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Abstract

Objectives—To estimate the effects of antibiotic exposures in the first 6 months of life on short- 

and long-term growth.

Study design—In a prospective observational cohort study of 497 children from Vellore, India, 

we estimated short-term effects of antibiotics during the first 6 months using longitudinal general 

linear regression to model weight-forage, height-for-age, and weight-for-height z-scores in 

monthly intervals. To estimate long-term effects, we modeled growth from 6 months to 3 years as 

a function of antibiotic use in the first 6 months. We also estimated the effects of antibiotics on the 

monthly relative risks of underweight, stunting, and wasting in the first 6 months and to 3 years.

Results—Underweight, stunting, and wasting were common in this population: 31%, 32%, and 

15% on average after 6 months of age, respectively. There was no association between antibiotic 

exposures before 6 months and growth during that period. From 6 months to 3 years, adjusted 

absolute differences in weight and height were small (approximately −100 g and no more than −2 

mm overall, respectively) and not statistically significant.

Conclusions—Antibiotic exposures early in life were not associated with increased or decreased 

growth. The combination of malnutrition and recurrent illness likely complicate the relationship 

between antibiotic exposures and growth among children in low and middle-income countries.
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In an era of concern over the growing obesity epidemic in developed countries, antibiotic 

exposures early in life have been recently identified as a potential contributor to excessive 

weight gain.1,2 This hypothesis originated from the clear growth-promoting effects of 

antibiotics in livestock when given long-term and in subtherapeutic dose.3 Although the 

biological mechanism is largely unknown, it is hypothesized that antibiotics affect growth 

through interaction with the gastrointestinal microbiota,3,4 which plays an important role in 

supporting nutrient absorption and other metabolic functions.5,6 Several epidemiologic 

studies among children in high-income countries have supported this hypothesis, finding 

associations between antibiotic use early in life and increased risk for obesity in later 

childhood.7-9

In low and middle-income countries (LMICs), this potential relationship is complicated by 

the high prevalence of malnutrition and recurrent illnesses that can cause major height and 

weight shortfalls.10,11 Subclinical infections associated with living in unhygienic 

environments are associated with environmental enteropathy, which results in impaired 

function and structure of the small intestine and reduces nutrient absorption.12-4 For children 

with severe acute malnutrition, antibiotics are recommended to treat and prevent subclinical 

infections in an effort to improve recovery.15,16 In several studies, acutely malnourished 

children who received antibiotics showed improved recovery rates, lower mortality, and in 

some cases improved weight gain compared with children receiving nutritional supplements 

alone.16-18

However, as our group showed recently, antibiotics may also increase risk for diarrhea,19,20 

which is associated with poor growth and can contribute to the synergism between infections 

and growth failure.21 Therefore, it is unclear what the net impact of antibiotic treatment for 

common childhood illnesses may be among children in low-income settings.

We aimed to estimate the effect of antibiotic use before 6 months of age on short-term 

(within the first 6 months) and long-term (up to 3 years of age) growth in an observational 

birth cohort from Vellore, India. We focused on antibiotic use in the first 6 months because 

antibiotics have the largest impact on the developing microbiota2,22,23 and subsequent 

diarrhea at this age,19 and we expect this exposure period to correspondingly have the largest 

effects on growth, as previously shown.7

Methods

We analyzed data from a prospective observational cohort study of immune responses to 

cryptosporidiosis in 497 children from semi-urban slums of Vellore, India from 2009-2013. 

The study population, enrollment strategy, and data collection methods have been previously 

described.24 Briefly, baseline information on demography, socioeconomic indicators, 

environment, and delivery characteristics were collected at enrollment. Fieldworkers 

interviewed caregivers twice per week from birth to 3 years of age about all illnesses since 

the last visit and further recorded details of diarrhea severity, hospitalization, and treatments 

given. Diarrhea was defined using the standard World Health Organization (WHO) 

definition as at least 3 loose or watery stools in a 24-hour period,25 and severity was 

assessed by the Vesikari scale.26

Rogawski et al. Page 2

J Pediatr. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Antibiotic exposure was defined in monthly intervals as antibiotic use for any illness. 

Children were considered exposed either if a caregiver reported antibiotic use for diarrhea 

during home visits by fieldworkers or if a prescription for antibiotics was recorded in study 

clinic records for any illness (including diarrhea). We excluded all topical antibiotics.

