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I. Introduction

“Receptors recognize a distinct chemical entity and translate information from that entity 

into a form that the cell can read to alter its state” (Kenakin et al., 1992). Even though the 

receptors are often pharmacologically defined on the basis of synthetic compounds, they are 

assumed to have developed to respond to endogenous molecules. Therefore, receptors are 

generally named on the basis of their natural ligands. Hence, it is appropriate to very briefly 

summarize the evidence that purine nucleotides and nucleosides are natural ligands for a 

wide class of receptors.

In a seminal paper, Drury and Szent-Györgyi (1929) showed that adenosine exerted a large 

number of biological effects, including bradycardia and vasodilation. A wider interest in the 

role of adenosine followed from the demonstration in 1963 that adenosine can be produced 

by the hypoxic heart. Two groups independently formulated the hypothesis that adenosine 

may be involved in the metabolic regulation of coronary blood flow (Berne, 1963; Gerlach et 

al., 1963). The observation by de Gubareff and Sleator (1965) that the actions of adenosine 

in heart tissue could be blocked by caffeine suggested the existence of an adenosine receptor. 

The potent cardiovascular effects of adenosine led to an interest in the synthesis of new 

adenosine analogs, and careful dose-response studies with a number of these drugs (Cobbin 

et al., 1974) strongly suggested the presence of a receptor for adenosine-like compounds. 

Sattin and Rall (1970) reported that adenosine increased cyclic AMP accumulation in slices 

of rodent brain and that this adenosine-induced second-messenger response was blocked by 

methylxanthines. Their findings suggested that adenosine receptors exist in the central 

nervous system. The essentially simultaneous findings by Mcilwain (1972), that such brain 
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slices actually elaborate adenosine in concentrations that would be sufficient to elevate 

cyclic AMP, provided support that these putative receptors were physiologically occupied by 

adenosine. Thus, in the 1970s there was good evidence that there were receptors for 

adenosine at which methylxanthines acted as antagonists. Biochemical evidence for the 

existence of multiple adenosine receptors was subsequently provided by the demonstration 

that adenosine analogs increased cyclic AMP production in some preparations and decreased 

it in others. Because the relative agonist potency for a variety of adenosine analogs was 

different for these two types of effects, the presence of two classes of receptors, called A1 

and A2 (van Calker et al., 1979) or Ri and Ra (Londos et al., 1980), was proposed. The 

A1/A2 nomenclature is now generally used.

The presence of receptors for ADP, particularly on blood platelets, was also recognized 

several decades ago. Studies of the factors in blood that induce platelet aggregation led to 

the identification of ADP as an active component present in red blood cell extracts (Gaarder 

et al., 1961). The evidence that ADP and adenosine (presumably A2) receptors exist on 

platelets was summarized by Haslam and Cusack (1981).

Four decades ago, ATP was shown to produce important cardiovascular effects (Green and 

Stoner, 1950) and to be released from sensory nerves (Holton and Holton, 1954; Holton, 

1959), hinting at a role in neural transmission. In his landmark review of purinergic nerves, 

Burnstock (1972) postulated the existence of specific ATP receptors. Although evidence in 

support of this idea was not overwhelming at the time, many subsequent studies have 

supported the existence of receptors for extracellular ATP (Burnstock and Brown, 1981; 

Gordon, 1986; O’Connor et al., 1991). Similarly, the evidence is now compelling that ATP 

plays important physiological and/ or pathophysiological roles in a variety of biological 

systems, including that of a neurotransmitter in peripheral and central neurons. Finally, 

diadenosinetetraphosphate is a dinucleotide stored in synaptic vesicles and chromaffin 

granules (Flodgaard and Klenow, 1982; Rodriguez del Castillo et al., 1988) and released 

therefrom (Pintor et al., 1991a, 1992). The purine dinucleotide also binds with 

subnanomolar affinity to receptors (Pintor et al., 1991b, 1993) and exerts biological effects 

(Pintor et al., 1993), indicating that it is an endogenous purinoceptor ligand.

