In-
struments, Inc. (Houston, TX) microtransducer catheter, and
atrial natriuretic peptide (ANP) mRNA levels were tested by
real-time polymerase chain reaction. Results showed that uri-
nary excretion of 14,15-EET was increased at 2 and 6 months
after injection with rAAV-CYP102 F87V and rAAV-CYP2J2
compared with controls (p � 0.05). During the course of the
6-month study, systolic blood pressure significantly decreased

in P450 epoxygenase-treated rats, but the CYP2J2-specific
inhibitor C26 blocked rAAV-CYP2J2-induced hypotension and
the increase in EET production. Cardiac output was improved
by P450 epoxygenase expression at 6 months (p � 0.05).
Furthermore, cardiac collagen content was reduced in P450
epoxygenase-treated rats. ANP mRNA levels were up-regu-
lated 6- to 14-fold in the myocardium, and ANP expression was
significantly increased in both myocardium and plasma in P450
epoxygenase-treated rats. However, epidermal growth factor
(EGF) receptor antagonist 4-(3�-chloroanilino)-6,7-dimethoxy-
quinazoline (AG-1478) significantly attenuated the increase in
the EET-induced expression of ANP in vitro. These data indi-
cate that overexpression of P450 epoxygenases attenuates the
development of hypertension and improves cardiac function in
SHR, and that these effects may be mediated, at least in part,
by ANP via activating EGF receptor.

Introduction
Cytochrome P450 (P450) epoxygenases metabolize arachi-

donic acid to biologically active eicosanoids referred to as

cis-epoxyeicosatrienoic acids (5,6-EET, 8,9-EET, 11,12-EET,
and 14,15-EET) (Capdevila et al., 2000). Early studies iden-
tified EETs as endothelium-derived hyperpolarizing factors
that can activate calcium-sensitive potassium channels, re-
sulting in hyperpolarization of resting membrane potential
and relaxation of vascular smooth muscle cells (Cohen and
Vanhoutte, 1995). Subsequent work has shown that EETs
have diverse biological effects within the cardiovascular sys-
tem. Indeed, EETs diminish cytokine-induced endothelial
cell adhesion molecule expression and inhibit leukocyte ad-
hesion to vessel walls (Node et al., 1999) and also show
fibrinolytic effects by increasing tissue plasminogen activator
expression and activity in endothelial cells (Node et al.,
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2001). Exogenous EETs or overexpression of various P450
epoxygenases also protect endothelial cells from apoptosis
(Yang et al., 2007), up-regulate endothelial nitric-oxide syn-
thase (eNOS), elevate eNOS activity (Wang et al., 2003), and
enhance angiogenesis in vivo and in vitro by activating Akt/
PKB and mitogen-activated protein kinases (Wang et al.,
2005; Jiang et al., 2007b). Furthermore, CYP2J2 overexpres-
sion has been shown to protect against postischemic myocar-
dial dysfunction in mice (Seubert et al., 2004).

EETs have natriuretic, vasodilatory actions and renal tu-
bular fluid-electrolyte transport actions that are predictive of
a hypotensive effect (McGiff, 1991; Capdevila and Falck,
2002; Roman, 2002; Fleming and Busse, 2006). Recently pub-
lished single nucleotide polymorphism analyses reveal that a
CYP2J2 G-50T variant (CYP2J2*7) is associated with hyper-
tension in humans (McGiff, 1991; King et al., 2005). Soluble
epoxide hydrolase (sEH) metabolizes EETs to the less active
dihydroxyeicosatrienoic acids (DHETs) (Imig, 2006). Oral ad-
ministration of the sEH inhibitor 12-(3-adamantan-1-yl-ure-
ido)-dodecanoic acid significantly increases the urinary ex-
cretion ratio of EET/DHET and reduces blood pressure in
rats infused with angiotensin and fed either a normal salt
diet or a high salt diet (Imig et al., 2005). The cumulative
data described above suggest that P450 epoxygenases and
EETs may play important roles in regulating blood pressure
as originally proposed more than a decade ago (McGiff, 1991),
but to date, no direct evidence showed their hypotensive
effects.