Height and weight were measured each month of follow-up at the study clinic using single 

measurements. Weight was measured using a Salter weighing scale to the nearest 100 g. 

Recumbent length was measured using a standard infantometer for the first year of life, and 

subsequently height was measured with a stadiometer, both to the nearest millimeter. 

Biologically implausible height and weight values were discarded, and we considered 

measurements taken within 1 week before or after a child's monthly birth anniversary as 

their weight/height at that month of age. Written informed consent was obtained from the 

parents or guardians of the participating children. The study was approved by the 

Institutional Review Boards of the Christian Medical College (Vellore, India), Tufts 

University Health Sciences (Boston, Massachusetts), and University of North Carolina 

(Chapel Hill, North Carolina).

We used the 2006 WHO child growth standards27 as the reference population to calculate 

weight-for-age (WAZ), height-for-age (HAZ), and weight-for-height (WHZ) z-scores. 

Children were classified as underweight (WAZ < −2 SD from the growth reference), stunted 

(HAZ < −2 SD), and/or wasted (WHZ < −2 SD). We also translated the effects on z-scores 

to their equivalents in absolute height and weight using the age and sex-specific SD 

differences in weight/height from the WHO expanded z-score tables.28,29

Because the proportion of missing data was 3% or less for all baseline variables, we imputed 

the median values of baseline variables for individuals with missing data.

Data Analyses: Short-Term Effects

We used longitudinal general linear regression to model WAZ, HAZ, and WHZ at monthly 

intervals from 0-5 months of age. Specifically, we estimated the effects of antibiotic 

exposures in a given month on WAZ, HAZ, and WHZ at the end of the following month 

(Figure 1, A; available at www.jpeds.com), and accounted for correlation between outcomes 

from the same child using generalized estimating equations (GEE) with a robust variance 

estimator. This model structure allowed for a 1 month lag between antibiotic exposure and 

the measurement of growth outcomes. To assess the sensitivity of results to this lag period, 

we repeated the analyses with outcomes both at the end of the same month as the exposure, 

as well as at 2 months following the exposure month (Figure 1, B and C).

Confounding variables for the exposure model were chosen a priori by causal directed 

acyclic graph30 to account for determinants of antibiotic use which also affect child growth, 

including growth status before exposure, other base-line characteristics, and illness burden. 

These variables were included to isolate the effects of antibiotics from the under-lying 

conditions for which they were given. Optimal variable coding was determined by the 

Quasi-likelihood under the Independence model Criterion, which is appropriate for GEE 

models.31
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The final models included child sex, socioeconomic status (based on the modified 

Kuppuswamy scale32), maternal education, household hygiene,33 household crowding, low 

birth weight (<2.5 kg), preterm birth (<37 weeks of gestation), cesarean delivery, and 

characteristics of the exposure month: growth z-score at the beginning of the month, 

exclusive breastfeeding, number of days with infections and severe illnesses, number of days 

with diarrhea, severe diarrhea episodes (Vesikari score26 ≥ 11), prolonged or persistent 

diarrhea episodes (≥7 days), dehydration during diarrhea, oral rehydration solution given 

during diarrhea, hospitalization, and days with diarrhea in the previous month. We separately 

stratified effects using interaction terms by month of antibiotic exposure, sex, exclusive 

breastfeeding in the exposure month, baseline malnutrition status (underweight, stunted, or 

wasted), and illness burden.

To validate our results with an alternate model that eliminates potential unmeasured child-

level confounding, we used a fixed-intercept model in which the effects of antibiotic use in 

monthly intervals were estimated within-child (a child's exposed and unexposed months 

served as the index and reference exposures, respectively).34 We used the robust variance 

estimator to account for correlation between observations within-child and necessarily 

included only the time-varying covariates34 listed above.

Data Analyses: Long-Term Effects

We created descriptive height and weight growth curves after 6 months of age by grouping 

measurements by month and averaging heights and weights across children given the same 

number of antibiotic courses before 6 months.

We then used longitudinal general linear regression with GEE to model all WAZ, HAZ, and 

WHZ after 6 months of age as a function of antibiotic use in the first 6 months. We included 

the corresponding growth z-score at 6 months in the models to account for differences in 

growth occurring prior to and during the antibiotic exposure period; this ensured estimation 

of long-term effects on growth rates following 6 months of age. Baseline confounding 

variables included all those in the short-term analysis. Indicators of illness burden were 

summarized over the first 6 months as total number of days with diarrhea, infections, and 

severe illnesses, maximum Vesikari score26 of diarrhea episodes, prolonged or persistent 

diarrhea episodes, and fever or dehydration during diarrhea, and exclusive breastfeeding at 3 

months. We stratified effects by sex, number of antibiotic courses received before 6 months, 

and age period of growth (6 months-1 year, 1-2 years, 2-3 years). We further assessed 

modification of effects by exclusive breastfeeding, illness burden, and malnutrition status at 

6 months.

