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Systems/Circuits

A Map of Functional Synaptic Connectivity in the Mouse
Anteroventral Cochlear Nucleus
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The cochlear nuclei are the first central processors of auditory information and provide inputs to all the major brainstem and midbrain auditory
nuclei. Although the local circuits within the cochlear nuclei are understood at a cellular level, the spatial patterns of connectivity and the
connection strengths in these circuits have been less well characterized. We have applied a novel, quantitative approach to mappinglocal circuits
projecting to cells in the mouse anteroventral cochlear nucleus (AVCN) using laser-scanning photostimulation and glutamate uncaging. The
amplitude and kinetics of individual evoked synaptic events were measured to reveal the patterns and strengths of synaptic connections. We
found that the two major excitatory projection cell classes, the bushy and T-stellate cells, receive a spatially broad inhibition from D-stellate cells
in the AVCN, and a spatially confined inhibition from the tuberculoventral cells of the dorsal cochlear nucleus. Furthermore, T-stellate cells
integrate D-stellate inhibition from an area that spans twice the frequency range of that integrated by bushy cells. A subset of both bushy and
T-stellate cells receives inhibition from an unidentified cell population at the dorsal-medial boundary of the AVCN. A smaller subset of cells
receives local excitation from within the AVCN. Our results show that inhibitory circuits can have target-specific patterns of spatial convergence,

synaptic strength, and receptor kinetics, resulting in different spectral and temporal processing capabilities.
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Introduction

The synaptic connectivity of neural networks is an essential
determinant of their role in information processing. Detailed
analyses of network connection patterns, including their spa-
tial organization, synaptic strength, and kinetics, are a prereq-
uisite for the construction of biologically relevant models used
to explore hypotheses about neural integration. Local circuits
can be more readily understood in sensory systems than in
more centrally located structures because the activity patterns
of the principal inputs to sensory nuclei are well defined. The
anteroventral cochlear nucleus (AVCN) receives direct input
from the auditory nerve and is particularly amenable to this
kind of analysis. Its intrinsic circuitry is relatively simple, with
only a few distinct types of local inhibitory interneurons and
relatively sparse intrinsic excitatory connections. Models of
cellular excitability (Rothman and Manis, 2003b), synaptic
kinetics (Raman and Trussell, 1992; Xie and Manis, 2013), and
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the auditory nerve (Zilany et al., 2009) are available, making
the AVCN suitable for quantitative analysis and modeling.

The AVCN is composed of three primary cell types (Fig. 1A).
Bushy cells and T-stellate cells are the AVCN’s excitatory output
neurons, whereas D-stellate cells are glycinergic (Doucet et al.,
1999; Doucet and Ryugo, 2006). Bushy and T-stellate cells form
two parallel pathways that enhance different features of their
auditory nerve input (Blackburn and Sachs, 1989; Xie and Manis,
2013). Bushy cells preserve the fine temporal structure of their
inputs and project to the superior olivary complex, whereas
T-stellate cells encode the amplitude envelope of sound on a
slower timescale and project to the inferior colliculus (Blackburn
and Sachs, 1990; Frisina et al., 1990; Joris et al., 1994; Shofner,
1999; Cant and Benson, 2003). Both cell types lie within the ter-
minal axonal fields of the inhibitory D-stellate cells, which are a
strong candidate to provide broadly tuned inhibition. A separate
inhibitory input to the AVCN comes from narrowly tuned tuber-
culoventral neurons in the dorsal cochlear nucleus (DCN; Young
and Voigt, 1982; Wickesberg and Oertel, 1990; Ostapoft et al.,
1999; Muniak and Ryugo, 2013). Together, these cell types form
the basic feedforward circuit of the AVCN.

Prior studies have characterized the connectivity of local cir-
cuits in the AVCN. However, systematic and quantitative spatial
measurements are required to facilitate computational modeling
and to elucidate the functional role of these circuits. We have
applied a novel, quantitative approach to mapping circuits in the
AVCN using laser-scanning photostimulation in brain slices. We
used glutamate uncaging to systematically stimulate presynaptic
cells, then measured the amplitude and kinetics of the evoked
synaptic events to generate a detailed description of connection
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Figure 1.  Schematic of putative AVCN circuitry and the slice planes used in this study. 4, Sagittal view of the cochlear nuclei showing a subset of cell types and circuitry relevant to the AVCN.
Auditory nerve (AN) fibers enter the ventral cochlear nucleus at the ventral edge, then bifurcate into an “ascending” branch that innervates the AVCN, and a “descending” branch that innervates the
PVCN and DCN. AN fibers are organized tonotopically into sheets of similar frequency, with low frequencies near the ventral—lateral edge and high frequencies at the dorsal-medial edge. Bushy (B)
and T-stellate (TS) cells are the primary excitatory output neurons of the AVCN and project ventrally to the trapezoid body. Both cell types integrate AN input from a narrow range of frequencies.
D-stellate (DS) and tuberculoventral (TV) cells are inhibitory interneurons. TV cells project to bushy and T-stellate cells with a precise tonotopic registration. DS cells integrate from a wide range of
ANfiber frequencies and have extensive axonal branching in the VCN and DCN. However, their postsynaptic targets are unknown, although they are believed to include both bushy and T-stellate cells.
Some TS cells also have sparse local axon collaterals believed to synapse at least onto other T-stellate cells. Whether either of the inhibitory interneurons are the targets of any local projections is
unknown. B, Schematics showing the orientation of cuts that produce the slice planes used in this study. Each slice plane was selected to retain specific sets of connections within the nuclei, as
described in Materials and Methods. €, Schematic showing the process of registering slices with the anatomical and tonotopic atlases. Photos of the slicing procedure (1) were used to mark the
location of the slice on a 3D atlas (2). The atlas was digitally sliced to generate an image of the expected slice anatomy (3). The atlas was also combined with a tonotopic atlas to estimate the center
frequency of auditory nerve input across different regions of the slice; example isofrequency curves are drawn over the atlas slice image. Finally, images of the brain slice (4) were scaled and aligned
with images of the atlas slice. AD, Anterodorsal; PD, posterodorsal; D, dorsal; A, anterior; M, medial; L, lateral.

patterns and associated synaptic properties. We coupled this ap-
proach with a 3D reconstruction of the locations of recorded cells
onto a standard atlas (Muniak et al., 2013), which allowed us to
estimate the tonotopic relationships between recorded and pho-
tostimulated neurons. We found that the majority of cells receive
inhibitory input from both D-stellate and tuberculoventral cells.
Additionally, small subsets of cells receive inhibitory input from

an unidentified cell population at the dorsal—medial boundary
of the AVCN, or excitatory input from within the AVCN.

Materials and Methods

Dissection and slicing. CBA/CaJ mice (Jackson Laboratory) from in-
house colonies, 13-33 d old (mean age, 23 = 5 d; n = 50), of either sex
were used for all electrophysiological recordings. All experimental pro-
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cedures were approved by the Institutional Animal Care and Use Com-
mittee at the University of North Carolina at Chapel Hill. Mice were
anesthetized with ketamine (100 mg/kg, i.p.) and xylazine (10 mg/kg,
i.p.), and then decapitated. The brain was removed and immersed in
prewarmed (34°C) dissection buffer containing the following (in mm):
135 N-methyl-p-glucamine (NMDG), 135 HCI, 1.75 KCl, 1.25 KH,PO,,
25 NaHCO;, 10 glucose, 3 myo-inositol, 2 sodium pyruvate, 0.4 ascorbic
acid, 1.5 MgSO,, and 2 CaCl,, gassed with 95% O, and 5% CO, to a pH
of 7.4. This dissection buffer is based on an NMDG solution proposed by
Tanaka et al. (2008) to improve slice viability, but also includes myo-
inositol, sodium pyruvate, and ascorbic acid. It also lacks choline chlo-
ride because the high concentration of HCl used to set the pH provided
more than sufficient Cl . A block of brainstem including the cochlear
nuclei was dissected and attached to an agar block with cyanoacrylate
glue, and placed on a small gimbal in an oscillating tissue slicer (VT
12008, Leica). The block was then oriented with the gimbal and cut to
yield a single section, typically 350—600 wm thick.