In the present study, an in vivo model of hypertension was
used to test the hypothesis that P450 epoxygenases could
induce a long-term increase in circulating EET concentra-
tions and a resultant improvement in blood pressure and
cardiac function. A recombinant adeno-associated virus vec-
tor (rAAV) was used to mediate long-term expression of ei-
ther CYP2J2 or a mutant isoform of bacterial CYP102 (F87V)
in spontaneously hypertensive rats (SHRs). Consistently el-
evated EET levels were observed with long-term CYP2J2 or
CYP102 F87V overexpression and were associated with sig-
nificant improvement in cardiovascular endpoints. Addi-
tional biochemical, immunohistochemical, and cell culture
assessments indicate that the beneficial effects of P450 ep-
oxygenase overexpression may be mediated via induction of
atrial natriuretic peptide (ANP) production.

Materials and Methods
rAAV Vector Production. Type 8 rAAV vectors containing hu-

man CYP2J2, CYP102 F87V (a mutant form of CYP102 that has
high arachidonic acid epoxygenase activity and produces exclusively
the active 14,15-EET enantiomer) (Graham-Lorence et al., 1997), or
green fluorescent protein (GFP) were prepared by triple plasmid
cotransfection in human embryonic kidney 293 cells as described
previously (Xiao et al., 1998; Wang et al., 2004).

Animals and Vector Administration. Male SHRs weighing 200
to 220 g were obtained from the Experimental Animal Center of
Beijing (People’s Republic of China). Experimental protocols were
approved by the Institutional Animal Research Committee of Tongji
Medical College and complied with the National Institutes of Health
Guidelines for the Care and Use of Laboratory Animals (Institute of
Laboratory Animal Resources, 1996). Twenty-four animals were ran-
domized to four groups (six animals/group) as follows: saline control,
rAAV-GFP control, rAAV-CYP102 F87V, and rAAV-CYP2J2. Ani-
mals received a single injection of either saline or rAAV (1 � 1012

vector genomes/rat) via tail vein. In addition, we administered rAAV-
CYP2J2-treated SHR with C26, a selective CYP2J2 inhibitor, which
can decrease EET production without effect on CYP2J2 mRNA or
protein expression (Chen et al., 2009). In brief, 24 male SHRs were
divided to four groups: control group, control�C26 group, rAAV-2J2
group, and rAAV-2J2�C26 group. Animals received a single intra-
venous injection of either saline or rAAV-CYP2J2. C26 was orally
treated at a dose of 1.5 mg/kg/day for 2 months.

Measurement of Blood Pressure. After vector injection, sys-
tolic blood pressures were measured every 2 months for 6 months at
room temperature by a photoelectric tail-cuff system (PowerLab;
ADInstrument Pty Ltd, Bella Vista, NSW, Australia) as described
previously (Yayama et al., 1998).

Hemodynamic Study. Six months after injection, rats were
anesthetized with pentobarbital (40 mg/kg), and a microtransducer
catheter (SPR-838; Millar Instruments, Inc.) was inserted via the
right carotid artery into the left ventricle. After stabilization for 20
min, the data were continuously recorded by using conductance data
acquisition (MPVS-400; Millar Instruments, Inc.). The cardiac func-
tion parameters were calculated by the analysis software PVAN3.6
(Millar Instruments, Inc.) as described previously (Xu et al., 2008).
Before the catheter was inserted into the left ventricle, intra-arterial
(carotid artery) blood pressure was recorded.