We estimated the effects of antibiotics on the relative risks of underweight, stunting, and 

wasting in both the short and long-term with the same exposure groups and covariates as the 

linear regression models. We used longitudinal Poisson regression with the robust variance 

estimator as an approximation of log-binomial regression35 because the logbinomial models 

did not converge.
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We validated results by repeating analyses with a more specific, but less sensitive, definition 

of antibiotic exposure, which required the caregiver to list a confirmed antibiotic name for 

diarrhea instead of only replying “yes” when asked if antibiotics were given.

Results

The birth cohort consisted of 497 children, 456 (91.8%) of whom remained in the study and 

were measured at least once after 6 months of age. In the remaining study period, 46 (9.3%) 

more children were lost to follow-up. Nine drop-outs were due to death. The majority of 

participants were from families of low socioeconomic status with poor household hygiene 

and crowding in the home (Table I).

More than one-half of children (n = 262, 57.5%) were exposed to antibiotics by 6 months of 

age, and 137 (28.1%) had received more than 1 course (Figure 2, A). Antibiotic use was 

highest from 3-5 months of age, with an average monthly exposure prevalence of 20.3%.

Growth failure early in life was common (Figure 2, B). By 6 months, on average 30.6% of 

children were underweight (maximum prevalence 40.7% at 27 months) and 31.8% of 

children were stunted (maximum prevalence 34.7% at 32 months). Prevalence of wasting 

(WHZ < −2 SD) was lower, at 15.0% overall.

Short-Term Antibiotic Effects

Averaged across months from birth through 5 months, there was no crude difference in WAZ 

or WHZ associated with antibiotic exposure in a given month (WAZ difference: 0.01, 95% 

CI: −0.05, 0.06; WHZ difference: 0.05, 95% CI: −0.04, 0.14). These effects were uniform by 

sex. Conversely, antibiotic use was crudely associated with slightly lower HAZ (HAZ 

difference: −0.12, 95% CI: −0.19, −0.06); this effect was more pronounced among girls 

(HAZ difference: −0.17, 95% CI: −0.26, −0.07) than boys (HAZ difference: −0.09, 95% CI: 

−0.17, 0.00).

After multivariable adjustment, the absence of effects on WAZ and WHZ remained. The 

effect on HAZ was no longer significant and moved toward the null, entirely for boys and 

reduced by more than one-half among girls (Table II). The adjusted weight and height 

differences among boys translated to a difference of −1 g and −0.1 mm, respectively. Among 

girls, the effects corresponded to differences of −32 g and −1.2 mm. Effects were largest for 

exposures in the first month of life but were imprecise due to few exposed children (n = 30). 

There was no statistically significant effect modification by month (P for heterogeneity = .7; 

Table III available at www.jpeds.com), malnutrition status of the child (underweight, 

stunted, or wasted), exclusive breastfeeding, diarrhea burden, or other infections and severe 

illness burden (results not shown).

There was also no difference in the relative risks of underweight or wasting among children 

who received antibiotics compared with those who did not (Table II). However, girls who 

received antibiotics in a given month had a higher risk of being stunted in the next month 

(risk ratio: 1.27, 95% CI: 1.04, 1.56). There was no effect on stunting among boys.
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Long-Term Antibiotic Effects

For the analysis of the effect of antibiotics before 6 months of age on growth from 6 months 

to 3 years, a total of 12 694 growth measurements were available among 456 children 

remaining in the study at 6 months (mean of 27.8 measurements/child). The majority of 

children (n = 388, 85.1%) had at least 29 growth measurements before 3 years of age.

Crude average growth curves after 6 months of age stratified by sex and early life antibiotic 

exposure are shown in Figure 3. Children receiving no or one course of antibiotics had 

similar growth trajectories, and those receiving 2 or more courses of antibiotics weighed less 

and were shorter at all ages. Correspondingly, there was a crude negative association of 

antibiotic use in the first 6 months on WAZ (difference: −0.18, 95% CI: −0.35, −0.02) and 

HAZ (difference: −0.20, 95% CI: −0.38, −0.02) from 6 months to 3 years of age.

