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Abstract

Despite evidence of autonomic disturbances in chronic multi-symptom illnesses such as 

temporomandibular joint disorder (TMD) and fibromyalgia (FM), additional work is needed to 

characterize the role of parasympathetic reactivity in these disorders. Given the high levels of 

comorbidity with psychiatric disorders characterized by stronger parasympathetic reductions than 

controls in safe contexts (leading to higher arousal), it was hypothesized that individuals with 

TMD and FM would respond similarly. In this preliminary investigation, 43 women with TMD (n 

= 17), TMD + FM (n = 11), or neither (controls; n = 15) completed a baseline assessment of 

respiratory sinus arrhythmia (RSA; a measure of parasympathetic activity) followed by ongoing 

parasympathetic assessment during a questionnaire period. As predicted, patients showed greater 

parasympathetic decline in response to the questionnaire period, suggesting an autonomic stance 

that supports defensive rather than engagement behaviors. Individual differences in 

parasympathetic reduction during the questionnaire period were related to a variety of physical 

and psychosocial variables. Although this study has a number of key limitations, including a 

convenience sampling approach and the small group sizes, if replicated in larger samples, the 

findings would have important implications for the treatment of patients with these disorders.

Perspective—Compared to controls, individuals with temporomandibular disorders or 

temporomandibular disorder and fibromyalgia demonstrated greater parasympathetic reduction 
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during psychosocial assessment, and individual differences in parasympathetic reduction predicted 

negative patient outcomes. Such parasympathetic reductions may betray a tendency to readily 

perceive danger in safe environments.
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Introduction

Chronic multi-symptom illnesses such as temporomandibular disorders (TMD) and 

fibromyalgia (FM) often co-occur and share many features.34,54,53,7,25 There is no universal 

known cause of either disorder, although numerous overlapping risk factors have been 

identified.1,56,25 Altered functioning of the autonomic nervous system (ANS) represents one 

such overlapping risk factor.

The two branches of the ANS have antagonistic effects on autonomic arousal. However, 

arousal is under tonic inhibitory control of the parasympathetic branch via the myelinated 

vagus nerve (termed the “vagal brake” or “parasympathetic maintenance”), which allows for 

efficient upregulation of arousal via parasympathetic reduction (or “vagal withdrawal”). 

According to Porges’ polyvagal theory, parasympathetic maintenance promotes calm 

engagement, whereas vagal withdrawal facilitates quick escape from danger. 36,37,39 FM and 

TMD are linked to higher baseline sympathetic activity or predominance, especially at 

night,12,29,42,32,14,46,36 and lower baseline parasympathetic activity.44,42,12, With regard to 

ANS reactivity in these disorders, some evidence points toward blunted sympathetic 

responding coupled with greater increases in arousal,42,31,55,11 from which one might infer 

greater parasympathetic reduction in response to the environment. However, very little is 

known about the nature of parasympathetic reactivity in these conditions.42

Some reduction in parasympathetic activity in response to safe stimuli facilitates task 

engagement.39 However, rapid or exaggerated parasympathetic decline in response to safe 

stimuli is associated with hypersensitivity to environmental danger36 and has been described 

as a “nonspecific marker of emotional lability.”3 Consistent with this perspective, greater 

parasympathetic reductions in response to objectively safe laboratory stimuli have been 

associated with various reactive emotional disorders such as panic,52 generalized anxiety,48 

and borderline personality disorder.2 Given the frequent comorbidity of FM and TMD with 

such disorders,34,7 we hypothesize a similar pattern of parasympathetic reactivity among 

individuals with TMD or FM.38

The current study examined the physiologic functioning of controls, individuals with TMD, 

and individuals with both TMD and FM at rest and while completing psychosocial 

measures. Questionnaire completion was conceptualized as an safe task that mirrors the 

assessment protocol used in pain clinics, where patients fill out assessment paperwork prior 

to examination.34 Given the objectively safe nature of this context, the polyvagal theory 

would specify the adaptive response as relative maintenance of parasympathetic activity to 

facilitate task engagement, whereas relatively greater parasympathetic reduction would 
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represent an inappropriate defensive response related to the inaccurate perception of 

danger.38

Hypotheses

The following specific hypotheses were tested:

1. Baseline parasympathetic functioning is suppressed among individuals with TMD 

or TMD + FM.

2. Individuals with TMD and TMD + FM will exhibit greater parasympathetic decline 

during the assessment period. Such decline would be greater among individuals 

with both diagnoses than individuals with one or no diagnosis, and greater among 

individuals with TMD than with no diagnosis.

3. Individual differences in rate of parasympathetic decline during the assessment 

period will be associated with poorer sleep, poorer general physical and mental 

functioning, greater chronic pain symptom severity, greater impact of symptoms on 

functioning, and greater distress and depression.