Isolation of Thoracic Aortic Rings and Determination of
Epoxygenase-Induced Relaxation. Thoracic aortic rings were
prepared as follows: briefly, thoracic aortas were rapidly isolated and
immersed in Krebs-Ringer HCO3 buffer (NaCl, 118.3 mM; KCl, 4.7
mM; CaCl2, 2.5 mM; MgSO4, 1.2 mM; KH2PO4, 1.2 mM; NaHCO3,
25.0 mM; Ca-EDTA, 0.026 mM; glucose, 11.1 mM), which was aer-
ated with 95% O2/5% CO2, pH 7.4. The vessel was carefully trimmed
of surrounding tissues and cut into 2- to 3-mm rings. The rings were
mounted on specimen holders and placed in glass organ chambers
containing 6 ml of aerated Krebs-Ringer HCO3 buffer at 37°C.
Whereas one holder remained fixed, the other was connected to an
isometric force-displacement transducer (model FTO3; Grass Instru-
ments, Quincy, MA) coupled to a polygraph (model 7D; Grass Instru-
ments). The aortic rings were incubated for 60 min at a tension of
2.0 g, during which time the chamber was rinsed every 15 min with
aerated Krebs-Ringer HCO3 buffer. We examined the responsiveness
of aortic rings from rats overexpressing P450 epoxygenases to nor-
epinephrine (NE) and acetylcholine (ACh) using a multichannel
physiologic recorder (ML-840 PowerLab; ADInstrument Pty Ltd.)
(Guan et al., 2009).

14,15-DHET Determination in Urine and Tissues. The 14,15-
DHET enzyme-linked immunosorbent assay (ELISA) kit (Detroit
R&D Inc., Detroit, MI) was used to measure 14,15-DHET according
to the manufacturer’s instructions as described previously (Jiang et
al., 2005; Yang et al., 2007). EETs can be hydrolyzed to DHETs by
acid treatment; thus, DHET in acidified urine represents total
DHETs. The difference between total 14,15-DHET and 14,15-DHET
before acidification will be 14,15-EET levels. The concentrations of
14,15-DHET and 14,15-EET were expressed as nanogram per milli-
liter of urine or picogram per milligram of tissue specimen.

Real-Time Polymerase Chain Reaction for ANP. Total RNA
was prepared by TRIzol using the manufacturer protocols (Invitrogen,
Carlsbad, CA). cDNA was produced using reverse transcriptase
(Takara, Kyoto, Japan). A LightCycler reverse transcriptase-
polymerase chain reaction (RT-PCR) system (Roche Diagnostics, Basel,
Switzerland) was used with an automated sequence detection instru-
ment for the real-time monitoring of nucleic acid green dye fluorescence
(SYBR Green; Toyobo Engineering, Osaka, Japan) as described previ-
ously (Wang et al., 2006b). Primers and conditions of PCR are shown in
Supplemental Table S1.

Western Blotting. Western blot was performed according to the
method described previously (Wang et al., 2003). CYP102 F87V anti-
body was a gift from Dr. Jorge H. Capdevila (Vanderbilt University,
Nashville, TN). Specific polyclonal antibodies raised against CYP2J2
were developed as described previously (King et al., 2002). The horse-
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radish peroxidase-conjugated secondary antibody (goat anti-rabbit) was
bought from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).

Immunohistochemical Detection of ANP in Heart. Immuno-
histochemistry was performed as described previously (Capdevila
and Falck, 2002) using ANP antibody (Santa Cruz Biotechnology,
Inc.).

Analysis of Myocardial and Renal and Arterial Morphol-
ogy. Four-micrometer-thick heart and artery sections were stained
with Sirius red (to stain collagen) using a previously described
method (Wei et al., 2005). Cardiomyocyte diameter and percentage of
extracellular matrix production were quantified using the HAIPS
Pathological Imagic Analysis System (Tongjiqianping Image Com-
pany, Wuhan, China). Heart and kidney sections were stained with
hematoxylin and eosin and were detected under microscope.