Adjusted effects were smaller in magnitude and no longer statistically significant, but still 

negative, such that antibiotic use before 6 months of age was associated with lower WAZ, 

HAZ, and WHZ after 6 months (Table II). The associations were largest after 1 year of age 

(P for heterogeneity <.0001). There was no evidence for a difference in effect by sex or 

number of antibiotic courses received (P for heterogeneity >.4). All effects were minimal 

when translated to weight and height differences. The largest differences in weight 

(occurring at 2-3 years of age) corresponded to approximately −150 g. The largest 

differences in height were −3.1 mm from 2-3 years, and the difference was −1.5 mm overall. 

There was no significant effect modification by burden of illnesses, hospitalization, baseline 

malnutrition status, or exclusive breastfeeding (results not shown).

There was an increase in the relative risk of underweight after 6 months of age among 

children who received antibiotics in the first 6 months compared with children who did not 

receive antibiotics (risk ratio: 1.33, 95% CI: 1.07, 1.64; Table II). The risk of wasting was 

also elevated, but the estimates were not statistically significant. There were no effects on 

long-term stunting.

Sensitivity Analyses

The effects of antibiotics in a given month were not sensitive to the time period between the 

antibiotic exposure and outcome (Figure 1, B and C and Table IV; Table IV available at 

www.jpeds.com). Results from the fixed-intercept model, which eliminated potential 

unmeasured child-level confounding, were qualitatively and quantitatively similar to results 

from the general linear models (Table V; available at www.jpeds.com). Using an alternative 

definition of exposure, which required the caregiver to list a confirmed antibiotic name, there 

was no change in short- or long-term effects (results not shown).

Discussion

Our study provides evidence from a prospective observational cohort study concerning the 

impact of early life antibiotic exposures on growth among LMIC children. Unlike other 

investigations of the relationship between antibiotics and growth, we did not find evidence 

that antibiotic exposures early in life were associated with growth promotion. Antibiotic 

exposures before 6 months of age did not have any short-term associations with growth, and 
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were associated only with small, but not statistically or clinically significant, differences in 

height and weight from 6 months to 3 years. These differences were near the limits of 

detection of the measurement instruments (approximately 100 g and 1-2 mm overall). We 

suggest these small negative effects on growth may be due to residual confounding or 

chance given the large number of comparisons made.

There are several potential explanations for the lack of a growth-promoting effect. Most of 

the previous studies showing increased weight gain or risk of obesity associated with 

antibiotics7-9,36,37 were conducted in high-income countries with Western diets. Animal 

studies have shown that the growth-promoting phenotype associated with an altered 

microbiota is amplified when the animals are fed a high-fat diet.2,38,39 Our study population 

from semi-urban slums did not have access to a high-fat diet after weaning such that an 

interaction between antibiotics and increased caloric intake was unlikely. Also, no children 

in this study were diagnosed with acute severe malnutrition, for which antibiotics have 

shown to improve recovery and/or growth.17,18 Our study population was community-based, 

and few would have met the inclusion criteria (eg, preterm, very low birth weight, with 

severe illness) for the trials demonstrating improved growth associated with 

antibiotics.18,38,40,41

In LMICs, previous studies of the effects of antibiotics on growth have been inconclusive. A 

recent meta-analysis of 10 trials of antibiotics conducted over a 60-year period concluded 

that antibiotics improved growth, though the summary effect sizes were likely not clinically 

important (less than 1 mm/month difference in height and 24 g/month in weight).18 An 

international cross-sectional study also reported that overall adjusted body mass index at age 

5-8 years was higher in children exposed to antibiotics in infancy. However, the effects 

varied across sites and, critically, a lower in body mass index associated with antibiotics was 

found in all countries classified as nonaffluent except Thailand.42

The small association of antibiotics with lower WAZ and HAZ in the long term may be due 

to increased diarrheal rates following antibiotic exposure,19 which may be associated with 

poor growth. However, diarrhea likely had minimal impact on growth in our study 

population because of high use of oral rehydration solution during diarrhea (88%), 

counselling to continue breastfeeding, and good access to healthcare. Therefore, appropriate 

treatment may have mitigated any effects increased diarrhea burden would have had on 

growth. It is also possible that the 2 competing pathways: antibiotics as growth-promoters 

and antibiotics as causing future illness and harming growth, may both have been occurring, 

resulting in a null net effect on growth.