Materials and Methods

Participants

Participants were 43 females between the ages of 18 and 65. Pain patients were diagnosed 

with TMD with or without comorbid FM. Diagnosis of TMD was made by a clinician using 

the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD).18,43 Patients were 

included if they presented with painful temporomandibular disorders. 88.3% of participants 

in the TMD-only group and 90.9% of participants in the TMD+FM group were diagnosed 

with myalgia; the majority of those participants were also diagnosed with another type of 

TMD pain (i.e., disc disorders or anthralgia/osteoarthritis). Diagnosis of comorbid FM was 

made by a Rheumatologist using 1990 ACR classification criteria and/or 2010 ACR criteria. 

Patients with TMD were recruited from a university-based tertiary orofacial pain clinic, 

from the Kentucky Women's Health Registry (KWHR), or from advertisements by flier or in 

the newspaper. The KWHR is a longitudinal cohort study containing self-report information 

including the presence of painful conditions including TMD and FM where patients agree to 

be contacted for studies for which they may qualify based on inclusion and exclusion 

criteria. Controls were recruited from the KWHR or from the community using fliers. 

Potential participants were excluded from the study if they were pregnant or nursing, 

prisoners or institutionalized, severely obese as defined by body mass index ≥ 40, current 

alcohol or other substance abusers, current smokers of ≥ 1 pack of cigarettes daily, taking or 

received oral, inhaled, or injected corticosteroids within 3 months, unable to discontinue 

medications that affect heart rate variability such as beta blockers, currently active axis I 

psychiatric diagnosis other than simple phobia as assessed by the Mini-International 

Neuropsychiatric Interview (MINI) structured diagnostic interview, presence of any active 

or unstable medical condition including chronic infection or inflammatory/autoimmune 

condition.
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Table 1 contains descriptive data regarding demographic (and substantive) variables in the 

full sample and by group. Racial makeup of the sample was as follows: 95.3% Caucasian 

(Control Group = 93.3%; TMD Group = 100%; TMD + FIBRO Group = 90.9%) and 4.7% 

African American (Control Group = 6.7%; TMD Group = 0%; TMD + FIBRO Group = 

9.1%).

Procedures

All procedures were reviewed and approved by the University of Kentucky institutional 

review board. During the initial visit, patients provided informed consent and were 

examined by a clinician to determine eligibility for the study. Informed consent included an 

explanation of the measures included in the packet, with an emphasis on the anonymous 

nature of responses, and also included an explanation of physiological recording procedures, 

emphasizing that these would be non-invasive and not painful. Patients were classified as 

TMD (n = 17), TMD and FM (n = 11), or control (n = 15), and the MINI was completed. If 

it was necessary to discontinue any medications that could affect heart rate, instructions 

were provided.

Participants returned to the clinical research center for autonomic and psychosocial 

assessment. Participants were seated in a comfortable dental exam chair in a clean room 

with modern decor. Sessions began with an interaction with the experimenter, who reviewed 

the participant's previously-provided information to assure there were no changes to the 

participants’ medications. The experimenter was dressed in normal “business casual” 

clothing and was not wearing a lab coat. Next, the experimenter connected the participant 

for psychophysiological recording to a Biopac ECG100C electrocardiogram amplifier 

module using three Ag-AgCl leads in a lead-I configuration (leads attached to the anterior 

shoulders and left ankle) with a sampling rate of 1,000 samples per second. After a 5 minute 

acclimation period, the experimenter instructed the participant to sit quietly for 15 minutes 

while their baseline heart rate variability (HRV) and heart period (HP) were recorded, and 

then left the room for this baseline period. Participants were allowed to look at an 

assortment of magazines during this time. Following the baseline period, the experimenter 

returned and oriented the participant to the psychosocial questionnaires, at which time the 

participant was told they would have as much time as they needed to complete the measures, 

while the experimenter again left the room. The equipment recorded their physiological 

responses for the first 15 minutes of the assessment period.

Psychological Measures

Subjective Pain Severity—Subjective pain was measured using the Pain Severity 

subscale of the Brief Pain Inventory.13 The pain severity items are measured on a visual 

analog 1-100 scale, and include a subjective measure of pain at its “worst,” “least”, 

“average”, and “now” (current pain).

General Physical and Mental Functioning—The 12-item Short Form Health Survey 

(SF-12v2) served as a measure of general health status.51 The SF-12v2 measures eight 

domains of health status; in the present study, we utilized the physical functioning summary 

score (domains 1-4) and mental health summary score (domains 5-8) as measures of general 
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functioning. In this study the standard (i.e., 4-week recall) version was used. In the present 

sample, reliability was excellent for both the physical functioning (α = .94) and mental 

health (α = .90) summary scores.