Each block was cut in one of three planes of section chosen to preserve
or emphasize specific aspects of the nucleus circuitry (Fig. 1B). “Parasag-
ittal” slices were cut in a nearly sagittal plane, with the dorsal end tilted
~20° medial to the sagittal plane. When cutting parasagittal slices, thin
slices were shaved from the lateral surfaces of the DCN and ventral co-
chlear nucleus (VCN) to remove the molecular and granule cell layers
before cutting the final slice. Slices in this orientation were typically cut
thicker (500—600 wm) to help preserve connections between the deep
DCN and AVCN. “Ascending branch” slices were cut approximately
parallel to the ascending branches of auditory nerve fibers (which run
posteroventral at the nerve root to anterodorsal at the opposite end of the
AVCN) and orthogonal to the lateral surface of the AVCN. In this slice
plane, the anterior end was tilted ~40° dorsal to the horizontal plane.
“Tuberculoventral tract” slices were cut orthogonal to the lateral surface
of the AVCN and approximately parallel to the intranuclear fibers con-
necting the DCN and AVCN.

The location and orientation of brain slices varied from experiment to
experiment. To compare data across experiments, we registered the lo-
cation of each slice to a 3D MRI atlas of the mouse brain with a resolution
of 21.5 um (Johnson et al., 2010) using images of the brain collected
during the slicing procedure. The tissue block was viewed from the side
through a low-magnification stereo microscope using a front surface
mirror turned 45°, and located beside the tissue block. The orientation of
the mounting gimbal was adjusted before and during slicing to optimize
the plane of section. The brain was photographed through the micro-
scope before and after each cut to record the anatomical location of the
extracted section relative to the brainstem block (Fig. 1C, step 1).

In the MRI atlas, the cochlear nuclei were identified and labeled man-
ually. Photographs of the brain taken during the slicing procedure were
scaled and aligned with an image of the atlas to define the location of each
slice (Fig. 1C, step 2). Next, a schematic image of the slice anatomy was
generated by digitally slicing the atlas data (Fig. 1C, step 3), and the
photos of the slice taken in the recording chamber were aligned with
the schematic slice image (Fig. 1C, step 4). This process fully specifies the
scaling and orientation of the slice within the 3D MRI atlas. Finally, the
location of each cell was marked manually. A cochleotopic atlas (Muniak
et al., 2013) was superimposed on the MRI atlas to determine the ar-
rangement of the isofrequency sheets and tonotopic axis within the slice.

Electrophysiology. Following dissection, slices were incubated for at
least 30 min at room temperature in artificial CSF (ACSF) containing the
following (in mm): 122 NaCl, 1.75 KCl, 1.25 KH,PO,, 25 NaHCO;, 10
glucose, 3 myo-inositol, 2 sodium pyruvate, 0.4 ascorbic acid, 3 CaCl,,
and 1 MgSO,, and bubbled with 95% O, and 5% CO, to a pH of 7.4.
Slices were then secured in a 300 wl recording chamber and superfused
with a 7 ml recirculating supply of oxygenated ACSF containing 180 um
MNI-caged-1-glutamate and 360 uM ( S)-a-methyl-4-carboxyphenylglycine, a
nonselective group I/II metabotropic glutamate receptor antagonist
(Tocris Bioscience). The solution was pumped through the recording
chamber at ~2 ml/min using a peristaltic pump driven by a geared step-
per motor to maintain a precisely controlled flow rate. A 10 ml drip
chamber was used to minimize fluid pulsing generated by the pump.
Smooth fluid flow was essential to achieving consistent photostimulation
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because changes in the fluid level and meniscus curvature can dramati-
cally alter the focus of the laser beam. The stepper motor was separated
from the peristaltic pump by a long drive shaft and was powered by
quadrature sine-wave outputs from an audio amplifier. This eliminated
high-frequency electrical transients and ensured that electrical noise was
not transmitted from the motor into the fluid lines. Before reaching the
recording chamber, ACSF was heated to 25°C with an inline heater. This
temperature was chosen because we found that it resulted in increased
synaptic release probability. Cells were visualized with an upright Zeiss
Axioskop FS 2 microscope equipped with a water-immersion objective
lens (40X or 63X) and CCD camera (Quantix 57 or QuantEM 512SC,
Photometrics).

Patch pipettes were pulled from 1.2-mm-diameter borosilicate glass
with a P2000 puller (Sutter Instruments), and had a resistance of ~3 to 10
M() in the bath. For most recordings, a cesium-based electrode solution
containing QX314 (Tocris Cookson) was used to minimize potassium
and sodium conductances. This resulted in quieter recordings, improved
voltage-clamp of dendrites, and allowed cells to be voltage-clamped near
0mV for over 30 min. The electrode solution contained the following (in
mMm): 128 CsMeSO;, 5 CsCl, 10 sucrose, 5 EGTA, 10 HEPES, 4 MgATP,
10 creatine phosphate, 0.3 GTP Tris, 3 QX314, and was adjusted to pH
7.3 with CsOH. Electrode solutions also contained Alexa Fluor 488 or 568
(Invitrogen) to allow morphological identification. Whole-cell record-
ings were made with a Multiclamp 700A amplifier (Molecular Devices).
After recordings were complete for each cell, the patch pipette was care-
fully removed and the dendritic tree of the cell was imaged using a 63X
objective with either standard epifluorescence illumination and a cam-
era, or two-photon laser scanning microscopy.

AVCN neurons are commonly characterized by their response to brief
current injections; however, the use of a Cs " _based electrode solution
makes this analysis problematic. In a subset of experiments, electrodes
were first filled with a small quantity of a standard K-gluconate-based
internal solution, followed by a larger volume of Cs* solution. This
allowed cells to be physiologically characterized immediately after rup-
turing the cell membrane, as it typically took ~15 min for sufficient Cs *
to diffuse to the tip of the pipette. The K-gluconate solution contained
the following (in mm): 126 K-gluconate, 2 NaCl, 6 KCl, 10 sucrose, 10
HEPES, 0.2 EGTA, 4 Mg-ATP, 10 creatine phosphate, and 0.3 GTP Tris.
The pH was adjusted to 7.2 with KOH, and the final osmolarity was ~295
mOsm.

For voltage-clamp, cells were held at —61 mV when measuring excit-
atory synaptic responses or near —11 mV when measuring inhibitory
synaptic responses. Cells were monitored for the duration of each exper-
iment to ensure that series resistance and holding current were within
acceptable limits. Cells with access resistance >30 M{) were excluded
from quantitative analysis of postsynaptic current (PSC) amplitude and
kinetics, and those with access resistance >60 M{) were excluded en-
tirely. Typically, the current required to hold cells at the target voltage
was <50 pA at —61 mV or 200 pA near —11 mV. All reported voltages
include a calculated —11 mV Cs *—electrode solution junction potential.

Photostimulation. To measure connectivity and characterize synaptic
responses, we used caged MNI-glutamate photostimulation to evoke ac-
tion potentials in cells presynaptic to the patched cell while recording
postsynaptic responses (Katz and Dalva, 1994). Photostimulation was
performed with a 100 mW, 355 nm UV laser (Series 3500, DPSS Lasers)
steered through the epifluorescence port of the microscope. The beam
position was controlled with a pair of galvanometer-based scanning mir-
rors (6510H, Cambridge Technologies) combined with 100 mm scan and
tube lenses (Thorlabs) embedded within the microscope. Laser power
was monitored with a photodiode in later experiments. UV light pulses
were controlled via the Q-switch of the laser combined with a fast shutter
(Uniblitz, Vincent Associates). The laser spot was focused onto the sam-
ple with a 5X objective (0.95 numerical aperture Achroplan, Zeiss). The
spot size was set to ~90 um in diameter (measured at 1/e of the maxi-
mum intensity) by adjusting the beam divergence with two 100 mm
lenses mounted in front of the laser aperture. As the spot size was ad-
justed, its diameter was monitored and reported by software (www.acq4.
org) that continuously fit a video image of the spot with a 2D Gaussian
profile. The spot power at the sample plane was ~20 mW, as measured
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with a Newport 1917-R laser power meter and 818P-015-17W thermo-
pile sensor.

Photostimulation pulses, physiological recordings, and galvanometer
mirror commands were synchronized using a multifunction data acqui-
sition device (PCI-6259, National Instruments) controlled by custom
software (www.acq4.org) written in Python. The galvanometer mirror
voltage commands were determined by calibrating the resulting laser
spot position against the CCD camera frames. Scanning maps were de-
signed by visually specifying the desired spot locations relative to the
image of the slice on the computer monitor. To determine the optimal
laser pulse duration, we photostimulated cells with a range of pulse du-
rations while extracellularly recording their firing response. A pulse du-
ration of ~1 ms was chosen to deliver 20 uJ, which evoked at least one
spike in most cells.