Because the study was observational in design, we cannot exclude the possibility of 

uncontrolled confounding. Even after multivariable adjustment, we may not have been able 

to completely capture aspects of child illness needed to separate the effects of antibiotics 

from their indicating illnesses. However, a randomized clinical trial would be unethical 

because treatment of some illnesses with antibiotics is necessary, and our study provides 

results in a community-based setting that may be more generalizable to communities in 

LMICs.43
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The study was also limited by potential misclassification of antibiotic exposures because of 

recall errors among caregivers and missed antibiotic prescriptions received outside of the 

study clinic for non-diarrheal illnesses. The duration of antibiotic exposures was also 

unknown. However, because the clinic was located within the residential area of study 

subjects and provided free care and medicines, we expect almost all prescriptions to have 

originated in the study clinic. Good concordance between caregiver-reported and antibiotic 

prescriptions for diarrhea supports this assumption (78% of antibiotic prescriptions during 

diarrhea episodes were associated with caregiver-reported antibiotic treatment). Further, our 

results were consistent when we used alternative definitions of antibiotic exposure in 

sensitivity analyses.

The combination of malnutrition and recurrent illness complicate the relationship between 

antibiotic exposures and growth among children in LMICs. Understanding the multifactorial 

impact of antibiotic use across settings is important because the majority of children in our 

cohort were exposed early in life, and antibiotic stewardship is vital to preventing the 

development of drug resistance.44,45 Our study among children in south India did not 

replicate previous associations between early life antibiotic use and increased growth 

demonstrated among children in high-income countries and when given in combination with 

nutritional rehabilitation for more severely malnourished children. Conversely, antibiotic 

exposure in the first 6 months of life was not associated with differences in growth both 

during the first 6 months and up to 3 years of age.
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Figure 1. 
Schematic of exposure period and age of outcome assessment for short-term analyses, as 

well as age of baseline growth measurement included in the models and the average time 

between exposure and growth outcome. The analyses included the analogous scheme for all 

months through 6 months of age. A, Primary analysis, and B-C, sensitivity analyses.
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Figure 2. 
A, Antibiotic exposure before 6 months of age. Dark gray bars, Children exposed to 1 course 

of antibiotics in a given month; light gray bars, children exposed to more than 1 course of 

antibiotics in a given month; black line, cumulative proportion of children exposed to at least 

one course of antibiotics (95% CI; dotted lines). B, Prevalence of underweight (black line), 

stunting (gray line), and wasting (black dotted line) from 0-3 years of age.
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Figure 3. 
Crude average weight (A, boys, and B, girls) and height (C, boys, and D, girls) growth 

curves by antibiotic exposure in the first 6 months of life. Black line, no antibiotic courses; 

gray line, 1 antibiotic course; black dotted line, 2+ antibiotic courses.
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Table I
Demographic characteristics

No. children (%)

Household characteristics

 Socioeconomic status*

  Low 328 (66.0)

  Medium 160 (32.2)

  High 9 (1.8)

 Maternal education

  No formal education 184 (37.0)

  Primary/middle school 167 (33.6)

  Higher secondary school 129 (26.0)

  College/polytechnic/professional school 17 (3.4)

 Poor household hygiene†,‡ 256 (53.5)

 Crowding

  High (>4 people/room) 164 (33.0)

  Medium (>3-4 people/room) 190 (38.2)

  Low (≤3 people/room) 143 (28.8)

Child characteristics

 Sex of child

  Male 263 (52.9)

  Female 234 (47.1)

 Cesarean delivery 90 (18.1)

 Low birth weight (<2.5 kg)‡ 84 (17.1)

 Preterm birth (<37 wk of gestation) 50 (10.3)

 Antibiotics at birth‡ 13 (2.7)

 Age (mo) at stopping exclusive breastfeeding (mean, SD) 3.9 (2.10)

 Age (mo) at stopping all breastfeeding   (mean, SD) 15.9 (8.72)

*
Socioeconomic status categories defined from the modified Kuppuswamy scale based on educational and occupational level of the family, house 

ownership, total number of rooms in the house, and household possessions.29

†
Poor household hygiene was based on a score of less than 12 on a scale developed from an assessment of water, food, and personal hygiene.30