Physical Symptom Severity and Functional Impairment—The revised Symptom 

Impact Questionnaire (SIQR) is a 21-item measure of the severity and impact of chronic 

pain syndromes.22,4 Participants are asked to rate items on three subscales: specific 

symptoms (e.g., pain, fatigue, stiffness), specific types of functional problems related to the 

symptoms (e.g., prepare a homemade meal, brush or comb your hair), and overall impact of 

symptoms (e.g., I was completely overwhelmed by my medical problems). The rating scale 

ranged from 0-10, with 0 representing none of a given symptom or functional impairment, 

and 10 representing the highest level of a given symptom or functional impairment. In the 

present study, the total score was utilized; reliability was excellent (α = .96). All outcomes 

presented in this paper were nearly identical when the total SIQR scale was replaced with 

any of the specific subscales.

Sleep Disturbance—The Pittsburgh Sleep Quality Index (PSQI)8 is an 18-item measure 

of sleep disturbance. Items inquire about general sleep quantity and quality, including 

number of hours spent in bed and asleep, number of sleep disturbances, sleep latency, sleep 

efficiency, and use of sleep medication. In the present study, the full scale was used rather 

than any particular subscale; reliability was good (α = .89).

Perceived Life Stress—The Perceived Stress Scale is a 10-item measure of nonspecific 

life stress in the past month. Participants rate how often they have felt or thought a certain 

way on a scale from 0 (Never) to 4 (Very Often). Higher scores indicate higher levels of life 

stress, and have been associated with a variety of negative health outcomes, including 

greater vulnerability to depressive symptoms and poorer health.15,16 In the present sample, 

reliability was good (α = .87).

Depressive Symptoms—The Center for Epidemiologic Studies Depression Scale (CES-

D) is a 20-item inventory of depressive symptoms.41 The CES-D asks participants to rate 

their mood, thoughts, and behavior during the previous week on a 4-point Likert scale. CES-

D items were scored such that higher total scores were indicative of greater depressive 

symptoms. In the present sample, reliability was excellent (α = .94).

General Psychological Distress—The Symptom Checklist-90-Revised (SCL-90-R) is 

a 90-item measure assessing the number and severity of psychological symptoms.19 

Participants rate how much each symptom “distressed or bothered” them during the past 

week on a scale from 0 (not at all) to 4 (Extremely). Although the SCL-90-R has multiple 

subscales, recent evidence suggests that the Global Severity Index (GSI) scale which is 

obtained by averaging the scores of all items answered, may be especially predictive of 

psychological distress status in chronic pain.7 The test-retest reliability and the internal 

consistency of the SCL-90 domains is generally considered good (r = 0.78-90 and 

coefficient α = 0.77-90).
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Physiological Measures

Physiological recordings were captured as 1-minute epochs during the baseline period (15 

minutes) as well as the assessment period (15 minutes). Baseline measures of respiratory 

sinus arrhythmia (RSA) and HP were calculated by averaging across the 15 1-minute epochs 

during the baseline period. During the first 15 minutes of the assessment period, RSA and 

HP were conceptualized as repeated measures across 15 1-minute time points; reactivity was 

operationalized as the slope of time on either RSA or HP across this 15-minute period for a 

given individual (see “Extraction of Individual Differences in Autonomic Responses During 

Assessment” section below for a more detailed explanation). This method of quantifying 

change over time avoids typical problems associated with the interpretation of change scores 

and maximizes the reliability of change as an individual difference measure (Cronbach & 

Furby, 1970; Singer & Willett, 2003).

Respiratory Sinus Arrhythmia (RSA)—RSA represents an approximate index of vagus 

nerve activity—a measure of parasympathetic influence on the heart—as evidenced by the 

degree of oscillation present in the natural pattern of acceleration and deceleration of the 

heart rate across the respiratory cycle.6 In the present study, Mindware HRV 3.0.1 software 

(Mindware, Inc.; Gahanna, OH) was used to conduct spectral analysis of heart rate 

variability using electrocardiogram data to quantify high frequency heart rate variability 

(HF-HRV; .15-.40 Hz), which serves as a measure of RSA. In their paper outlining 

standards for the measurement of heart rate variability, the Task Force of the European 

Society of Cardiology and the North American Society of Pacing and Electrophysiology 

recommends the use of frequency-domain methods such as spectral analysis for short-term 

recordings, and states that that the duration of such recordings should be “at least 10 times 

the wavelength of the lower frequency bound of the investigated component” in order to 

provide reliable estimation of HRV at the epoch level. In the case of the high frequency 

component of HRV, this would require a duration of “approximately 1 minute” (p. 364). 9 

Therefore, RSA was measured in 1-minute epochs. Correction of movement artifacts as well 

as errors in computerized marking of R-peaks was accomplished manually in Mindware 

HRV 3.0.1 software, again according to standards suggested by the Task Force of the 

European Society of Cardiology and the North American Society of Pacing and 

Electrophysiology.9 In many cases (n = 186 out of 2,580 total epochs measured), increased 

movement (perhaps associated with responding to the questionnaires or adjusting one's body 

for greater comfort) led to extreme movement artifacts in the data that could not be corrected 

in a satisfactory manner. In these cases, the epoch was entered as missing. The number of 

missing epochs did not significantly differ between groups (all p's greater than .46).