Cell characterization and mapping procedure. One of the primary goals
of this study was to examine the relationship between patterns of synaptic
connectivity and various properties of the postsynaptic cells. Thus, each
cell was characterized through measurements in several different exper-
imental protocols. Patched cells were directly photostimulated in cell-
attached mode before rupturing the cell membrane. The latency and
number of action potentials elicited was used both to characterize the cell
as well as to determine optimal stimulation parameters to ensure that the
majority of cells would respond with at least one action potential. Five
cells underwent more extensive profiling to determine the relationships
among pulse energy, spot location relative to the soma, and the response
of the cell. After rupturing the cell membrane, the current—voltage (I-V)
relationship of the cell was measured with standard current injection and
voltage step protocols.

We mapped the locations of synaptic inputs to the cell by photostimu-
lating sites in a hexagonal grid, typically consisting of 100-300 points,
over the visible surfaces of the cochlear nuclei. Each site was stimulated
while holding the patched cell at either —61 mV to record EPSCs, or
between —21 and —1 mV to record IPSCs. Photostimulation flashes of
10-40 wJ were generated by pulsing the laser Q-switch for 0.5-2 ms. In
experiments where the laser power was monitored, the flash duration was
automatically adjusted to control the total energy delivered. For each
stimulation, we recorded the membrane current for at least 300 ms be-
fore and after the laser flash. Stimuli were typically separated by ~1.5s.
Sites were stimulated in an order optimized to maximize the distance
between subsequent stimulations, and adjacent sites were never stimu-
lated within 10 s of one another. To reduce false positives, each site was
usually stimulated three times per holding potential (for a total of six
stimulations); however, this number was occasionally varied depending
on the rate of spontaneous postsynaptic events of the cell. The response
to each stimulation was recorded, along with the location of the stimu-
lation site and an image of the laser spot to allow later verification of the
scanning mirror calibration. These positions were automatically mapped
to the 3D MRI atlas coordinate system, and subsequently to the tono-
topic atlas to estimate the likely frequency location of each patched cell or
stimulation site. The width of the laser spot (90 wm) spans ~0.3 octaves
within the tonotopic atlas.

Analysis. The currents recorded during photostimulation represent
three classes of events: spontaneous synaptic currents, evoked synaptic
currents, and currents produced by direct photostimulation of the re-
corded cell. One of the major challenges of photostimulation mapping is
to separate these components and analyze them independently. Ordinar-
ily, polysynaptic activation presents a fourth class of events that must be
minimized and discriminated. However, local excitatory inputs were
rarely encountered in these experiments, and thus polysynaptic activa-
tion is unlikely. Our approach to separating spontaneous, evoked, and
direct currents is summarized in Figure 2. Whole-cell recordings are first
filtered to remove 60 Hz line noise and high-frequency noise sources.
Next, we search for large inward currents beginning <4 ms following the
stimulus onset. Such currents are often the result of direct glutamate
stimulation of the postsynaptic cell. If present, this current was fit against
a shape composed of the product of an exponential rise and the sum of
two exponential decays, as follows:

y(x) = (1 — e "™M)P(Ae "™ + Be ™). (1)
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Figure 2.  Event detection algorithm. The algorithm is described more thoroughly in Mate-
rials and Methods. A, Whole-cell recording data are filtered to remove noise and detrended. In
some cases, currents due to direct stimulation are subtracted from the traces. B, Next, the trace
is exponentially deconvolved to emphasize the rising phase of each synaptic event. The decon-
volved trace is used to determine the starting time of each event. (, Segments of the decon-
volved signal are reconvolved to yield an estimated shape for each event as if it were isolated
from prior events. D, The reconvolved event traces are fit to a function (Eq. 2) to measure the
onset time, amplitude, and time constants.

Traces were fit using the Levenberg—Marquardt algorithm in SciPy
(http://www.scipy.org; see scipy.optimize.leastsq), combined with a sim-
ple parameter-space search to reduce the probability of improper fitting.
The results of this fitting procedure were saved for further analysis. In
some cases, the fit depolarization shape was subtracted from the record-
ing to improve our ability to measure synaptic events that occurred dur-
ing the falling phase of the direct response.

Recordings were then detrended and exponentially deconvolved
(Richardson and Silberberg, 2008) to help separate overlapping events
and emphasize the fast rising phase of synaptic currents. The decon-
volved signal was used to determine the onset time of each synaptic event
and then partitioned into a single trace segment per event. The seg-
mented events were then exponentially reconvolved to give an estimate
of the shape of the event in the absence of any preceding events. Finally,
the reconvolved events were fit to a synaptic conductance-like function
that is the product of rising and falling exponentials, as follows:

)/(x) — A(l _ e—x/'r,)ze—x/m' (2)

For events that occurred in rapid succession, this method provided a
good estimate of the onset time and amplitude of each event, but dis-
torted their rise/decay kinetics. For well isolated events, the exponential
deconvolution and reconvolution had little effect and thus the rise/decay
kinetics of the event could be accurately measured.

The presence of spontaneous events and the probabilistic nature of
synaptic transmission led to errors in the analysis of input sites in pho-
tostimulation mapping experiments. Typical rates of spontaneous IPSCs
were 0.1-2 Hz for bushy cells and 0.5—-6 Hz for stellate cells, while spon-
taneous EPSCs occurred at 10-20 Hz for both cell types. To reduce the
probability of detecting false positives, most sites were stimulated three
times. For cells with a high rate of spontaneous events, additional rounds
of stimulation were necessary to improve the identification of evoked
events. In cases where the spontaneous rate was low, two stimuli were
sufficient. We also used high-Ca®* ACSF to increase synaptic release
probability and thus reduce the rate of false negatives.

Most photostimulation mapping studies identify evoked events by
comparing the total charge transfer during equal periods before and after
stimulation (Shepherd et al., 2003; Jin et al., 2006; Barbour and Callaway,
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2008). We found this method to be sensitive to noise and insensitive to
photostimulation responses that evoke little charge transfer relative to
spontaneous activity. In addition, charge transfer from synaptic events
was obscured by direct stimulation currents for inputs close to the post-
synaptic cell. To address these problems, we developed a statistical metric
based on the onset times of detected events to distinguish spontaneous
from evoked events. The method assumes that the times of occurrence of
spontaneous PSCs follow the statistics of a Poisson process, and com-
putes the probability that this process generates a particular series of
events. This method is similar to one proposed by Chase and Young
(2007) for measuring first spike latencies of neurons in response to sen-
sory stimuli and in the presence of spontaneous activity.

The statistic was computed in three steps. First, we determined the
mean rate of spontaneous events by counting the number of events in the
prestimulus region of each recording (this region did, on rare occasions,
contain events evoked by the preceding stimulation as well). For cells
with a low spontaneous event rate (<0.3 Hz), the mean rate was deter-
mined by averaging over all recordings for the cell. For cells with higher
or erratic spontaneous rates, we measured the rate for each stimulus and
applied a Gaussian smoothing filter (o =~ 30 s) over time to generate a
per-recording estimate of spontaneous rate.

Second, for each stimulation site we combined the times of poststimu-
lus events across all stimulus repetitions into a single pool. The sponta-
neous rates measured during the prestimulus period were also summed.
We then computed a metric that indicated whether the pooled event
times were likely to have been generated by a Poisson process with the
summed spontaneous rate. To compute the metric, let the function N(¢)
be the number of events occurring at time =t, relative to the stimulation
onset. Then, for any time ¢ after stimulus, we can compute the probability
that a Poisson process would generate N(t) events in a time window of
width ¢ using the survival function for a Poisson distribution with spon-
taneous rate s, as follows:

N(t)fl(st)i
PoisSF(t) =1 —¢ e (3)

i=0

Third, we computed the probability that the response in the evoked
window was not due to spontaneous activity by taking the minimum of
the survival function between t = ¢, ; (2 ms) to t = £, (200 ms).
Because taking the minimum involves multiple comparisons, a correc-
tion was needed to compute a probability from this metric. The correc-
tion was determined by measuring the scores for many repeated trials of
asimulated Poisson process over a range of values for st and comput-
ing a table of p values.

This metric has an important advantage over simply computing the
survival function at a specific time point in that it is sensitive to the timing
of events as well as their rate. Events that cluster immediately after the
stimulation time will yield a higher score. Thus, the metric can help
identify evoked events even in the presence of high spontaneous rates of
activity, as long as the presynaptic cell responds quickly and with reliable
latency after the stimulation. At the same time, the metric can detect
synaptic inputs that have longer latency or poor precision, but neverthe-
less increase the mean event rate over a longer time period.

For each map, the set of sites with evoked responses was determined by
selecting those sites whose metric was less than some threshold (usually
0.001-0.01). The threshold was determined for each map based on the
rate of spontaneous events and the strength of evoked events. In a small
number of cases, unstable membrane currents or sudden changes in the
spontaneous event rate that were clearly not associated with the stimulus
resulted in the incorrect detection of input sites; these were manually
removed from the results.