In Vitro Effects of EETs on ANP Production from Cultured
Cardiomyocytes. Primary culture of neonatal rat cardiomyocytes
was carried out as described previously (De Windt et al., 2000). More
than 90% of cells were identified as cardiomyocytes by the detection
of �-actin protein in the cells stained with 3,3�-diaminobenzidine.
11,12- and 14,15-EET (0.1 and 1.0 �M) were added to the cultured
cells. To elucidate the relevant mechanisms, different inhibitors
were added to the cultures of neonatal rat cardiomyocytes [1,10-
phenanthroline, matrix metalloproteinase (MMP) inhibitor, 100 �m;
4-(3�-chloroanilino)-6,7-dimethoxy-quinazoline (AG-1478), epithelial
growth factor receptor (EGFR) inhibitor, 100 nm; cross-reacting ma-
terial (CRM)-197, heparin-binding epidermal growth factor-like
growth factor (HB-EGF) inhibitor, 10 �g/ml; 2-chloro-5-nitro-N-phe-
nylbenzamide (GW9662), peroxisome proliferator-activated recep-
tor-� (PPAR-�) inhibitor, 1 �m], respectively, with or without 1.0 �M
14.15-EET. After incubation for 24 h, cardiomyocytes and culture
medium were collected for Western blots and determination of ANP
using an ELISA kit, respectively.

Determination of ANP and cGMP and Albumin Levels by
ELISA. ANP levels in serum and cell culture medium samples and
albumin level in urine samples were determined with ELISA kits
(Phoenix Pharmaceuticals, Belmont, CA and Immunology Consultants
Laboratory, Newberg, OR) according to the manufacturers’ instruc-
tions, respectively. cGMP levels in urine and cultured cardiomyocytes
were measured by ELISA kits (Cayman Chemical, Ann Arbor, MI).

Statistical Analysis. Data are presented as mean � S.E.M. Mul-
tiple comparisons between two groups were performed with unpaired
t tests; between three or more groups they were carried out with
one-way analysis of variance and Newman-Keuls tests for post hoc
analyses. Significance was accepted at a value of p � 0.05.

Results
P450 Epoxygenase Overexpression Induces Pro-

longed Production of EETs In Vivo. Western blot analy-
ses for expression of P450 epoxygenases indicated that a
single administration of the respective rAAV vectors induced
significant expression in vivo in the heart, kidney, liver, and
aorta 6 months after a single treatment with the indicated
rAAV constructs (Fig. 1A). Overexpression of P450 epoxyge-
nases was associated with a significant increase in urinary
14,15-DHET and 14,15-EET levels at both 2 and 6 months
compared with levels in rats injected with saline or AAV-GFP
(p � 0.05; Fig. 1, B and C). Furthermore, we measured
14,15-DHET and 14,15-EET levels in the heart, kidney, and
aorta. Results showed that both 14,15-DHET and 14,15-EET
levels were increased in rats injected with rAAV-CYP102
F87V and rAAV-CYP2J2 (p � 0.05; Fig. 1, D and E). These
results indicate that a single injection of rAAV-CYP102 F87V
or rAAV-CYP2J2 in rats induced significant and prolonged
increases in both P450 epoxygenase protein expression and
activity in vivo.

P450 Epoxygenase Overexpression Results in Hypo-
tensive Effects In Vivo. Animals treated with rAAV-
CYP102 F87V or rAAV-CYP2J2 showed a significant de-
crease in systolic blood pressure at 2 months postinjection
corresponding with the peak 14,15-DHET levels (both p �
0.05 compared with control; Fig. 2A). This difference was still
evident at the 6-month time point in the rAAV-CYP2J2-
treated group (p � 0.05; Fig. 2A). Before sacrifice at the
6-month time point, the carotid intra-arterial pressure was
measured. The data from this experiment were consistent
with the noninvasive tail-cuff measurements (p � 0.05; Fig.
2B). However, only diastolic blood pressure of rAAV-CYP2J2-
treated rats was decreased significantly at the end of the
6-month period (Supplemental Fig. S1). In addition, we ob-
served effects of CYP2J2 inhibitor C26 on animal blood pres-
sure, and results showed that rAAV-CYP2J2 significantly
reduced blood pressure compared with controls (188.2 � 6.6
mm Hg versus 219.35 � 7.5 mm Hg; p � 0.05), but C26
administration exclusively blocked rAAV-CYP2J2-induced
hypotension (Fig. 2C) and also the increase in EET and
DHET production (p � 0.05; Fig. 2, D and E).