Heart Period (HP)—HP, which was measured as average inter-beat interval (IBI) across 

15 1-minute epochs, served as a measure of overall autonomic arousal. Heart period is 

conceptualized as a measure of overall arousal, and is under the dual control of both 

sympathetic and parasympathetic input.

Analytic Plan

Preliminary analyses included screening data for skew and kurtosis, as well as one-way 

ANOVAs and follow-up contrasts (using the Tukey method) to compare the three groups on 
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all outcomes. The particular contrast tests comparing baseline parasympathetic activity 

across the three groups represents a test of hypothesis 1—that patient groups would have 

lower baseline parasympaethetic activity than controls.

To test hypothesis 2—that patient groups would show greater parasympathetic decline 

(hyperarousal) than controls during an objectively safe psychosocial assessment—SAS 

PROC MIXED was used to fit two multilevel growth models (15 assessment period epochs 

nested within individuals). We specified the Kenward-Roger method for denominator 

degrees of freedom, which has been demonstrated to provide the most reliable estimates of 

fixed effects in small samples compared with other available methods.27 These two models 

were designed to test for pairwise group differences in the trajectory of RSA over time 

during the assessment period. Time was treated as a random effect. The first model, which 

compared the rates of change in RSA during the assessment period in the two pain groups to 

the rate of change in the control group, included the following predictors: time, TMD + FM 

group (coded 1 for those with TMD + FM, 0 for all others), TMD-only group (coded 1 for 

those with TMD only, 0 for all others), and the interactions of time with both dichotomous 

group variables. The second model replaced the group and interaction terms that included 

TMD + FM with the Control group (effectively changing the reference group to the TMD + 

FM group) in order to test whether the rate of RSA change over time differed between the 

TMD only and TMD + FM groups. Similar models were fit for HP.

Next, an individual difference variable was created that represented each participant's rate of 

this parasympathetic decline during the assessment period. This was achieved by saving the 

slope of time on RSA during the assessment for each participant in a multilevel model with 

only time as a predictor. This variable was then correlated with all other outcomes, which 

served as an initial test of Hypothesis 3—that individual differences in parasympathetic 

decline in a safe context would be associated with poorer outcomes. This hypothesis was 

further tested by regressing outcomes on this individual difference variable while controlling 

for baseline parasympathetic activity.

In order to reduce the likelihood of type I error given the large number of statistical tests, 

alpha was set at .01.

Results

Data Screening

All variables except the FM symptom severity score (WPI+SSS), which was positively 

skewed, met the assumptions of ordinary least squares regression. The FM symptom 

severity score (WPI + SSS) was normalized by applying a square-root transformation. Data 

were also screened for univariate outliers on RSA to rule out the possibility that extreme 

values of RSA (i.e., values 3.29 standard deviations from the mean; n = 32 epochs out of 

2,394 valid epochs) had a substantial impact on our findings. As removal of these outliers 

did not change the effect sizes and did not increase p-values for hypothesis tests, outliers 

were retained in final models in order to avoid over-fitting models to the current sample 

data.
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Preliminary Analyses

Descriptive information for both demographic variables and variables used in models for the 

full sample and by diagnostic group are located in Table 1. One-way ANOVAs and follow-

up contrasts using the Tukey method were carried out to determine group differences in each 

variable; significant differences are denoted by differing superscripts in Table 1. Compared 

with controls, a diagnosis of TMD (without comorbid FM) was associated with steeper RSA 

decrease (more vagal withdrawal) during the assessment period, greater pain on the BPI, 

greater depression on the CES-D, and greater global psychological symptoms on the GSI 

subscale of the SCL-90. Compared with a diagnosis of TMD (without comorbid FM), 

individuals diagnosed with both TMD and FM had steeper declines in RSA (more vagal 

withdrawal) and steeper increases in HP during the assessment period, greater self-reported 

sleep problems on the PSQI, greater pain on the BPI, greater FM symptoms as measured by 

the sum of the WPI and SSS, greater symptom interference on the SIQR, greater depression 

on the CES-D, greater global psychological symptoms on the GSI subscale of the SCL-90, 

and greater physical symptoms on the physical component subscale of the SF-12v2. 