Thus, strong evidence for the presence of receptors for the endogenous ligands adenosine, 

ADP, ATP, and dia-denosinetetraphosphate had accumulated. This group of receptors is 

called the purinoceptors. If at some future time there is compelling evidence that UTP, or 

another pyrimidine nucleotide, is an endogenous ligand at receptors that respond poorly or 

not at all to ATP, then this terminology may need revision.

II. General Considerations concerning the Classification of Purinoceptors

Classification of receptors should preferably be based on combined structural and 

pharmacological information (Kenakin et al., 1992). We are not yet in this ideal situation in 

the area of purinoceptors, and any proposed classification scheme by necessity must be 

tentative. In 1978 Burnstock made the important suggestion that there exists a family of 

receptors called purinergic receptors that can be subgrouped into two subclasses, P1 and P2 

(Burnstock, 1978). A somewhat extended version of this classification scheme (Burnstock, 
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1980) is shown in table 1. The scheme has been extremely influential and was adopted by 

numerous authors in the field. It should, however, be borne in mind that the original criteria 

have been continuously updated and modified with the availability of new information (see 

footnotes to table 1). The current criteria for the subclassification are summarized table 2.

Structural information is now available for several subtypes of receptors for adenosine 

(Maenhaut et al., 1990; Libert et al., 1991; Mahan et al., 1991; Fink et al., 1992; Stehle et 

al., 1992; Salvatore et al., 1992; Zhou et al., 1992). The same is true for some P2 receptors 

(Lustig et al., 1993; Webb et al., 1993; for comparisons between several recombinant P2 

receptors, see Barnard et al., 1994). Often, but not always, the information from the cloned 

receptors has supported earlier attempts at classification based on pharmacological criteria. 

Only limited structural information is presently available for receptors for adenine 

nucleotides. Thus, the current recommendations about the classification of receptors for 

adenosine are firmer than those regarding the adenine nucleotides. The pharmacological 

evidence is also more substantial in the case of the adenosine receptors than in the case of 

receptors for adenine nucleotides.

It has been strongly emphasized that antagonists, rather than agonists, are the preferred tools 

for pharmacological classification (Kenakin et al., 1992). The reason for this is that apparent 

agonist potency depends strongly not only on agonist binding to the receptor but also on the 

entire signal transduction machinery. Unfortunately, much of the pharmacological 

classification in the purinoceptor field rests on relative agonist potencies. Antagonists at 

adenosine receptors in many instances do not show the degree of selectivity that is ideal. 

Binding assays can be used for some of the receptors, but ligands are lacking for others. 

Thus, comparisons between receptors often have been based on different types of assays. In 

the case of receptors for ADP and ATP, classification is even more problematic in that 

currently available antagonists have not been unequivocally shown to be specific and 

selective.

One final consideration is of particular importance in the area of purinoceptors. It has been 

emphasized that extreme care must be taken to ensure that assays of biological activity are 

carried out under equilibrium conditions and that complications due to sites of loss or the 

influence of endogenous ligands are avoided (Kenakin et al., 1992). Because the purine 

nucleosides and nucleotides are extremely important metabolically, cells have elaborated 

very efficient systems for their degradation and/or uptake into cells. Such removal 

mechanisms are present on virtually all cells; this is in contrast to the situation for many 

neurotransmitters, for which sites of loss are particularly abundant in the nerves that use 

them but virtually absent elsewhere. Adenosine and several adenosine analogs are rapidly 

taken up and/or metabolized by transporters and enzymes. The efficiency of this process is 

extraordinary; the half-life of adenosine injected into the blood stream is on the order of 1 

second (Möser et al., 1989). Nucleotides are also very rapidly degraded, and the degradation 

products are taken up by cells. Some of the nucleotide analogs and their breakdown products 

interfere not only with the receptors but also with the removal systems. Conversely, the 

available agents that may reduce the breakdown of the nucleotides have the possibility of 

interacting with the receptors. Finally, it is often difficult to achieve a temporal equilibrium 

in the case of at least some adenine nucleotide receptors, which desensitize very rapidly. 
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Consequently, the evidence for subtypes of adenine nucleotide receptors that is based on 

relative agonist potency in complex biological systems must be regarded as tentative rather 

than definitive.