Overexpression of P450 Epoxygenases Improves
Cardiac Function. Cardiac hemodynamics was measured 6
months after saline or rAAV injections to assess the long-
term effects of the treatments on cardiac function. The re-
sults of these studies showed maximum cardiac pressure and
end-systolic pressure, as well as both dP/dtmax and dP/dtmin,
were reduced in rAAV-CYP102 F87V- and rAAV-CYP2J2-
treated rats compared with saline and rAAV-GFP-treated
rats (p � 0.05; Fig. 2F; Supplemental Table S2). However,
the stroke volume and cardiac output (CO) were significantly
increased compared with controls (p � 0.05; Fig. 2G; Supple-
mental Table S2), which were accompanied with the lower
preload adjusted maximal power, suggesting that preload of
left ventricle is reduced and increased stroke volume is at-
tributable to reduction in afterload. There were no significant
differences in heart rate and left ventricular end-diastolic
pressure between groups (Supplemental Figs. S2 and S3).
Combined, these results suggest that the overexpression of
epoxygenases resulted in reduction in myocardial contractil-
ity in SHR but an increase in stroke volume and CO.

Overexpression of P450 Epoxygenases Improves Ar-
terial Responsiveness. Recorded arterial elastance (Ea) in
the rAAV-CYP102 F87V-treated and rAAV-CYP2J2-treated
groups (1.6 � 0.13 and 1.5 � 0.19 mm Hg/�l, respectively) was
significantly lower than in the saline-treated control group
(2.6 � 0.2 mm Hg/�l; p � 0.05; Fig. 3A), suggesting that the
P450 epoxygenase overexpression improved Ea. Furthermore,
rAAV-CYP2J2 and rAAV-CYP102 F87V treatments signifi-
cantly enhanced the responsiveness of aortic rings to ACh and
attenuated responsiveness to NE (Fig. 3, B and C), further
suggesting that P450 epoxygenase overexpression results
in altered responsiveness to endogenous vasoconstrictors
and vasodilators.

Overexpression of P450 Epoxygenases Prevents
Myocardial Hypertrophy, Cardiac Remodeling, and
Renal Damage. We evaluated the preventive effects of ep-
oxygenase overexpression on hypertension-induced myocar-
dial hypertrophy by comparison of heart weight and cardio-
myocyte diameter. Results showed that heart weight/body
weight (mg/g) in epoxygenase-treated animals was remark-
ably lower than controls (Fig. 4A), and the cardiomyocyte
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diameter was significantly smaller in the gene-treated ani-
mals than controls (Fig. 4B), which suggest that epoxygenase
overexpression efficiently attenuated hypertension-induced
myocardial hypertrophy. The results of collagen staining
showed that rAAV-CYP102 F87V- and rAAV-CYP2J2-in-
jected groups had significantly reduced heart collagen con-
tent compared with the saline control group (8.1 � 2.7% and
5.3 � 0.6% compared with 16.5 � 5.9%, respectively; both p �
0.05; Fig. 4, C and D). These results indicate CYP102 F87V
and CYP2J2 overexpression reduced collagen deposition and
attenuated hypertension-induced heart remodeling in vivo.
We also studied the effects of epoxygenase overexpression on
hypertension-induced renal damage by measuring albumin
levels in urine and observing renal histology. Results showed
that both rAAV-CYP102 F87V and rAAV-CYP2J2 treat-
ments significantly reduced urinary albumin levels com-

pared with controls (40.47 � 1.95 and 39.43 � 1.34 ng/ml
compared with 33.42 � 3.23 and 32.71 � 1.92 ng/ml, respec-
tively; p � 0.05). Moreover, the histological analysis revealed
atrophy in the glomerulus and renal tubules in control kid-
neys, and these effects were markedly attenuated by epoxy-
genase overexpression (Supplemental Fig. S4).