Compared with controls, individuals diagnosed with both FM and TMD had steeper 

decreases in RSA (more vagal withdrawal) and steeper increases in HP during the 

assessment period, greater self-reported sleep problems on the PSQI, greater pain on the 

BPI, greater FM symptoms as measured with the sum of the WPI and SSS, greater symptom 

interference on the SIQR, greater depression on the CES-D, greater global psychological 

symptoms on the GSI subscale of the SCL-90, and greater physical symptoms on the 

physical component subscale of the SF-12v2. In general, then, although the TMD group 

showed slightly greater problems than controls in a few areas, the TMD + FM group showed 

greater problems than both controls and the TMD group on the majority of outcomes. 

Notably, there were no significant group differences in baseline parasympathetic activity; 

therefore, hypothesis 1 was not supported in this sample.

Multilevel Growth Models Comparing RSA and HP Change Over Time During the 
Assessment Period by Group and Pain Level

Respiratory Sinus Arrhythmia—Porges’ polyvagal theory would predict that 

individuals with stress-related somatic syndromes such as TMD, FM, or both will show 

greater reduction in RSA in response to objectively safe stimuli such as psychosocial 

assessment. Preliminary inspection of the raw RSA data over time with fitted loess lines 

ruled out the presence of a quadratic, cubic, or discontinuous effect of time on RSA.44 

Consistent with hypothesis 2, both interaction terms were negative, indicating that, 

compared with controls, there was greater reduction in RSA during the assessment period 

among those in the TMD-only group (γTMDONLY*TIME = −.012, SE = .003, t(37) = −2.79, p 

= .008) and the TMD + FM group (γTMD + FM*TIME = −.018, SE = .007, t(36) = −3.01, p = .

004).

We also predicted that the TMD + FM group would show greater reduction in RSA during 

the assessment period than the TMD-only group. Again consistent with hypothesis 2, the 

interaction term comparing rate of RSA change in the TMD-only group to the rate of RSA 

change in the TMD + FM group was also significant (γTMD + FM*TIME = −.011, SE = .003, 

t(35) = −3.67, p = .0008), suggesting that the rate of RSA decline during the questionnaires 
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was significantly different between the two diagnostic groups. See the top panel of Figure 1 

for a depiction of RSA over time in the three groups.

Our final prediction regarding rate of change in RSA was that higher levels of subjective 

pain levels would be associated with greater parasympathetic reduction during the 

assessment period. To test this prediction, we fit a multilevel growth model predicting RSA 

from time, standardized scores on the BPI, and their interaction. Consistent with hypothesis 

2, there was a significant interaction between time and pain predicting RSA (γPAIN*TIME = 

−.010, SE = .003, t(36) = −3.33, p = .002) such that higher levels of pain (+1 SD) were 

associated with greater RSA reduction during the assessment period (γTIME = −.014, SE = .

004, t(36) = −3.58, p = .001), whereas there was no significant association between time and 

RSA among individuals with lower levels of pain (-1 SD; γTIME = −.001, SE = .003, t(36) = 

−.33, p = .743), suggesting maintenance of parasympathetic activity among these low-pain 

individuals. See the top panel of Figure 2 for a depiction of the interaction between time and 

pain predicting RSA.

Heart Period—Identical predictive models were also tested for HP in order to provide 

descriptive information about change in HP over time by group and pain level. Once again, 

preliminary inspection of the raw HP data over time with fitted loess lines ruled out the 

presence of a quadratic, cubic, or discontinuous effect of time on HP.44 In the model 

comparing the two diagnostic groups to the control group, there was no significant 

difference in HP change over time during the assessment period between the controls and 

those with TMD (γTMD*TIME = .0001, SE = .0002, t(39) = .51, p = .697), but there was a 

significant difference in rate of HP change between controls and those with TMD + FM 

(γTMD + FM*TIME = −.0009, SE = .0003, t(38) = −3.11, p = .004) such that individuals with 

TMD + FM showed a stronger decline in HP (indicating a steeper increase in heart rate) than 

controls. In the model comparing rate of HP change in the two diagnostic groups, the TMD 

+ FM group showed a stronger decline in HP (again, indicating an steeper increase in heart 

rate) across the assessment period (γTMD + FM*TIME = −.001, SE = .0003, t(37) = −3.36, p = .

002) than the TMD-only group. See the bottom panel of Figure 1 for a depiction of HP over 

time in the three groups. Finally, there was also a significant interaction between BPI pain 

and time predicting HP (γPAIN*TIME = −.0003, SE = .0001, t(38) = −3.62, p = .0009) such 

that HP decreased significantly over time (indicating an steeper increase in heart rate) 

among individuals with higher levels of pain (+1 SD; γTIME = −.0003, SE = .0001, t(37) = 

−3.07, p = .004) whereas HP lengthened significantly over time among individuals with 

lower levels of pain (indicating a much milder increase in heart rate; −1 SD; γTIME = .0003, 

SE = .0001, t(37) = 3.87, p = .0004). See the bottom panel of Figure 2 for a depiction of the 

interaction between time and pain predicting HP.