The IUPHAR receptor nomenclature committee also has suggested that classification-

neutral labels such as 1–2–3 are to be preferred to other labels. In the case of purinoceptors, 

Burnstock (1978, 1980) proposed a P1 and P2 nomenclature for adenosine and adenine 

nucleotide (ATP, ADP) receptors, respectively. A classification into A1 and A2 adenosine 

receptors was proposed in 1979 (van Calker et al., 1979) and is now generally accepted, 

along with the A2a and A2b nomenclature. The basis for the latter is that the two cloned 

receptors show considerable sequence homology and essentially similar signal transduction 

mechanisms and can be readily distinguished based on pharmacological criteria. The P1 

receptor designation is particularly used to contrast it with P2 receptors. A series of letters 

has been allocated in a rather random manner (P2X, P2Y, P2T, P2S, P2N, P2U, P2Z, P2D) for 

the adenine nucleotide receptors.

III. Proposed Receptor Classification

A. Adenosine (P1) Receptors

The terms adenosine receptor or P1 purinoceptor are used to designate this family of 

receptors. The term P1 is useful in situations in which comparison is made between P1 and 

P2 purinoceptors. The subtypes of adenosine/P1 purinoceptors are designated as A1, A2, A3,

… receptors and can be further divided, e.g., into A2a, A2b (table 3); this is in agreement 

with the above-mentioned general recommendation for subtype numbering of the IUPHAR 

committee on receptor nomenclature. Additions of receptors into this scheme will be made 

if, and only if, both structural and pharmacological evidence indicate a specific subtype. 

Such criteria involve evidence that the structure is different from that of already established 

members of the adenosine family in the same species. This information must be 

supplemented by the demonstration that either the receptor has a unique distribution among 

cells and tissues or the cloned receptor exhibits a unique pharmacology. Because all 

adenosine receptors as yet characterized are G-protein coupled (see below), unique 

pharmacology should be demonstrated in an expression system in which the receptor 

couples to relevant G-proteins.

The predicted amino acid sequences of some of the recombinant adenosine receptors are 

shown in figure 1. There appear to be four major classes of these receptors. The A2a 

receptors are similar to the A2b receptors in the transmembrane parts but differ from the A2b 

(and other adenosine receptor types) in having a considerably larger COOH-terminal 

domain. There are differences in the primary structure of adenosine receptors of a single 

subtype cloned from different species, which may help to explain the differences that have 

been shown in binding studies (Ferkany et al., 1986; Stone et al., 1988).

G-protein-coupled receptors show some structural similarities with bacteriorhodopsin, the 

structure of which has been determined with high-resolution electron cryomicroscopy 

(Henderson et al., 1990). Three-dimensional models of G-protein-coupled receptors may be 

constructed using this as a template (Hibert et al., 1991; Dudley et al., 1993), and attempts to 

Fredholm et al. Page 4

Pharmacol Rev. Author manuscript; available in PMC 2016 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model the ligand-receptor interaction have been made (van Galen et al., 1990; van der 

Wenden et al., 1992). Functional models of the adenosine receptors may serve as an aid in 

the synthesis of novel ligands (Ijzerman et al., 1992; van Galen et al., 1992; Jacobson et al., 

1993b). A schematic representation of some aspects of these models is shown as figure 2.

All of the recombinant adenosine receptors have the general structure that would place them 

in the rhodopsin-like group of the superfamily of G-protein-coupled receptors. The A2 

receptors have been defined on the basis of their ability to stimulate adenylyl cyclase. Thus, 

they probably interact with the G-protein, Gs. It is not known whether there are other G-

proteins that can interact with A2 receptors. Similarly, it is not known whether Gs activated 

by adenosine receptors can interact with effectors other than adenylyl cyclase (cf. the β-

adrenoceptor in the heart which activates a Ca2+ channel via Gs), but experience from other 

signal transduction cascades suggests that this is a distinct possibility.