ANP Was Up-Regulated by Overexpression of P450
Epoxygenases. To assess potential mechanisms by which
P450 epoxygenase overexpression conferred cardiovascular
benefits in SHR, we measured ANP in serum and quantita-
tively analyzed levels of ANP mRNA in ventricular tissue by
real-time PCR. Interestingly, serum ANP was significantly up-
regulated in rAAV-CYP102 F87V- and rAAV-CYP2J2-treated
rats (115.0 � 13.0 pg/ml and 131.3 � 27.3 pg/ml, respectively)
compared with control and rAAV-GFP-treated groups (37.6 �
7.0 pg/ml and 35.1 � 6.3 pg/ml, respectively; p � 0.05; Fig. 5A).
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Moreover, ANP mRNA levels were also up-regulated by 14- and
18-fold in ventricular myocardium and 6- to 7-fold in atrial
myocardium in rAAV-CYP2J2- and rAAV-CYP102 F87V-
treated rats, respectively, compared with saline-treated control
rats (p � 0.01; Fig. 5, B and C). Accordingly, urinary cGMP was
increased in rAAV-CYP102 F87V- and rAAV-CYP2J2-treated
rats (19.86 � 1.23 nmol/24 h and 50.76 � 1.68 nmol/24 h,

respectively) as ANP level up-regulated compared with control
and rAAV-GFP-treated groups (11.31 � 1.05 nmol/24 h and
13.33 � 0.63 nmol/24 h, respectively; p � 0.05; Fig. 5D). West-
ern blots show that ANP expression in ventricle tissues is sig-
nificantly up-regulated in rAAV-CYP2J2- and rAAV-CYP102
F87V-treated rats (p � 0.01; Fig. 5, E and F). The expression
levels of other vasoactive signaling molecules such as endothe-
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group. B, carotid artery pressure
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lin-1 and adrenomedullin were also analyzed, and no significant
changes were detected between the treatment groups (data not
shown). Immunohistochemical staining using anti-ANP anti-
bodies showed that the percentage of ANP-positive cells in
myocardium increased by 1- to 2-fold in rAAV-CYP102 F87V-
and rAAV-CYP2J2-treated rats compared with saline-treated
controls in both ventricle (Fig. 6A) and atria (Fig. 6B). Finally,
incubation with synthetic 14,15-EET increased secretion of
ANP from cultured cardiomyocytes into the medium (Fig. 6C).
Notably, 11,12-EET was without effects in this in vitro system.
In agreement with increased ANP secretion from cardiomyo-
cytes, cGMP levels in cardiomyocytes were also up-regulated
(Fig. 6D). Together, these results show that the beneficial ef-
fects of P450 epoxygenase overexpression on cardiac function
and blood pressure in SHR are associated with 14,15-EET-
mediated secretion of ANP. We also found that epoxygenase
overexpression increased the urine volume and urine Na� ex-
cretion (Supplemental Figs. S5 and S6).

Furthermore, we investigated possible mechanisms through
which EETs induced secretion of ANP in cultured cardiomyo-
cytes by using different molecular antagonists. Results showed
that 14,15-EET markedly increased the expression of ANP, but
EGFR antagonist AG-1478 significantly attenuated the in-
crease in the EET-induced expression of ANP, and MMP inhib-
itor 1,10-phenanthroline and HB-EGF inhibitor CRM-197 also
decreased the expression of ANP (Fig. 6, E and F).

Discussion
The regulation of blood pressure is a complex physiological

process that involves multiple organs and systems and hun-
dreds of genes and their products. EETs have endothelium-
derived hyperpolarizing factor-like properties and natri-
uretic effects and up-regulate eNOS (Wang et al., 2003), all of
which may contribute to the regulation of blood pressure.