Extraction of Individual Differences in Autonomic Responses During Assessment

Subsequent study predictions required the creation of variables representing individual 

differences in rate of parasympathetic decline during the assessment period-- both changes 

in RSA and HP. For each autonomic variable, we used SAS PROC MIXED to fit a two-

level multilevel growth model (with epochs from the assessment period nested within 

individuals) using only time as a predictor. For each individual, the slope of time predicting 
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either RSA or HP (i.e., the rate of change) was saved as a between-person variable. Moving 

forward, these two variables were used to represent individual variability in autonomic 

responses during the assessment period.

Vagal Contribution to Changes in Heart Period by Group and Pain Level

Further work from Porges and colleagues demonstrates that, for individuals who tend to be 

reactive to safe stimuli, changes in overall arousal (e.g., as measured with HP/heart rate) are 

not as tightly controlled by parasympathetic reduction, and that modulation of arousal for 

such individuals is often heavily dependent on costly, inefficient increases in sympathetic 

activity in addition to reductions in parasympathetic activity.36,2 This results in a failure of 

changes in overall arousal (e.g., HP) to significantly correlate with changes in 

parasympathetic activity.5 Therefore, we further examined whether vagal contribution to 

changes in HP during the assessment would be attenuated among the diagnostic groups and 

among individuals with higher levels of self-reported pain. Such contribution was estimated 

by correlating the rate of change in RSA (raw slope) with the rate of change in HP across the 

assessment segment. Correlations were conducted within each diagnostic group, and among 

individuals above or below the median of self-reported pain. These correlational analyses 

evaluate whether, in each group, the observed rate of change in RSA and HP share a 

common vagal (parasympathetic) mechanism, or whether parasympathetic change is not 

significantly correlated with HP changes, in which case sympathetic influence on arousal is 

suspected.5 Heart period changes that are totally dependent on vagal regulation should 

correlate very highly with RSA changes; in contrast, changes in HP that are not tightly 

regulated by the vagus (i.e., sympathetically-driven changes) should show very low or 

nonsignificant correlations with change in RSA.

There was a positive correlation between rate of change in HP and rate of change in RSA 

among individuals with no diagnosis (r(15) = .67, p = .011) and among those below the 

median level of self-reported pain (r(23) = .46, p = .028), indicating that any changes in HP 

are associated with changes in parasympathetic control over the heart among these 

individuals (i.e., decreases in RSA were associated with shortened HP). In contrast, changes 

in HP and RSA were not significantly correlated within the combined diagnostic groups 

(i.e., individuals with TMD and individuals with TMD + FM; r(28) = .34, p = .082), within 

the TMD-only group (r(17) = .21, p = .422), within the TMD + FM group ( r(11) = .34, p = .

297), or within the group of individuals above the median level of self-reported pain ( r(20) 

= .30, p = .213). Therefore, although there was greater parasympathetic reduction among 

individuals with chronic multi-symptom syndromes or greater pain in general, these changes 

in parasympathetic activity did not account well for HP changes, suggesting that HP change 

in response to assessment may be mediated at least in part by some other mechanism (e.g., 

changes in sympathetic activity).

Assessment-Related Vagal Withdrawal, Sleep Problems, Symptom Severity, Life 
Interference, and Depression

For all subsequent analyses, we created a reverse-scored variable that represented the rate of 

parasympathetic decline (i.e., rate of RSA decline) during the assessment period by 
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multiplying the slope by −1 in order to produce a variable coded such that higher scores 

represented greater parasympathetic decline over time.

Zero-order correlations among primary study variables can be found in Table 2 (calculated 

using SAS PROC CORR. Surprisingly, baseline RSA was not significantly correlated with 

any other study variable. However, rate of RSA decline (i.e., parasympathetic reduction) 

was generally associated with more negative outcomes on nearly all other variables, while 

rate of HP lengthening (i.e., heart rate slowing) was associated only with better physical 

functioning. Outcomes were generally intercorrelated in expected ways.

Given the evidence presented above that individuals with chronic stress-related pain 

syndromes and higher self-reported pain demonstrate greater parasympathetic reduction 

during psychosocial assessment, we moved on to test hypothesis 3, which predicts that an 

individual's rate of RSA reduction during assessment will be positively associated with a 

variety of negative outcomes in the sample as a whole, including poorer sleep as measured 

with the PSQI, greater fibromyalgia symptoms as measured by the WPI + SSS, greater life 

interference due to pain as measured with the SIQR, greater depression as measured using 

the CES-D, greater psychological distress as measured by the SCL-90-R Global Severity 

Index, greater perceived stress on the PSS, and poorer general mental and physical 

functioning on the SF-12v2. Using SAS PROC REG, we regressed each outcome on rate of 

parasympathetic decline controlling for standardized baseline RSA.