The A1 receptor has been shown to couple with Gi-1, Gi-2, Gi-3, and Go but not with Gs or Gz 

(Freissmuth et al., 1991; Munshi et al., 1991). In practically all instances (but see Fredholm 

et al., 1989; Thompson et al., 1992), responses to adenosine A1 receptor activation are 

blocked by pertussis toxin, which is compatible with an involvement of the Gi/Go family of 

G-proteins. In agreement with this, adenosine A1 receptors can induce a variety of different 

cellular responses, including inhibition of adenylyl cyclase (van Calker et al., 1978; Londos 

et al., 1980), stimulation of K+ conductance (Trussell and Jackson, 1985), inhibition of a 

Ca2+ conductance, probably through an N-type channel (Scholz and Miller, 1991), 

stimulation of phospholipase C, and generation of a Ca2+ and protein kinase C signal 

(Gerwins and Fredholm, 1992, 1994). Other reported effects include inhibition of inositol 

phospholipid hydrolysis (Kendall and Hill, 1988; Delahunty and Linden, 1988) and 

inhibition of transmitter release by a mechanism that does not involve a change in membrane 

K+ and Ca2+ conductances (Scholz and Miller, 1991). Based on evidence from other G-

protein-coupled receptors it seems likely that some of these responses are mediated by the α-

subunits of the G-proteins, whereas other effects may be due to the β,γ-subunits 

(Birnbaumer, 1992). Probably the degree of activation of the G-protein, and hence of the 

receptor, may differ by orders of magnitude depending on which subunit(s) mediates the 

response (Birnbaumer, 1992). The broad range of signaling responses emphasizes that it is 

not fruitful to attempt to subclassify adenosine receptors solely on the basis of whether the 

effects are mediated via cyclic AMP or not (Ribeiro and Sebastiao, 1986; Fredholm and 

Dunwiddie, 1988). Furthermore, the absolute potency of agonists in producing an effect 

cannot be used to classify receptors. Regarding the newly identified A3 receptor (Zhou et al., 

1992; Meyerhof et al., 1991), little is so far known about its G-protein coupling. Because A3 

receptors mediate inhibition of adenylyl cyclase, a Gi-like protein is a probable partner.

A list of drugs that appear to be useful to classify adenosine receptors is given in figure 3. 

The battery of pharmacological tools currently available for the classification of adenosine 

receptors is far from optimal, especially for use in a functional context, and some points 

need to be emphasized.

First, sensitivity to methylxanthines cannot be taken as a universal sign of adenosine 

receptor involvement. Methylxanthine-induced blockade of a response is still highly 
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suggestive of an involvement of adenosine receptors, but a lack of inhibition can no longer 

be taken as conclusive evidence against an adenosine receptor being involved. Because the 

methylxanthine-insensitive A3 receptor (table 3) may be present in significant quantities 

outside the testis, several older reports of methylxanthine-insensitive adenosine effects may 

have to be reinterpreted. Indeed, in a recent report it was shown that N6-2-(4-

aminophenyl)ethyladenosine which shows a high affinity for the A3 receptors (Zhou et al., 

1992) produces xanthine-insensitive hypotension in pithed rats (Fozard and Carruthers, 

1993). The A3 receptor also appears to mediate xanthine-resistant adenosine actions on mast 

cells (Ramkumar et al., 1993). It was recently found that N6-benzyl-5′-N-ethyl-
carboxamidoadenosine may be an A3-selective agonist (14-fold vs. A1 and A2a receptors; 

van Galen et al., 1993). Some 8-phenyl-substituted xanthines are potent antagonists, BW-A 

522 being the most potent, with nanomolar affinities at least at ovine and human A3 

receptors (Linden et al., 1993a; Salvatore et al., 1993; Fozard and Hannon, 1993).

Second, antagonists that are both selective and easily soluble are established for the A1 

receptor type. However, both absolute and relative potencies for these selective antagonists 

at A1 receptors may differ among species. The more selective antagonists at A2 receptors 

(Sarges et al., 1990; Shimada et al., 1992) have usually not been examined in well-

characterized functional systems, and information derives mainly from binding assays. 