Classification of cell types. Classification of cell type was difficult in
these experiments because we primarily used a cesium-based electrode
solution and thus could not rely on current-clamp data. Cell identifica-
tion was further complicated by incomplete dye labeling and, in some
cases, by ambiguous morphology. To classify as many cells as possible, we
used several complementary criteria. Cells were classified as bushy (55
cells), stellate (24 cells), or ambiguous/unusual (10 cells) on the basis of
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morphology, spontaneous PSC kinetics, and, when available, I-V curves.
Morphological classification was made by ranking the cells on a scale
from 1 to 5 (1, bushy; 3, ambiguous; 5, stellate) and averaging results
from three independent experienced observers. Average values =<2 were
considered bushy; values =4 were considered stellate. Additionally,
spontaneous PSC kinetics could be used in most cells to distinguish
between categories by measuring the ratio between the decay time con-
stant of excitatory and inhibitory PSCs (Xie and Manis, 2013). Cells with
aratio of >0.5 were considered stellate, whereas cells with a ratio of <0.2
were considered bushy. In a subset of cells, I-V curves were measured
while recording with a potassium gluconate electrode solution. These
cells could be classified by their responses to short current injection
pulses (Wu and Oertel, 1984). For cells patched with cesium electrode
solution, a similar (but less reliable) classification could be made based
on the response of the cell to direct stimulation while recording in cell-
attached mode. Cells for which direct stimulation elicited a train of ac-
tion potentials were almost always stellate cells, whereas cells that
responded with a single action potential could be either type.

Cells expressing exclusively bushy-like or stellate-like characteristics
were classified accordingly. Although it is clear that bushy and stellate
cells represent two distinct populations, many of the differences between
these populations are expressed on a continuum (Webster and Trune,
1982; Rothman and Manis, 2003a; Typlt et al., 2012); some cells express
properties that appear to be intermediate between the two populations,
while other cells have characteristics of both populations. Despite this
difficulty, it is still beneficial to classify cells based on the canonical bushy
and stellate categories. In addition, cells having insufficient data to make
a clear judgment were classified as “ambiguous,” and those expressing
characteristics of both cell types were classified as “unusual.”

Stellate cells were further classified as either T-stellate or D-stellate
based on morphology and membrane properties. T-stellate cells typically
have dendrites constrained to a narrow isofrequency region, whereas
D-stellate cells have dendrites that cross frequency planes (Oertel et al.,
1990; Doucet and Ryugo, 2006). Cell reconstructions were overlaid onto
the maps of isofrequency contours generated using the cochleotopic atlas
from Muniak et al. (2013), and cells whose dendrites were oriented or-
thogonal to the isofrequency contours were flagged as candidate
D-stellate cells. We often had poor confidence in this morphological
characterization because of incomplete fills, and thus combined it with
an analysis of hyperpolarization-activated cation current (I,) kinetics
(Fujino and Oertel, 2001), which could be measured in voltage-clamp
with Cs *-containing electrodes. We measured the activation time con-
stant of the I, current in response to a voltage step from —61 to —141
mV. Cells with time constants <20 ms and D-stellate morphology were
considered likely D-stellate cells (two cells). The remainder were simply
labeled “stellate” and likely are primarily T-stellate cells (22 cells).

Statistical analysis. Many of the samples we compared for differences
were not normally distributed, so significant differences were detected
using a custom permutation resampling function. First, the difference be-
tween the means of two samples was computed. Next, values were randomly
shuffled between the two samples while keeping the sample sizes constant,
and the difference in the means of each permuted sample pair was com-
puted. Finally, the p value was determined as the fraction of times the abso-
lute value of the permuted mean difference exceeded the originally
measured difference. For each comparison, we performed 10,000 permu-
tations. Where this function determined a p value of 0, we have reported
p < 10" The SciPy library for Python (http://www.scipy.org) was used
to compute single-sample ¢ tests (scipy.stats.ttest_lsamp) and Pearson
correlation coefficient (scipy.stats.pearsonr). Multiple groups were com-
pared by ANOVA using R (http://www.r-project.org) and appropriate
post-tests. Data are presented as the mean * SD.

Results

Cell classification and localization

The cells in this study were located almost entirely within the
AVCN; a few cells were located in the posteroventral cochlear
nucleus (PVCN) or near the dorsal margin of the AVCN (see Fig.
3 A, B). Most cells were located within the central AVCN, whereas


http://www.scipy.org
http://www.r-project.org
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Figure 3.  Locations of data sampled in this study. A, Sagittal view of the cochlear nucleus
atlas with locations of patched cells indicated (circle, bushy; triangle, stellate; diamond, other).
B, Coronal view of the atlas with the same cell locations marked. €, Rectangles indicate the
locations of a selection (approximately one third) of tuberculoventral tract slices aligned against
the atlas in sagittal view. Dark edges indicate the side of the slice that was visible during the
experiment. D, Locations of ascending branch slices aligned against the atlas in sagittal view. E,
Locations of parasagittal slices aligned against the atlas in coronal view. A, Anterior; D, dorsal; L,
lateral.

the ventral and rostral borders were excluded entirely. Stellate
cells were confined to the lateral portion of the nucleus. In con-
trast, bushy cells were found throughout the sampled area, including
the medial extent of the nucleus. Slices were taken in three different
orientations, indicated in Figure 3C—E. This study did not include
any granule cells.

Fifty-five of 89 cells were classified as bushy, and 24 of 89 cells
were classified as stellate based on both morphology and PSC
kinetics, as described in Materials and Methods. Bushy cells had
spontaneous IPSCs with a decay time constant much longer than
their spontaneous EPSC decay time constant (IPSC, 7= 14 £ 6.8
ms; EPSC, 7= 0.50 = 0.11 ms), whereas stellate cells had nearly
equal spontaneous EPSC and IPSC decay time constants (IPSC,
T=3.6 = 0.86 ms; EPSC, 7 = 2.6 = 0.92 ms; Fig. 4A, B). These
definitions are in agreement with those of Xie and Manis (2013),
although the time constants in the present study are longer be-
cause recordings were performed at a lower temperature (25 vs
34°C). Five cells were classified as ambiguous because they lacked
unambiguous morphological or PSC data. Another 5 of 89 cells
were classified as unusual because they appeared to have mor-
phological and physiological characteristics of both bushy and
stellate cells. Cells classified as ambiguous or unusual are ex-
cluded from this report, except where indicated.

All of the cells included in this study had fast spontaneous
EPSCs typical of those associated with spontaneous release at
auditory nerve terminals. However, 10 cells also had a population
of slower spontaneous EPSCs. These were detected in seven
bushy cells, with decay time constants between 1.5 and 3 ms (Fig.
4C). Three stellate cells had a subset of spontaneous EPSCs
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with a decay time constant clearly different from those of their
auditory nerve spontaneous EPSCs (2.5, 11, and 25 ms; Fig.
4D). Bimodal EPSC distributions have not been reported pre-
viously in VCN neurons and were only apparent in this study
due to the long recording times required to carry out photo-
stimulation mapping.

In addition to the PSC decay time constants, we measured the
amplitude and rate of spontaneous events. The rate of spontane-
ous IPSCs was significantly lower in bushy cells than in stellate
cells (bushy, 0.46 * 0.59 Hz; stellate, 3.1 * 2.9 Hz; permutation,
p < 10™*), whereas the rate of spontaneous EPSCs was not dif-
ferent (bushy, 13 = 8.2 Hz; stellate, 12 = 7.1 Hz; permutation,
p = 0.73). Conversely, the amplitude of spontaneous IPSCs was
not different between cell types (bushy, 20 & 12 pA; stellate, 24 +
11 pA; permutation, p = 0.37), whereas the amplitude of spon-
taneous EPSCs was larger in bushy cells than in stellate cells
(bushy, —35 = 9.8 pA; stellate, —19 * 6.3 pA; permutation, p <
10 ~*). These results confirm that synaptic inputs differ between
bushy and stellate cells, and thus the functional roles of these
inputs may differ across cell types as well.

Responses to direct stimulation

Glutamate uncaging does not excite all cells equivalently. The
firing pattern of a photostimulated cell depends on the intrinsic
excitability of the cell, the laser power, the position of the laser
spot relative to the cell, and the depth of the cell within the slice.
To measure the relationship between the photostimulation pa-
rameters and typical cellular responses, we photostimulated 59
cells at least once while recording in the cell-attached configura-
tion. The sample was limited because cells that are deeper or in
different regions of the slice were excluded from this analysis,
even though they may have contributed to evoked responses dur-
ing mapping experiments.