Consistent with hypothesis 3, rate of RSA decline during the assessment period predicted a 

variety of outcomes over and above baseline RSA, with steeper decline predicting poorer 

sleep on the PSQI (β = 1.18, SE = .51, t(38) = 2.31, p = .026), more fibromyalgia symptoms 

on the WPI + SSS (β = .34, SE = .14, t(38) = 2.31, p = .026), more symptom interference on 

the SIQR (β = 2.47, SE = .92, t(38) = 2.67, p = .010), greater depression on the CES-D (β = 

1.56, SE = .68, t(38) = 2.27, p = .028), poorer physical functioning on the SF-12v2 (β = 

−3.71, SE = 1.70, t(38) = −2.17, p = .036), and poorer mental functioning on the SF-12v2 (β 

= −2.43, SE =1.12, t(38) = −2.16, p = .034). Rate of RSA decline was not significantly 

associated with perceived stress on the PSS (β = .06, SE = .57, t(38) = .10, p = .91) or 

general psychological distress on the Global Severity Index (β =1.62, SE = 1.68, t(38) = .96, 

p = .340). Therefore, individual differences in rate of parasympathetic decline during 

psychosocial assessment were associated with several outcomes of great relevance to 

chronic pain patients.

Discussion

Although some evidence indicates baseline dysregulation of the ANS in chronic multi-

symptom disorders such as TMD and FM, further work is needed to characterize the role of 

parasympathetic reactivity. Given that (1) these illnesses tend to co-occur with psychiatric 

disturbances, and that (2) many psychiatric problems are characterized by relatively greater 

parasympathetic reduction in response to objectively safe stimuli, it was predicted that 

individuals with TMD or TMD + FM would demonstrate similarly greater parasympathetic 

reduction, and that the degree of such responses would be associated with poorer outcomes. 
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The current study represents a preliminary attempt to test this hypothesis; as a preliminary 

study, it has significant limitations which are listed below.

Limitations

A small convenience sample of individuals from several clinics and the community was 

utilized. The sample sizes in each group were relatively small, predominantly Caucasian, 

and female; larger samples would increase statistical power, while more diverse samples 

would ensure generalizability of these findings. In particular, the control group in the present 

study was very small (n = 15) compared to most studies of this kind. Individuals with 

psychiatric disturbances were eliminated, limiting the generalizability of our findings to the 

general population of individuals with TMD and FM, which is characterized by psychiatric 

comorbidity. On the other hand, this may have reduced power to detect effects on 

psychological wellbeing by slightly restricting the high end of the range of psychiatric 

symptoms. Our study did not measure genetics, fitness level, childhood adversity, or post-

traumatic symptoms, all of which represent plausible factors in the development of relatively 

greater parasympathetic reductions in safe situations; future studies should investigate the 

role of these variables. In addition, the measurement of sleep disturbance with a self-report 

instrument is a limitation, and future work in this area would benefit from more objective 

sleep measures. Although the alpha value was set at .01 rather than .05, the number of 

analyses presented here introduces a strong possibility of type I error. The results of 

hypothesis tests in the present paper should be interpreted cautiously and replicated in a 

larger sample.

The present paper argues that the autonomic responses of patients imply a biased evaluation 

of the situation as threatening when it is in fact safe; however, ongoing measurements of 

perceived threat were not collected, limiting the ability to draw firm conclusions about the 

psychological mechanisms of greater parasympathetic decline. Future studies could be 

improved by the inclusion of this type of manipulation check. The present study was 

intended to explore psychophysiological response to clinic assessment, which generally 

takes place while the patient is alone in a waiting or exam room. Therefore, the present 

findings may or may not necessarily generalize to interview assessment procedures. 

Relatedly, chronic pain participants may have experienced the questionnaires as more 

threatening or stressful for reasons other than perceived danger; constructs measured may 

have had greater personal relevance to patients, which may have primed negative emotions 

(i.e., interpersonal conflict or trauma, physical pain, cognitive fatigue, memory or 

concentration difficulties). This alternative explanation should be investigated in future 

studies.

Summary and Discussion of Findings

As predicted, individuals with TMD, TMD + FM, or high self-reported pain showed greater 

parasympathetic decline during a psychosocial assessment than controls or those with low 

pain. Further, individuals with TMD + FM showed greater decline than individuals with 

TMD only. Additionally, controls and women with below-average pain showed a correlation 

between rate of change in RSA and rate of change in HP, indicating efficient 

parasympathetic control over the heart with a more trivial sympathetic influence.5 Among 
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individuals with TMD or TMD + FM diagnoses or high self-reported pain, however, this 

correlation was not significant, suggesting the additional influence of less efficient 

sympathetic reactivity on arousal (HP) similar to that found in certain psychiatric 

populations.36,2 These results could be interpreted to suggest that individuals with TMD or a 

combination of TMD and FM responded to an objectively safe environment with an 

inappropriately defensive autonomic stance.