Recent data indicate that l,3-dipropyl-8-(3,4-dimethoxystyryl)-7-methylxanthine is a 

selective A2a antagonist in functional assays (Shimada et al., 1992; Fredholm et al., 

unpublished observations). A related xanthine, 8-(3-chlorostyryl)caffeine, was recently 

found to be a very selective A2a antagonist (vs. A1), also in vivo (Jacobson et al., 1993b). A 

whole family of 8-styrylxanthines with A2a selectivity and varying physicochemical 

properties has been described (Jacobson et al., 1993a). These compounds are not yet readily 

available, which limits their usefulness in defining criteria for receptor classification.

Third, CGS 21680 and other 2-substituted adenosine analogs play an important role in 

pharmacological sub-classification of A2 receptors. These compounds discriminate well 

between A2a and A2b receptors. Cellular responses to CGS 21680 (and related compounds) 

may in addition depend critically on factors, such as receptor density and amounts and types 

of G-proteins and adenylyl cyclases, and not solely on the presence or absence of a specific 

adenosine A2a receptor subtype. However, recent data suggest that CGS 21680 may also 

bind to a structure, which may be a functional receptor, that is different from hitherto 

recognized adenosine receptors (Johansson et al., 1993; Cunha, Johansson, and Fred-holm, 

unpublished data).

B. P2/ATP Purinoceptors

The first overview of the functional effects of various ATP analogs was given by Burnstock 

and Kennedy (1985). By analyzing the nature of the responses to ATP and related 

compounds in a number of different biological systems, they discriminated between two 

major classes of receptors that were named P2X and P2Y purinoceptors, respectively. The 

two postulated P2 receptors were discriminated on the basis of response profiles to a number 

of ATP analogs: αβ-MeATP > βγ-MeATP > ATP = 2-MeSATP = ADP for the P2X subtype; 

2-MeSATP > ATP >> αβ-MeATP = βγ-MeATP for the P2Y subtype. P2X receptors were also 
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proposed to be quickly desensitized by αβ-MeATP. The agonist response profiles in the 

guinea pig isolated bladder and taenia coli were considered to represent prototypical P2X and 

P2Y receptors (Burnstock, 1991; Cusack, 1993). These studies were extended to other 

smooth muscle preparations, and P2X and P2Y purinoceptor activation was correlated with 

contraction and relaxation, respectively, but exceptions have been noted (Bailey and 

Hourani, 1992). The classification (table 4) rests very much on the potency of 

phosphothioate ATP derivatives, which were originally thought to be “nonhydrolyzable,” but 

many have more recently been shown to be degraded by ectonucleotidases (Cusack, 1993). 

Among the analogs 2-MeSATP, αβ-MeATP, L-βγ-MeATP may be particularly useful in 

discriminating between P2X and P2Y receptors (Hourani et al., 1985). Desensitization by αβ-

MeATP and ANAPP3 (table 4) has so far not been reported to occur except at P2X receptors. 

Novel selective agonists for P2X and P2Y receptors have been introduced (Fischer et al., 

1993; Burnstock et al., 1994), and studies with these ligands suggest that the receptors may 

exist in several subtypes.

Most recent evidence suggests that the P2X purinoceptor family represents an intrinsic ion 

channel permeable to Na+, K+, and Ca2+ (Bean, 1992). P2Y purinoceptors constitute G-

protein-linked receptors, often coupled to stimulation of phospholipase C activity and, 

hence, to inositol trisphosphate formation (O’Connor et al., 1991), but additional 

transduction mechanisms, including modulation of cyclic AMP generation (Okajima et al., 

1989; Yamada et al., 1992; Boyer et al., 1993) and arachidonic acid mobilization (Bruner 

and Murphy, 1990, 1993) have also been demonstrated.

After the 1985 Burnstock and Kennedy proposal, Gordon (1986) further subdivided the P2 

purinoceptors by assigning the name P2T to the receptor for ADP on blood platelets 

(Humphries et al., 1993) and P2Z for the “receptor” that mediates responses to ATP4− in 

mast cells (Dahlqvist and Diamant, 1974) and macrophages (Steinberg and Silverstein, 

1987), which appears to represent the opening of a fairly nonselective type of pore. There is 

now good evidence that there are receptors that respond to UTP, ATP, and ATPγS, but not to 

2-MeSATP or αβ-MeATP, which has led to the definition of the so-called “P2U” or 

“nucleotide” or “pyrimidine” receptor (table 4; O’Connor et al., 1991; Dubyak, 1991). There 

also appears to be a receptor for diadenosinetetraphosphate, which was called a P2D subtype 

(Hilderman et al., 1991; Castro et al., 1992). Some characteristics of the P2 purinoceptors are 

summarized in table 4.