‡
Two missing observations for hygiene; 7 missing observations for low birth weight; 12 missing observations for preterm birth; 15 missing 

observations for antibiotics at birth.
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Table III
Stratified by month, estimated adjusted effects of antibiotic treatment in 1 month on 
growth at the end of the following month

Age at exposure No. (%)

WAZ in next month HAZ in next month WHZ in next month

β* (95% CI) β* (95% CI) β* (95% CI)

None 0 0 0

0 mo 30 (6.0) −0.28 (−0.61, 0.05) 0.05 (−0.32, 0.42) −0.13 (−0.62, 0.35)

1 mo 48 (9.7) −0.05 (−0.26, 0.16) −0.10 (−0.32, 0.12) 0.11 (−0.29, 0.51)

2 mo 81 (16.6) 0.03 (−0.10, 0.16) −0.06 (−0.22, 0.10) 0.17 (−0.06, 0.40)

3 mo 89 (18.5) −0.01 (−0.11, 0.09) −0.04 (−0.16, 0.09) −0.00 (−0.17, 0.16)

4 mo 104 (21.8) 0.01 (−0.08, 0.10) −0.06 (−0.17, 0.05) 0.01 (−0.17, 0.19)

5 mo 97 (20.7) −0.02 (−0.14, 0.09) 0.01 (−0.12, 0.15) −0.06 (−0.25, 0.13)

*
Absolute change in z-score adjusted for child sex, previous growth z-score, socioeconomic status, maternal education, household hygiene, 

household crowding, low birth weight, preterm birth, cesarean delivery, exclusive breastfeeding, infections and severe illnesses, indicators of 
diarrhea severity, and antibiotic exposure history.
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Table IV
Estimated adjusted effects of antibiotic treatment in 1 month on growth at the end of the 
month and at the end of the second following month

Antibiotics in exposure mo

WAZ HAZ WHZ

β* (95% CI) β* (95% CI) β* (95% CI)

Outcome: at end of exposure mo

 No 0 0 0

 Yes

  Males −0.03 (−0.10, 0.04) −0.01 (−0.10, 0.09) −0.03 (−0.16, 0.09)

  Females −0.01 (−0.09, 0.07) −0.11 (−0.20,−0.03) 0.17 (0.04, 0.31)

  Overall −0.02 (−0.08, 0.03) −0.05 (−0.12, 0.01) 0.05 (−0.04, 0.16)

Outcome: at end of second mo following exposure

 No 0 0 0

 Yes

  Males 0.05 (−0.02, 0.12) 0.03 (−0.05, 0.12) 0.01 (−0.11, 0.12)

  Females −0.03 (−0.10, 0.04) −0.05 (−0.14, 0.04) 0.01 (−0.12, 0.14)

  Overall 0.01 (−0.04, 0.07) −0.00 (−0.07, 0.06) 0.01 (−0.08, 0.10)

*
Absolute change in z-score adjusted for child sex, previous growth z-score, socioeconomic status, maternal education, household hygiene, 

household crowding, low birth weight, preterm birth, cesarean delivery, exclusive breastfeeding, infections and severe illnesses, indicators of 
diarrhea severity, and antibiotic exposure history.
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Table V
Estimated adjusted effects of antibiotic treatment in 1 month on growth at the end of the 
following month using the fixed-intercept model

Age at antibiotic exposure

WAZ in next mo HAZ in next mo WHZ in next mo

β* (95% CI) β* (95% CI) β* (95% CI)

No antibiotics 0 0 0

0-5 mo 0.02 (−0.04, 0.08) −0.02 (−0.09, 0.05) 0.03 (−0.07, 0.12)

 Males 0.05 (−0.02, 0.12) 0.02 (−0.07, 0.11) 0.00 (−0.13, 0.13)

 Females −0.01 (−0.10, 0.08) −0.07 (−0.16, 0.02) 0.06 (−0.08, 0.20)

0-2 mo 0.02 (−0.08, 0.12) −0.02 (−0.15, 0.11) 0.09 (−0.09, 0.27)

3-5 mo 0.01 (−0.05, 0.08) −0.01 (−0.09, 0.07) −0.01 (−0.12, 0.10)

*
Absolute change in z-score adjusted for child sex, previous growth z-score, socioeconomic status, maternal education, household hygiene, 

household crowding, low birth weight, preterm birth, cesarean delivery, exclusive breastfeeding, infections and severe illnesses, indicators of 
diarrhea severity, and antibiotic exposure history.
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