The direct responses of AVCN cells varied depending on the
cell type. Stellate cells most frequently (12 of 18 cells) responded
with a train of spikes, which could last for tens or hundreds of
milliseconds (Fig. 5A). In contrast, most bushy cells (31 of 33
cells) responded with a single spike when photostimulated, re-
gardless of the pulse duration (Fig. 5B). These spiking patterns
are consistent with the intrinsic responses to current injection for
bushy and stellate cells (Oertel, 1983), and likely result from the
sustained activity of glutamate in the slice following photostimu-
lation. Due to the relative scarcity of local excitatory inputs found
in this study, the evoked spike trains are unlikely to result from
polysynaptic activation.

The relationship between the number of evoked spikes and
the distance from the laser spot to the soma was measured by
repeated photostimulation at densely spaced (~30 wm) locations
in five cells (Fig. 5C). These measurements showed that the
spatial resolution for photostimulating single neurons was not
consistent—whereas some cells respond only to direct activation
over the soma, others respond to stimulation over their dendrites
or over regions of the slice separated from the cell. For four of
five cells, the maximum distance that evoked spikes (measured
from the cell body to the center of the laser spot) was <100
pm. One cell responded to photostimulation up to 150 wm away
and was selected for this analysis specifically because of its high
excitability.

After photostimulation responses were recorded in the cell-
attached mode, the amplitude and kinetics of direct photostimu-
lation responses were evaluated in whole-cell recordings. In most
cases, direct stimulation resulted in currents of several hundred
picoamperes lasting for tens of milliseconds (Fig. 5D, trace c).
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The duration of these direct stimulation 200

currents far outlasts the ~1 ms laser flash,
indicating the sustained activity of gluta-
mate in the slice following photostimula-
tion. In 31 of the 85 cells tested, the evoked
current had a second component that per-
sisted for hundreds of milliseconds. These
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are not uniformly distributed on AVCN
cells.

For each cell, we photostimulated sites
in a grid with 90 um spacing, then
counted the number of sites with direct
responses >20 pA. Figure 5E shows these
counts separated by cell type. We found
that stellate cells typically had direct stim-
ulation currents in about twice as many
sites as bushy cells, which likely reflects differences in dendritic
morphology and intrinsic excitability between stellate and bushy
cells.

Figure 4.

bimodal EPSC distribution.

Spatial organization of input sites

Photostimulation maps of both excitatory and inhibitory synap-
tic currents were analyzed to determine the locations of presyn-
aptic cells in the map. Both bushy and stellate cells received
inhibitory input from regions in both the VCN and DCN, and
occasionally from the dorsal border of the AVCN. Excitatory
inputs were rare and tended to arise from locations close to the
recorded cell. In the following sections, we discuss each source
region separately.

Inhibitory input from the VCN
Eighty-nine percent of cells (59 of 66 cells) had detectable evoked
inhibitory inputs that arose from within the VCN, usually ap-
pearing as a contiguous cluster of sites surrounding the postsyn-
aptic soma (Fig. 6). The majority of these inputs were evoked
from sites in the AVCN or occasionally the PVCN and are pre-
sumed to arise from D-stellate cells, which are the only known
inhibitory neurons in the VCN. The area over which evoked in-
puts were detected was highly variable in size and shape, partic-
ularly with respect to the alignment of isofrequency sheets.
Although the inputs to some cells were aligned with the isofre-
quency sheets (Fig. 6 A, E) or across the isofrequency sheets (Fig.
6D), in most cases the organization of inputs had no apparent
relationship to the tonotopic axis. The two D-stellate cells in our
dataset both had inhibitory input from nearby in the AVCN, indi-
cating that these cells may form a recurrent inhibitory network.
Stellate and bushy cells process and emphasize different as-
pects of their auditory input. On this basis, we predicted that the
spatial organization of their inhibitory inputs would differ as
well. Stellate cells typically had three times as many VCN stimu-
lation sites that generated detectable inhibitory input than bushy
cells (Fig. 7A; bushy, 7.7 £ 5.4 sites; stellate, 21 * 13 sites; per-
mutation, p < 10 ~*). Because this difference was so large, we next
investigated which aspects of the input maps differed between cell
types. T-stellate cells, which make up approximately half of the

0.2

10 100 1 10 100
PSC decay time constant (ms)

The kinetics of spontaneous PSCs depends on the postsynaptic cell type. Shown are scatter plots of PSC amplitude
versus decay time constant for both spontaneous and evoked events in four cells. In all cases, both spontaneous and evoked events
form overlapping populations. A, Typical bushy cell with slow IPSCs (presumed to arise from tuberculoventral and D-stellate
synapses) and fast EPSCs (presumed spontaneous release at auditory nerve synapses). B, Typical stellate cell with matched EPSC
and IPSC decay kinetics. C, Bushy cell with bimodal EPSC distribution. The slower population of EPSCs (dashed ellipse) is presumed
to be of noncochlear origin. A third population (filled gray) consists of direct stimulation depolarizations. D, Stellate cell with

cells in the VCN, have dendritic arbors that extend in a planar
configuration within isofrequency planes. In contrast, bushy cells
have compact, dense dendritic arbors that do not extend appre-
ciably in any direction (Fig. 1A). We predicted that the spatial
organization of inhibitory inputs would reflect the dendritic
morphology of each cell type. Thus, T-stellate cells would receive
input from VCN sites that extended a greater distance along the
isofrequency sheets than the inputs to bushy cells, whereas the
spread of input sites along the orthogonal axis would be similar
between the two cell types.

To test this idea, we measured the SD of the locations of inputs
to each cell along the axis that is parallel to isofrequency sheets
and the lateral surface of the nucleus (Fig. 7B). Using this mea-
sure, we found no difference between bushy and stellate cells in
the spatial spread of inputs (bushy, 149 = 54 wm; stellate, 176 =
69 wm; permutation, p = 0.22). Similarly, we found no signifi-
cant difference between cell types in the width of the input area
along the isofrequency axis orthogonal to the lateral surface of the
nucleus (data not shown; bushy, 69 = 35 um; stellate, 97 * 16
wm; permutation, p = 0.08). These results were unexpected be-
cause it appears that the longer dendrites of T-stellate cells do not
contribute significantly to the spatial spread of inhibitory inputs,
suggesting that T-stellate cells may preferentially receive VCN
inhibitory input to their proximal dendrites. This is consistent
with anatomical evidence that synapses onto the distal dendrites
of T-stellate cells are comparatively sparse (Smith and Rhode,
1989). Alternately, it may be the case that some inputs were not
detected due to poor voltage-clamp at the distal dendrites.

Given the lack of any significant difference in the inhibitory
input areas between bushy and stellate cells, it follows that the
overall difference in input area should be apparent in the axis
orthogonal to the isofrequency surfaces. Indeed, this was the case;
the SD of input locations along this axis was larger in stellate cells
than in bushy cells (bushy, 79 = 37 um; stellate, 119 = 42 um;
permutation, p = 0.0036). This result may have important func-
tional implications because it suggests that the two cell types
integrate inhibitory inputs from different frequency ranges. To
verify this, we estimated the center frequency of each stimulus site
(CFy;e) using the cochleotopic atlas constructed by Muniak et al.

site
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Figure 5.

Typical responses to direct photostimulation. A, Example cell-attached, voltage-clamp recordings (a— ) obtained with photostimulation at three locations (a-c) over a stellate cell. B,

Similar cell-attached recording on a bushy cell. C, Profiles of one bushy cell (circles) and three stellate cells (triangles) showing the number of spikes fired versus the distance from the cell soma to
the center of the laser spot. D, Example intracellular voltage-clamp recordings (a— d) obtained at four sites (a— d) over the same stellate cell. , Stellate cells have significantly larger direct response
areas than bushy cells. Each point represents, for a single cell, the number of stimulation sites in a grid that produced a direct response peak larger than —20 pA.

(2013). Next, we measured the SD of input site frequencies for
each cell, scaled logarithmically such that the range is expressed in
octaves, as follows: range = SD[log,(CF,.)]. A comparison of
the input frequency range per cell is shown in Figure 7C. On
average, bushy cells received inputs spanning *0.3 octaves
around the estimated frequency of the cell, whereas stellate cells
received inputs spanning *0.5 octaves. This difference was sta-
tistically significant (bushy, 0.31 * 0.15 octaves; stellate, 0.49 =
0.18 octaves; permutation, p = 0.0035). Figure 7D summarizes
the average input site distributions for bushy and stellate cells,
after dividing the input site frequency by the target cell frequency.
The average spatial distribution of the inputs further supports the
conclusion that stellate cells receive AVCN inhibition from a
wider frequency range than bushy cells.