A problem that has always hampered research in the P2 purinoceptor field is the lack of 

selective antagonists. The trypanoside suramin (Dunn and Blakeley, 1988; Voogd et al., 

1993) sometimes behaves as a competitive antagonist but does not appear to distinguish 

between the P2X and P2Y subtypes (Hoyle et al., 1990). Suramin is also very effective in 

inhibiting the actions of certain growth factors (Betsholtz et al., 1986; Peng et al., 1991), 

presumably secondarily to interactions with the corresponding receptors (Eriksson et al., 

1991). The potency of suramin against basic fibroblast growth factor (Peng et al., 1991; IC50 

is in the low micromolar range) is at least as high as against P2 receptors. Suramin is also an 

inhibitor of several enzymes, including 5′-nucleotidase (Hourani and Chown, 1989), 

something that is of particular concern when the compound is used to discriminate between 

P1 and P2 actions. 2–2′-Pyridylisatogen was reported to be a weakly selective antagonist of 
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the relaxant effects of ATP in smooth muscle (Spedding et al., 1975) but did not antagonize 

the effects of adenosine (Spedding and Weetman, 1976). Pyridoxalphosphate-6-

azophenyl-2′,4′-disulfonic acid, synthesized by Lambrecht and co-workers (1992), is a novel 

type of P2 antagonist with a potency at P2X receptors in the nanomolar range (Ziganshin et 

al., 1993). The displacement of [3H]αβMeATP was biphasic, suggesting multiple affinity 

sites or multiple receptor subtypes (Ziganshin et al., 1993). Reactive Blue 2 has been 

reported to selectively antagonize ATP actions at the P2Y subtype, although concentration 

and time of exposure are critical. The structures of a number of compounds useful for the 

study of P2 purinoceptors are shown in figure 4.

Molecular information concerning P2 purinoceptors is becoming available. Xenopus oocytes 

injected with mRNA from embryonic guinea pig brain (Fournier et al., 1990; Honoré et al., 

1991), promyelocytic leukemia cells (HL60; Murphy and Tiffany, 1990), J774 murine 

macrophage-like cells (Hickman et al., 1993; Nuttle et al., 1993), or guinea pig vas deferens 

(Russell et al., 1993) were conferred with the ability to respond to ATP. The pharmacology 

corresponded to that of several of the proposed P2 receptor subforms.

P2Y (Webb et al., 1993) and P2U purinoceptors (Lustig et al., 1993) have recently been 

cloned. As shown from figure 1, these receptors are more similar to each other than they are 

to adenosine receptors. Interestingly, they are not closer to the adenosine receptor than to 

other G-protein-coupled receptors. Based on such a comparison of these sequences with a 

more recently cloned ADP receptor, it has been proposed that the G-protein-coupled P2 

purinoceptors will constitute a distinct family within the superfamily of G-protein-coupled 

receptors (Barnard et al., 1994).

P2Y purinoceptor-mediated responses show different agonist pharmacology in a variety of 

tissues and preparations (Burnstock, 1991; Fischer et al., 1993), suggesting a 

subclassification of the “classic” P2Y purinoceptor. Other data suggest that the currently 

designated “P2U,” “P2T,” and “P2D” purinoceptor subtypes may have to be reclassified.

On these grounds it must be emphasized that the current classification of the P2 series must 

be considered unsatisfactory for the long term. When additional structural information is 

obtained and truly selective antagonists become available, a revised nomenclature will be 

established. Even now it is clear that there is a basis for distinguishing two major families of 

P2 purinoceptors, one coupled to intrinsic ion channels and the other coupled to G-proteins. 