The greater parasympathetic decline demonstrated in patients in the present study is 

consistent with a relatively sensitive stress response. Protracted stress has been linked to 

disease, including chronic pain.47 However, previous studies have not linked this type of 

parasympathetic decline in response to safe stimuli specifically to TMD or FM. The present 

study supports further inquiry into the nature of the disruption in stress response systems in 

these disorders. The results of the present study indicate both relatively greater 

parasympathetic reduction and a failure of such reduction to fully account for changes in 

arousal, indicating both parasympathetic and sympathetic contributions to changes in 

arousal. 40,2,5

Childhood trauma and post-traumatic stress disorder often co-occur with both FM26 and 

TMD17, and such experiences may explain autonomic hypersensitivity to danger among 

victims of such adversity. Porges’ theory postulates that developmental disturbances to the 

process of learning which environments are safe or unsafe cause later deficits in the accurate 

appraisal of contexts as safe or threatening.36 However, it is also possible that other genetic 

or environmental risk factors play a role in the development of both hypersensitivity to 

danger and risk for TMD or FM symptoms.

Also as predicted, individual differences in the rate of parasympathetic decline during the 

assessment period predicted poorer outcomes across the sample, including FM symptoms, 

sleep, life interference, depression, and general physical and mental functioning. These 

results held after controlling for baseline parasympathetic activity, suggesting that 

autonomic reactivity was a predictor of problems in this sample. As Porges36 noted, a 

system that is hyperreactive in this way may be especially susceptible to many problems in 

functioning, including those found among patients in the present sample. Although a variety 

of potential pathways for these effects should be considered, autonomic hypersensitivity to 

danger may influence symptoms in part by contributing to disturbed sleep. 33,40,24,28,49

Surprisingly, although group means suggest a trend in the expected direction, we did not 

replicate the finding45 that baseline parasympathetic activity is significantly lower in TMD 

and FM. Perhaps due to the small size of our control group, the controls in our study had 

slightly lower RSA than controls used in previous studies; a one-sample t-test comparing the 

mean baseline RSA of the control group in Solberg Nes et al.45 (Mean Baseline RSA for 

Controls = 6.11) indicated that the mean for controls in that study was significantly higher 

than the mean for controls in the present study (Mean Difference = −.89, t(14) = −3.40, p = .

004). Therefore, the controls in our sample may have simply had slightly lower baseline 

RSA than would be expected in a healthy sample, preventing a distinction between the 

clinical and control groups.
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Clinical Implications

A few clinical insights may be drawn from these findings. Clinicians may anticipate and be 

less disturbed by patients who have become distressed or defensive during assessment. 

Behavioral interventions targeting dysregulated autonomic functioning (e.g., paced deep 

breathing, relaxation techniques) and cognitive interventions that seek to reduce inaccurate 

perceptions of danger (e.g., safety cues, challenging perceptions of danger) may be woven 

into clinical protocol. 35,10,21,23,50,20 Finally, it may be helpful to know that this response to 

assessment pattern may be associated with a specific set of patient outcomes.

Conclusion

The present study provides the first test of Porges’38 polyvagal theory with regard to chronic 

multi-symptom illness. Our evidence supports the view that individuals with TMD or TMD 

+ FM show greater parasympathetic reduction in safe settings consistent with 

hypersensitivity to danger. Furthermore, it appears that such reactivity may be associated 

with a variety of negative outcomes regardless of diagnostic status.
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Highlights

• Chronic pain predicted parasympathetic dampening during psychosocial 

assessment.

• Parasympathetic dampening during assessment predicted poorer outcomes.

• Findings held after controlling for baseline parasympathetic activity.
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Figure 1. 
Graphs depicting mean levels of RSA and HP at the beginning and end of the assessment 

period by diagnostic group.

Data points depicted are mean levels of RSA or HP within a given group during the first 

minute (“Beginning of Assessment Period) and last minute (“End of Assessment Period”) of 

the assessment phase of the study. In the upper panel, the observed decrease in RSA over 

time indicates “vagal withdrawal”, which is the term used to describe this phenomenon in 

the rest of this paper.
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Figure 2. 
Graphs depicting the interaction between time and pain levels predicting RSA and HP 

during the assessment period.

Lines represent the simple effects of time at the first minute (“Beginning of Assessment 

Period”) and last minute (“End of Assessment Period”) of the assessment period at both high 

(1 SD above the sample mean) and low (1 SD below the sample mean) levels of pain as 

indicated in the Brief Pain Inventory. In the upper panel, the observed decrease in RSA over 

time indicates “vagal withdrawal”, which is the term used to describe this phenomenon in 

the rest of this paper.
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