Inhibitory input from the DCN

In contrast to the variable organization of inhibitory inputs from
within the VCN, inhibitory inputs from the DCN were more
predictably organized (Fig. 8). Previous studies have found that
tuberculoventral cells in the DCN are the source of a tonotopi-
cally matched inhibitory input to AVCN cells (Wickesberg and
Oertel, 1988, 1990; Saint Marie et al., 1991; Wickesberg et al.,
1991; Ostapoft et al., 1999; Muniak and Ryugo, 2013). Our results
are consistent with these studies. DCN inputs always originated
from a narrow band oriented parallel to the isofrequency sheets
in the DCN (Figs. 6 B, E, 8 A, B). In tuberculoventral slices, inputs
always originated from sites in the deeper layers of the DCN,
where tuberculoventral cells reside. Furthermore, the location of

this band orthogonal to the isofrequency plane is well correlated
with the location of the postsynaptic cell along the same axis (Fig.
8C,D; Pearson correlation coefficient = 0.87; p = 2.5 X 10~
slope = 0.93), consistent with a precise tonotopic projection.

We recorded maps from 42 cells from slices in which the
tuberculoventral tract was expected to be intact and accessible by
photostimulation. We excluded parasagittal slices for which the
lateral surface of the DCN was not removed, tuberculoventral
slices that were not well aligned with the tuberculoventral path-
way, and all ascending branch slices. Of the maps from these
slices, only 57% revealed DCN input to AVCN cells. It is unclear
whether this reflects the normal distribution of DCN projections
or is the result of interruption of the tuberculoventral tract fibers
during slicing.

Next, we quantified the spatial organization of the DCN in-
puts (Fig. 9) for comparison to the AVCN inputs in Figure 7.
Unlike the AVCN input pattern, we found no differences be-
tween bushy and stellate cells in the number of DCN input sites
with evoked responses (Fig. 9A; bushy, 2.0 = 2.1 sites; stellate,
2.5 = 3.0 sites; permutation, p = 0.62). The spatial range of DCN
input sites within isofrequency sheets was also not different be-
tween bushy and stellate cells (Fig. 9B; bushy, 75 * 48 um; stel-
late, 99 = 49 um; permutation, p = 0.45). One D-stellate cell was
tested for DCN input and was found to have none.

We next compared the frequency range of inhibitory inputs
between cell types and input regions (Fig. 9C). We found signif-
icant effects of both cell type (two-way ANOVA: F, 55, = 22.6,
p=3.3X10 ") and input region (F(, 55, = 33.5,p = 1.5 X 10 ~°),



2222 - . Neurosci., February 5, 2014 - 34(6):2214-2230

as well as a significant interaction between
the two (F, 35y = 5.67, p = 0.023). Post hoc
comparisons using Tukey’s HSD method
demonstrated that the frequency span of
DCN inputs was significantly narrower than
the span of VCN inputs onto both bushy
cells (DCN to bushy = 0.10 = 0.08 octaves;
p = 0.04) and stellate cells (DCN to stel-
late = 0.16 = 0.09; p = 1.5 X 10 ). Fur-
thermore, the frequency span of VCN
inputs was significantly wider in stellate cells
than in bushy cells, as seen previously (p =
4.5 X 10 ~°), whereas the width of DCN in-
puts was not significantly different between
bushy and stellate cells (p = 0.79). These
results confirm that DCN cells provide
tonotopically restricted inputs to AVCN
cells, particularly compared with inhibitory
inputs from the VCN.

Inhibitory input from the dorsal border
of AVCN

Fifty-four maps were collected that in-
cluded photostimulation sites over the
granule cell area at the dorsal border of the
AVCN (32 bushy cell maps, 17 stellate cell
maps, 5 other). In 10 of these maps (2
bushy cell maps, 6 stellate cell maps, 2
other), a third distinct source of inhibi-
tory input was revealed. In parasagittal
slices, these inputs were found to lie along
the dorsal edge of the AVCN, often ap-
pearing as small clusters of two to four
stimulation sites that were usually spa-
tially discontinuous with the larger region
of AVCN inhibition close to the cell
(Fig. 10A, D,E). In tuberculoventral slices,
these inputs arose from sites along the
dorsomedial border of the AVCN (Fig.
10 B, C). The strength and firing pattern of
these dorsal-border inputs varied widely
from cell to cell. Some cells showed long
trains of fast evoked IPSCs (Fig. 10B),
whereas others showed only a single slow
evoked IPSC (Fig. 10A), similar to the re-
sponses evoked from DCN and central
AVCN sites. Stellate cells were more likely
than bushy cells to receive inhibitory in-
put from the dorsal border of the AVCN
(Fisher’s exact test, p = 0.051).

Summary of inhibitory inputs
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Figure 6.  Example inhibitory connectivity maps for six AVCN cells. Each cell has input from the AVCN; four also have input from
the DCN. A, B, Bushy cells in parasagittal slice plane. €, Bushy cell in tuberculoventral slice plane. D, E, Stellate cells in parasagittal
slice plane. F, Stellate cell in tuberculoventral slice plane. The example voltage-clamp recordings in this figure show a wide variety
of response types, including weak (4, E), strong (F), rapid firing (E, a, ¢), single event (4, b, F, a, b), late (4, ¢), unreliable (4, a, F,
b), and direct (4, ¢, F, a). All mapping figures follow the same format. Each map includes a schematic indicating the location of the
slice from which that cell was patched. Arrowheads in the atlas schematicindicate the surface of the slice that was visible during the
experiment. Colors are as follows: red, DCN; blue, PVCN; purple, AVCN; green, auditory nerve; yellow, granule cell area. Note that
the divisions between anatomical regions may not be orthogonal to the plane of section; thus, the regions have some overlap in the
schematic. When available, maps are accompanied by amorphological reconstruction of the cell based on two-photon microscopy
or fluorescence images. The map of input locations is overlaid on a schematic of the slice, which was automatically generated by
computing the appropriate section from a 3D atlas. Each circle indicates the location of multiple (typically three) laser stimulations;
whitefilled circles indicate a presynapticinput was detected in the patch recording. The size of each circle indicates the illumination
area of the laser spot. The location of the postsynaptic cell is shown by a blue circle over the AVCN. Finally, some maps include
voltage-clamp recordings of evoked responses. Black arrowheads mark the time of photostimulation. A, Anterior; D, dorsal; L,
lateral; M, medial; PD, posterodorsal.
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cell types are similar. Previously, Wickesberg and Oertel
(1988) measured the patterns of connectivity to the AVCN by

To provide a full view of the spatial organization of local circuits
in the AVCN, we plotted the inputs to all cells in a cell-centered
map for each plane of section (Fig. 11). Some of the features
previously discussed are immediately apparent: both cell types
have similar patterns of spatial convergence, integrating in-
puts mainly from the DCN and nearby VCN with occasional
input from the dorsal border of the AVCN. Inputs from VCN
converge from a much broader area than those from the DCN,
particularly along the axis orthogonal to the isofrequency lam-
ina. Stellate cells integrate from a much larger area of the
AVCN than bushy cells, although the DCN input areas to both

injecting horseradish peroxidase, which retrogradely labeled
inputs from a narrow-frequency strip of the DCN as well as
from a region of the VCN dorsal to the injection site. Although
our results regarding DCN inputs to AVCN agree with theirs,
we did not find any preference for local inputs within the
AVCN to be located dorsal to the postsynaptic cell. In our
sample, the AVCN input arises from regions that are largely
centered on the target cell.

From the parasagittal slice maps in Figure 11A, it appeared
that the VCN input regions for both bushy and stellate cells were
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Bushy and stellate cells differ in their integration of AVCN inhibitory inputs. A, Stellate cells receive input from a larger number of stimulation sites than bushy cells. Each point in the

scatter plot indicates the number of input sites detected for a single cell. B, The difference ininput area between bushy and stellate cells is not due to differences along the isofrequency axis (parallel
toauditory nervefibers). The plot shows the SD of the positions of input sites for each cell. €, Stellate cells integrate from a wider frequency range than bushy cells. The value of each point is computed
as SD[log, (CF;,.)] for the estimated frequencies of input sites to a cell. D, Histograms showing the average density of input sites across frequency for bushy and stellate cells. All input sites were
pooled and binned into equal frequency intervals. The plotted values indicate the average number of input sites per cell and bin. Stellate cells appear to receive more inhibition than bushy cells from

both on-center and off-center frequencies.

wider along the x-axis (isofrequency axis from posteroventral to
anterodorsal) than along the y-axis (tuberculoventral tract axis).
To test this, we measured the per-cell SD of site locations across
both axes for each cell type, then compared the x-axis and y-axis.
For bushy cells, the spread is larger along the x-axis than the
y-axis (x-axis = 151 = 50 um; y-axis = 94 = 38 uwm; permuta-
tion, p = 0.006; n = 12). This result suggests that the terminal
fields of D-stellate cells may preferentially extend along the isof-
requency axis, and supports anatomical observations in a report
by Arnott et al. (2004). For stellate cells, the same trend was
apparent but was not statistically significant (x-axis = 176 * 70
wm; y-axis = 146 = 48 wm; permutation, p = 0.25; n = 12).