For the transition period the IUPHAR Committee on Receptor Nomenclature and Drug 

Classification, in keeping with the proposal by Abbracchio and Burnstock (1994), 

recommends that any new subtypes of G-protein-coupled receptor be termed P2Y1, P2Y2, 

P2Y3,… purinoceptors and any new subtypes of intrinsic ion channel be termed P2X1, 

P2X2, P2X3,… purinoceptors. The 2X and 2Y are not subscripted, to avoid confusion with 

previous usage and to facilitate the use of lower case, as in p2y1, p2y2,… to refer to cloned 

receptors whose correspondence to a pharmacologically defined subtype has not been firmly 

established. Lower case is being used in this way in other IUPHAR nomenclatures, e.g., 

adrenoceptors, muscarinic cholinoceptors, and 5-hydroxytryptamine receptors. The term 

P2Z purinoceptor should be reserved for novel receptor structures that do not correspond to 

the P2X and P2Y purinoceptor structure. A possible example could be the mast cell P2 

Fredholm et al. Page 8

Pharmacol Rev. Author manuscript; available in PMC 2016 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



purinoceptor, if this is established to be a nonselective ion pore opened by ATP. Although 

not an ideal system of classification, it does allow consecutive numbering and obviates the 

need for arbitrary designation of letters when new subtypes are identified.
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Fig. 1. 
Amino acid sequences of purinoceptors deduced from cloned DNAs, aligned for maximum 

homology. Note that the P2 receptor sequences belong to a completely different family than 

do the adenosine (P1) receptors. The adenosine receptors listed here are all from the rat: A1 

(Mahan et al., 1991), 326 amino acids; A2a (Fink et al., 1992; Furlong et al., 1992), 410 

amino acids; A2b, (Stehle et al., 1992), 332 amino acids; A3 (Meyerhof et al., 1991; Zhou et 

al., 1992), 319 amino acids. Other such recombinant sequences known are for the human 

(Salvatore et al., 1992; Libert et al., 1992; Townsend-Nicholson and Shine, 1992), canine 
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(Libert et al., 1991), and bovine (Olah et al., 1992; Tucker et al., 1992) A1 receptors; the 

human (Salvatore et al., 1992) and canine (Maenhaut et al., 1990) A2a receptors; and the 

human (Salvatore et al., 1992) A2b receptor, each of these is extremely homologous to the 

corresponding rat receptor. The rabbit A2 receptor was also found to be highly homologous, 

and genomic cloning revealed that the receptor gene has an intron (Bhattacharya et al., 

1993). The chicken P2yl receptor has 362 amino acids (Webb et al., 1993), and the mouse 

P2u receptor (Lustig et al., 1993) has 373 amino acids. The approximate start positions of 

the transmembrane helices, as designated on the basis of hydropathy plots, are shown by the 

symbols TM1 to TM7.
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Fig. 2. 
Proposed models of A1 and A2A adenosine receptor proteins based on sequence analysis 

(van Galen et al., 1992) and computer-assisted molecular modeling (Ijzerman et al., 1992). 

The seven transmembrane helices (I through VII) are arranged in a counterclockwise 

orientation (looking from the extracellular side) according to the experimentally determined 

structure of bacteriorhodopsin. Actually, I and VII are in proximity, forming a barrel shape, 

which surrounds the ligand-binding site. Histidyl residues (H) in the sixth and seventh 

helices are proposed to hydrogen bond to adenosine, through the purine N6- and ribose 2′,3′ 

positions, respectively. The locations of cysteinyl residues (SH) and hypothetical disulfide 

bridges (S-S, Jacobson et al., 1993d) are indicated. Glycosylation occurs on the second 

extracellular loop (E-II) in both receptors. In the A1 receptor, a potential palmitoylation site 

(S-CO) is shown as forming an additional anchor of the carboxy-terminal segment in the 

phospholipid bilayer. Cytoplasmic segments show a hypothetical secondary structure (α and 

β), predicted using computational algorithms (van Galen et al., 1992)
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Fig. 3. 
Ligands used to classify adenosine receptors. Adenosine agonists (a) include those that are 

selective for A1 receptors [N6-cyclopentyladenosine (CPA) > N6-cyclohexyladenosine 