Recently, sEH inhibitors were shown to lower arterial blood
pressure in an angiotensin II-induced hypertension model
(Imig et al., 2002). These observations cumulatively support
the hypothesis that P450 epoxygenases and their EET me-
tabolites exert hypotensive effects. In the present study,
overexpression of CYP2J2 or CYP102 F87V epoxygenases in
SHR resulted in significant increases in EET production and
an associated reduction in systolic blood pressure. Moreover,
the P450 epoxygenases inhibitor C26 reversed that change
by decreasing production of EETs. Mechanistic studies re-
vealed that P450 epoxygenase overexpression improved Ea,
enhanced responsiveness of aortic rings to ACh, and attenu-
ated responsiveness of aortic rings to NE. In addition, over-
expression of P450 epoxygenases markedly up-regulated
ANP levels in serum and enhanced the cardiac expression of
ANP in vivo, whereas EETs enhanced ANP release in vitro in
cultured cardiomyocytes. These data suggest a hypotensive
effect of P450 epoxygenase-derived EETs that may be medi-
ated, at least in part, by enhanced ANP activity.

Several mechanisms for the hypotensive effect of EETs have
been described. EETs have been shown to cause hyperpolariza-
tion of smooth muscle cells by activation of Ca2�-sensitive K�

channels (Cohen and Vanhoutte, 1995) and to up-regulate
eNOS, resulting in increased nitric oxide production (Wang et
al., 2003). The data presented in this manuscript suggest that
increases in ANP levels in response to P450 epoxygenase over-
expression may account for some of the hypotensive effects
attributed to EETs. ANP causes vasodilatation, decreased pe-
ripheral vascular resistance (Nishikimi et al., 2006), increased
urinary sodium excretion (Nichols and Edwards, 2001; Anand-
Srivastava, 2005), and decreased cardiac preload (Ohte et al.,
1999). These characteristics, combined with the observations
described in this manuscript, make increased ANP activity a
possible mechanism for the hypotensive effects of EETs.
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In vivo cardiac hemodynamic measurements described
herein suggest that P450 epoxygenase overexpression has
negative inotropic effects. Published data indicate that EETs
decrease the open probability of myocardial L-type Ca2�

channels, decrease the intracellular Ca2� concentration
(Chen et al., 1999), and also induce activation of Ca2�-depen-
dent K� channels (Giles and Imaizumi, 1988) and/or ATP-
sensitive K� channels (Lu et al., 2001; Wang et al., 2006a).
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These changes lead to shortening of the cardiac action poten-
tial, reduced Ca2� entry, and suppression of cardiac systolic
function. Our results are consistent with previously reported
findings describing the capacity of ANP to directly depress
cardiac contractility and produce negative inotropic effects
(Wada et al., 1994; Kojda et al., 1996; Mohan et al., 1996; Lin
et al., 1998), and we speculate that the negative inotropic
effect of ANP induced by P450 epoxygenase overexpression
may partially account for the observed hypotensive effect
seen in the present study. To exclude the effect of cardiac
atrium stretch on excretion of ANP, we applied exogenous
EETs to cultured cardiomyocytes and found that addition of
EETs resulted in increased ANP secretion. Thus, the excre-
tion of ANP can be induced by EETs independent of cardiac
atrium stretch. cGMP as the direct downstream messenger
molecule of ANP receptor was up-regulated by increased
ANP. In the study, the negative inotropic effects of P450
epoxygenase overexpression do not result in the decrease; in
contrast, they induced a significant increase in stroke volume

and cardiac output, and simultaneously preload-adjusted
maximal power is significantly reduced. These data suggest
that preload of left ventricle is reduced and increased stroke
volume is attributable to reduction in afterload, which is
associated with both the vasodilation and diuretic effect de-
rived directly from EETs and more importantly from ANP.