Excitatory input from the AVCN

Previous studies have raised the possibility of local excitatory
connectivity in the VCN (Ferragamo et al., 1998a; Gémez-Nieto
and Rubio, 2009; Oertel et al., 2011). To explore this possibility,
we mapped the sources of evoked EPSCs in 75 cells by holding
each cell at —61 mV during photostimulation. We detected ex-
citatory inputs in only 5 of 75 cells (4 of 45 bushy cells, 1 of 22
stellate cells, and 0 of 8 other cells; Fig. 12). Local excitatory inputs
were always found within 200 wm of the postsynaptic cell body
and did not appear to be restricted to a narrow isofrequency
plane, suggesting that the postsynaptic cells may receive excit-
atory inputs from cells of different frequency (Fig. 12A), in con-
trast with their narrowly tuned auditory nerve inputs.

Three cells had large or discontinuous regions of excitatory input,
indicating the presence of multiple presynaptic cells. This is surpris-
ing because if excitatory synapses were uniformly distributed across
cells, then it would be unlikely to simultaneously find three cells with
multiple inputs and 70 cells with no input. To quantify this, we used
aresampling test to estimate the probability that, given eight synaptic
inputs distributed uniformly across 75 cells, we would find at least 3
cells having at least two inputs each. Although we do not know the
exact number of synaptic inputs in this dataset, eight is the minimum
value supported by the mapping results and produces the most con-
servative probability estimate in the resampling test. The test con-
firmed that it is highly unlikely that uniformly distributed inputs
would produce this pattern of inputs (p = 0.0008). Thus, the distri-
bution of local excitatory inputs is nonuniform, suggesting that a
small population of cells may be more predisposed to accepting local
excitatory input.

Four cells had evoked excitatory inputs with slower decay ki-
netics than their spontaneous EPSCs. In three of the bushy cells
with excitatory input, evoked EPSCs had a decay time constant of
2-3 ms, which is distinctly slower than the ~0.5 ms decay of
spontaneous auditory nerve EPSCs. Similarly, the stellate cell
with excitatory input had evoked and spontaneous EPSCs with
decay time constants of 30 and 1 ms, respectively (Fig. 12D). Each
of these cells also had a distinct population of spontaneous EPSCs
with slower kinetics than auditory nerve spontaneous EPSCs
(Figs. 3C, 12C). Four additional bushy cells and two additional
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stellate cells exhibited similar slow spontaneous EPSCs, but had
no detected evoked EPSCs. Given the overlap of cells having both
spontaneous and evoked EPSCs with abnormally slow kinetics, it
is likely that all seven bushy cells and three stellate cells having
slow EPSCs were recipients of local excitatory input, although
evoked EPSCs were only detected in five of these cells. Together,
these findings indicate that local excitatory input within the VCN
has slower kinetics than auditory nerve input. In addition, the
firing patterns of excitatory interneurons are likely to differ from
the firing patterns of auditory nerve fibers, suggesting different
functional roles of these two excitatory sources.

Differences in inhibitory synaptic inputs to VCN neurons

The maps in Figures 7 and 11 show that stellate cells, on average,
receive inhibitory inputs from a wider region of the VCN than do
bushy cells. However, the spatial convergence of inputs is not the sole
determinant of functional connectivity. In this section, we consider
how the strength and kinetics of inhibition from the VCN and DCN
varies with each of the target cell populations. Only cells with access
resistance of <30 M() were included in this analysis.

Xie and Manis (2013) reported previously that the decay time
constant of IPSCs was faster in stellate cells than in bushy cells. To
determine whether there are also differences between DCN and
VCN inputs, we selected well isolated evoked events and com-
pared their decay time constants for each input region and post-
synaptic cell type. Our results are consistent with those previously
reported. The decay time constants for VCN inhibition to bushy
cells was 10 * 4.2 ms (n = 10), and for DCN inputs to bushy cells
was 19 £ 4.7 ms (n = 3). Although there appears to be a differ-
ence between these input regions, it became insignificant after
correcting for the average spontaneous IPSC decay time constant
for each cell. For stellate cells, VCN inhibition decayed with a
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time constant of 4.2 = 1.0 ms (n = 11), and DCN inhibition
decayed with a time constant of 4.0 = 2.2 ms (n = 5). ANOVA
revealed a significant effect of target cell type (F, 53, = 55.1,p =
9.4 X 10 '), but no significant effect of inhibitory source (F, 53
= 1.81, p = 0.17) or interaction between cell type and source
(Fa,53) = 2.86, p = 0.066). Post-tests (Tukey’s HSD) showed
significant differences for all comparisons between bushy and
stellate cells, regardless of source. Thus, the decay time constant
for evoked IPSCs appears to be specific to the postsynaptic cell
type and not to the inhibitory source.

The PSCs evoked by uncaging had a wide variety of ampli-
tudes and temporal patterns, ranging from a detection limit of
~10 pA to hundreds of picoamperes. Some stimuli were followed
by a single large IPSC, whereas others evoked long-lasting trains
of IPSCs. The trains could exhibit a highly regular interevent
interval, suggesting that only a single stimulated neuron was ac-
tivated, or could show more complex patterns, suggesting that
the events arose from multiple neurons. Despite this variability,
we predicted that input strength might vary systematically de-
pending on both the input region and the postsynaptic cell type.
To test this, we measured the mean amplitude of events across
stimulus sites within either the VCN or DCN that produced
evoked responses in two time windows: from 3 to 20 ms and from
40 to 100 ms following stimulation (Fig. 13). The first window
frequently contained the largest events, whereas the second win-
dow contained primarily smaller, isolated events that appeared to
arise from presynaptic neurons firing long after the stimulus.

In both bushy and stellate cells, IPSCs evoked from within the
VCN during the early (0-20 ms) window ranged from one to five
times the amplitude of the spontaneous IPSCs in the same cells
(Fig. 13C; VCN). This result indicates that photostimulation over

the VCN evokes PSCs that are composed of multiple release
events, due to convergence of inputs or greater quantal content
from a single input. In bushy cells, IPSCs evoked from the DCN
had similar amplitude to those evoked from the VCN. However,
in stellate cells, events evoked by DCN stimulation were typically
half the size of spontaneous events (Fig. 13C; DCN). Evoked
synaptic events may be weaker than spontaneous events for a
variety of reasons, such as differences between DCN and VCN
inputs in intrinsic synaptic strength or dendritic filtering. How-
ever, it is not likely to result from rapid synaptic depression be-
cause IPSCs evoked by electrical stimulation of the DCN do not
show strong depression at firing rates <100 Hz (Xie and Manis,
2013). Whatever the mechanism, it appears that DCN inhibition
onto stellate cells is particularly weak.

Because IPSCs evoked immediately after photostimulation
are likely to be a superposition of multiple input events, we also
measured the properties of events evoked in a later window, from
40 to 100 ms after photostimulation. These events are often well
isolated and are likely to result from prolonged spiking in presyn-
aptic neurons. In bushy cells, events evoked from VCN during the
late window had the same amplitude as spontaneous IPSCs. In
stellate cells, however, they were again smaller than spontaneous
IPSCs (Fig. 13D; VCN). This suggests a greater inhibitory con-
vergence from VCN onto stellate cells, compared with bushy
cells. In contrast, events evoked from the DCN in the late window
had similar amplitudes to events in the early window in both bushy
and stellate cells (Fig. 13D; DCN), which suggests that convergence
from DCN inputs is low in both bushy and stellate cells.