(CHA) > N6(R-phenylisopropyl)-adenosine (R-PIA)], A2a receptors (2-[p-(2-car-

bonylethyl)-phenylethylamino]-5′N-ethylcarboxamidoadenosine (CG21680)>2-[(2-

aminoethylamino)carbonylethylphenylethylamino]-5′N-ethylcarboxamidoadenosine (APEC) 

> 2-phenylaminoadenosine (CV1808)), and A3 receptors [N6-benzyl-5′-N-ethyl-

carboxamidoadenosine (NECA)]. NECA and 2-chloroadenosine (2-C1ADO) are essentially 
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nonselective. Adenosine antagonists (b) include such that are A1 selective {l,3-dipropyl-8-

cyclopentylxanthine (CPX, or sometimes DPCPX); 8-cyclopentyltheophylline (CPT) [and 

xanthine amine congener (XAC)] |, thosethatareA2a,selective[8-(3-

chlorostryl)caffeine(CSC);1,3-dipropyl-8-(3,4-dimethoxystyryl)-7-methylxanthine (KF 

17837)], moderately A2 selective [1,3-dimethyl-7-propylxanthine (DMPX) and 9-chloro-2-

(2-furanyl)-5,6-dihydro-[1,2,4]-triazolo[1,5]quinazolin-5-imine monome-

thanesulfonate(CGS 15943)}. Caffeine, theophylline, 3-isobutyl-1-methylxanthine (IBMX), 

and 8p-sulfophenyl theophylline are essentially nonselective. The latter compound 

penetrates the blood-brain barrier poorly. (For other abbreviations, see footnote to table 3).
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Fig. 4. 
Ligands used to characterize P2 purinoceptors. The structures shown are of the D-isomers. 

Some studies have also been done on L-isomers. α,β-methylene (Me) ATP is a potent and 

selective P2X agonist. 8-(6-aminohexylamino)ATP is selective for P2Y vs. P2X receptors and 

may discriminate between subforms (Burnstock et al., 1994). UTP and 5-F-UTP are active at 

P2U but not at P2Y receptors. 2-MethylthioATP is active at P2Y but not at P2U receptors. 

None of these are very active at P2X receptors. The long-chain functionalized congeners 

(Fischer et al., 1993) 2-(p-nitrophenylthio)ATP and 2-(6-cyanhexylthio)ATP maintain or 
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increase potency at P2Yreceptors. The nitro derivative may discriminate between forms of 

P2X receptors. N6-methyl ATP may discriminate between forms of P2Y receptors. The 

structures of some compounds—suramin, pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic 

acid (PPADS), and Reactive Blue—that have antagonistic properties are also shown.
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TABLE 1

Original criteria for distinguishing two types of purinoceptors

Antagonists Agonist preferences Changes in
cyclic AMP

Induction of
prostaglandin

synthesis

P1 receptors

  Methylxanthines* ADO > AMP > ADP > ATP† Yes‡ No§

P2 receptors

  Quinidine*

  Imidazolines No‡ Yes§

  2,2′-Pyridylisatogen ATP > ADP > AMP > ADO†

  Apamin

*
We still lack good antagonists at P2 receptors (see section III.B and Table 4). There are apparently adenosine receptors (A3 receptors, see below) 

where the classical methylxanthines are very poor antagonists.

†
Adenosine (ADO) and AMP do not activate P2 receptors. Adenine nucleotides may or may not be agonists at adenosine receptors.

‡
Not all adenosine receptors (P1 purinoceptors) affect cyclic AMP formation. Conversely, adenine nucleotides may affect cyclic AMP formation.

§
Not all effects of ATP or ADP are mediated through changes in prostaglandin formation. Adenosine effects on Ca2+ may be associated with 

prostaglandin formation.
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TABLE 2

Subdivision of purinoceptors into P1 and P2 types. Current recommendations

Receptor class P1 purinoceptors P2 purinoceptors

Effector system G-protein coupled G-protein coupled
Intrinsic ion channel
Nonselective pore

Natural ligand(s)
so far identified

Adenosine ATP, ADP, diadeno-
sinetetraphos-

phate, (UTP?)*

*
Whereas UTP is an endogenous compound and a ligand at some P2 purinoceptors, it remains to be shown that endogenous UTP acts via such 

receptors in vivo.
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