Previous studies showed that various rat models of hyper-
tension developed myocardial hypertrophy with cardiac dys-
function (Yoshimoto et al., 1996). The present study found
that overexpression of P450 epoxygenases prevented or at-
tenuated hypertension-induced myocardial hypertrophy. Re-
duction in peripheral vascular resistance and resultant re-
duction in artery blood pressure may directly contribute to
the antihypertrophy effect. Recent studies showed that sEH
inhibitors could prevent cardiac hypertrophy via increasing
EET level (Xu et al., 2006; Ai et al., 2009), supporting our
conclusion. However, whether EETs can directly inhibit myo-
cardial hypertrophy via their effects on cardiomyocytes re-
mains to be elucidated in a future study. In addition, the
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reduction in cardiac hypertrophy and collagen deposition in
heart may facilitate improvement of cardiac function in ep-
oxygenase gene therapy.

The mechanism whereby EETs up-regulate ANP expres-
sion is not known. Previous studies have shown that the

binding of EETs to a putative receptor leads to increases in
cAMP levels and protein kinase A activity (Wong et al., 1997;
Node et al., 2001). The regulation of gene transcription by
cAMP is mediated by trans-acting factors that bind to the
cAMP-response element (CRE) of target genes (Nagamine
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and Reich, 1985). In this regard, a recent study showed that
binding of activator protein-1 to the putative CRE site in the
ANP promoter increases gene transcription by 17.5-fold (Cor-
nelius et al., 1997a,b). These results are consistent with
EET-mediated activation of CRE and/or CRE-binding pro-
tein(s) leading to induction of ANP. Previous study showed
that EET significantly induced cleavage of HB-EGF and sol-
uble HB-EGF release through activating MMPs and increas-
ing their expression, and consequentially EET enhanced
EGFR phosphorylation and its downstream signaling activa-
tion (Chen and Harris, 2002; Jiang et al., 2007a). This study
showed that the EGFR antagonist, the MMP inhibitor, and
the HB-EGF inhibitor, but not the PPAR-� inhibitor, signif-
icantly attenuated the EET-induced expression of ANP,
which suggests that EET-induced activation of EGFR may
involve increased ANP secretion in heart.

The data presented in this study indicate that rAAV-
CYP2J2 and rAAV-CYP102 F87V treatments improved aor-
tic compliance by markedly decreasing Ea, an index which
describes the elasticity of the large arteries. Furthermore, a
reduction in the collagen content of aorta and myocardium
was observed, which suggests that rAAV-CYP2J2 and rAAV-
CYP102 F87V treatments attenuated cardiac and vessel re-
modeling (Supplemental Fig. S7). The precise mechanisms
by which EETs reduced collagen deposition in target tissues
are not known, but EETs can significantly increase expres-
sion and fibrinolytic activity of tissue plasminogen activator
in endothelial cells (Node et al., 1999); this enhances collagen
degradation and may contribute to the reduced remodeling of
heart and vessel wall. In addition, the hypotensive effect of
EETs may also reduce or delay remodeling within the car-
diovascular system.

In summary, the present study provides in vivo evidence
that P450 epoxygenase overexpression reduces arterial blood
pressure and prevents cardiac dysfunction and remodeling in
SHR. These effects are probably mediated by P450-derived
EETs, particularly 14,15-EET, and appear to involve in-
creases in the production of ANP. Together, these data sug-
gest that studies to examine the potential benefits of target-
ing the P450 epoxygenase-ANP pathway may yield novel
approaches to the treatment of hypertension and associated
cardiovascular complications. This study has some limita-
tions, such as we did not use ANP receptor antagonist in vivo
to observe whether the hypotensive effect of epoxygenase
overexpression was blocked to confirm the association of
EET-induced ANP up-regulation with antihypertension; we
found that epoxygenase overexpression induced elevation in
cGMP level, but we did not tell the source, in response to
increased NO-mediated activity or from up-regulated ANP or
both. These need further study to elucidate.
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