Together, our analysis of IPSC amplitudes shows that stellate
cells, when compared with bushy cells, receive a greater conver-
gence of inputs from the VCN and weaker inputs from the DCN.
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translated such that the postsynaptic cells all lie at the origin. Slice planes are described in Materials and Methods and Figure 1. Each spot indicates one detected input site from a single cell; colors
indicate the anatomical region of the photostimulation site (green, AVCN; red, DCN; blue, PVCN; yellow, AVCN dorsal border). Black rectangles within the maps indicate the centerand SD of the entire
population of input sites for either VCN or DCN. The parasagittal slice plane s rotated such that the ascending branch of auditory nerve fibers is approximately parallel to the x-axis. B, Each plot shows
histograms of the average density of VCN input locations across the x-axis (top row) and y-axis (bottom row) from the maps above. The histograms are normalized by the number of cells in the group.

Solid line, bushy cell; dashed line, stellate cell.

To further investigate this difference between bushy and stellate
cells, we compared evoked IPSC amplitudes in cells that received
input from both the VCN and DCN. This comparison confirmed
that bushy cells trend toward stronger input from the DCN (Fig.
13E; geometric mean DCN/VCN ratio = 1.4; one-sample ¢ test
In[DCN/VCN] # 0: £,y = 1.82, p = 0.1), whereas stellate cells
had significantly stronger input from the VCN (geometric mean
DCN/VCN ratio = 0.4; one-sample ¢ test In[DCN/VCN] # 0:
ts) = 3.92, p = 0.011). Thus, the balance of inhibition between
VCN and DCN sources depends on cell type; bushy cells have a
weak preference for DCN inhibition, whereas stellate cells have a
strong preference for VCN inhibition. The difference in DCN/
VCN ratio between the two cell types is statistically significant
(permutation, p < 10 ~*), and may be the result of differences in
convergence, intrinsic synaptic strength, or dendritic filtering.

Together, these results show that stellate and bushy cells have
different patterns of local inhibitory connectivity that could
support different information-processing capabilities. Com-
pared with bushy cells, stellate cells receive a stronger, high-
convergence inhibitory input from VCN sites. Conversely,
bushy cells receive stronger inputs from DCN sites, although
their total area of VCN inhibition is larger.

Discussion

We have mapped the synaptic connectivity of three anatomically
distinct sources of inhibitory input and one source of excitatory
input to AVCN neurons. While our results are largely consistent
with previously published findings, we have extended these by
providing estimates of the relative convergence and synaptic
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of events detected during all recordings for these cells. The circled regions include both spontaneous and evoked events that form a population with a slow decay time constant relative to the
spontaneous release from auditory nerve fibers. The filled gray circles in D are direct stimulation responses. D, Dorsal; L, lateral; A, anterior.

properties between the various components of the AVCN
circuit.

Inhibition from the central VCN

Strong but indirect evidence supports the hypothesis that glycin-
ergic D-stellate cells in the VCN provide local inhibitory input to
excitatory neurons. The collaterals of D-stellate axons branch
profusely in the VCN (Arnott et al., 2004), and the terminals of
these axons contain flattened and pleomorphic vesicles similar to
those found in synapses on both bushy and stellate cells (Cant,
1981; Smith and Rhode, 1989; Ostapoff and Morest, 1991;
Doucet et al., 1999). Furthermore, electrical stimulation of the
auditory nerve root in VCN slices evokes delayed glycinergic in-
hibition in stellate cells (Wu and Oertel, 1987; Xie and Manis,
2013), even in the absence of the DCN (Ferragamo et al., 1998a).
Lateral suppression areas are prominent in the frequency-re-
sponse areas of both globular bushy and stellate neurons (Gold-
berg and Brownell, 1973; Shofner and Young, 1985; Smith and
Rhode, 1989; Rhode and Greenberg, 1994; Palmer et al., 1996;
Kopp-Scheinpflug et al., 2002). This suppression is thought to
result primarily from inhibition from D-stellate cells because
they have broad tonal response areas (Smith and Rhode, 1989;
Palmer et al., 1996) and innervate cells across a broad frequency
range within the AVCN (Arnott et al., 2004). Our results are
consistent with the proposal that D-stellate neurons are a major
source of local inhibition in the VCN.

We found that stellate cells consistently received inhibition
from a greater area of the VCN than bushy cells, particularly
along the axis orthogonal to the isofrequency sheets. Further-
more, the inhibitory events evoked from VCN sites were stronger
in stellate cells than in bushy cells. Together, these results echo
studies that have found stronger lateral suppression in the fre-
quency-response areas of chopper units (T-stellate) than both
primary-like (bushy) and onset chopper (D-stellate) units (Mar-
tin and Dickson, 1983; Smith and Rhode, 1989; Rhode and
Greenberg, 1994). The strength and spatial extent of VCN inhi-

bition onto stellate cells was highly variable, consistent with in
vivo studies that have reported variability in the structure of the
lateral suppression areas of VCN neurons (Evans and Nelson,
1973; Goldberg and Brownell, 1973; Brownell, 1975; Martin and
Dickson, 1983; Paolini et al., 2005). Variability in the extent and
strength of inhibitory input may contribute to the diversity of
response properties among T-stellate cells (Palombi and Caspary,
1992; Ebert and Ostwald, 1995; Paolini et al., 2004, 2005; Gai and
Carney, 2008).

Inhibition from D-stellate cells is thought to aid in the detec-
tion of narrowband signals masked by broadband noise (Palmer
et al., 1996). For example, broadband inhibition by D-stellate
cells is a candidate mechanism to underlie comodulation mask-
ing release (CMR; Hall et al., 1984), in which spectral and tem-
poral cues are used to distinguish the signal from a broadband
masker. Our observations have revealed that inhibition from the
VCN to T-stellate cells is stronger and spectrally broader than to
bushy cells, which may account for the greater sensitivity of stel-
late cells to CMR (Pressnitzer et al., 2001; Xie and Manis, 2013).

Inhibition from the DCN

Another source of inhibitory input comes from cells in the deep
layer of the DCN that are presumed to be tuberculoventral neu-
rons. We found that both bushy and stellate cells receive DCN
input from a narrow band oriented parallel to the isofrequency
sheets. This pattern agrees closely with previous anatomical and
functional studies showing a precise tonotopic projection from
DCN to VCN (Feng and Vater, 1985; Wickesberg and Oertel,
1988, 1990). Although the number of DCN stimulation sites pro-
viding input was the same for bushy and stellate cells, IPSCs
evoked from the DCN were stronger in bushy cells than in stellate
cells. Furthermore, IPSCs evoked from the DCN had a slower
decay time constant in bushy cells than in stellate cells, which is in
agreement with previous results (Xie and Manis, 2013). The dif-
ferences in strength and time course of inhibition suggest that
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tuberculoventral inhibition plays different roles in the two cell
types.

Many functions have been proposed for tuberculoventral
cells, including echo suppression, spike timing control, gain con-
trol, and dynamic range optimization (Wickesberg and Oertel,
1990; Caspary et al., 1994; Xie and Manis, 2013). Unlike
D-stellate cells, tuberculoventral cells have narrow frequency-
receptive fields (Young and Brownell, 1976; Young and Voigt,
1982) and project to a tonotopically matched region in the VCN
(Wickesberg and Oertel, 1988), and thus are unlikely to provide
spectral contrast. In bushy cells, IPSCs from tuberculoventral
cells are quite slow compared with auditory nerve inputs. This
suggests that tuberculoventral cells may provide a temporal con-
trast that decreases the bushy cell response to slow fluctuations in
the sound envelope, thus leaving greater dynamic range for rep-
resenting fine temporal structure.

Inhibition from the dorsal border of the AVCN

We also identified a third source of inhibition evoked from sites
at the dorsal and medial borders of the AVCN. This inhibition
appears to arise from an anatomically distinct population of cells.
Although some of these input sites appeared to reside entirely
within the AVCN proper, sites close to the dorsal border could
also have resulted from stimulation of the adjacent granule cell
area. The source region was difficult to determine because of the
limited spatial resolution of the photostimulation maps, and the
overlap of anatomical regions that could be stimulated within
the depth of the slice.

The two principal candidate sources for this inhibition are the
marginal stellate cells (Doucet and Ryugo, 1997, 2006; Palmer et
al., 2003) and commissural multipolar cells (Doucet and Ryugo,
2006). While it is not yet clear whether the marginal stellate cells
are excitatory or inhibitory, the commissural cells are primarily
inhibitory (Wenthold, 1987). Golgi cells, located in the granule
cell area between the AVCN and DCN (Ferragamo et al., 1998b),
are another candidate inhibitory source. However, because Golgi
cell bodies and their axonal domains are largely restricted to the
granule cell area, it is unlikely that they could account for the
more medially located inputs seen in this study. Although some
cells in this region are thought to participate in multisensory
processing (Zhao et al., 1995; Zhou and Shore, 2004), the func-
tional significance of these dorsal border inputs is not clear.

Excitatory input from the VCN

In 7% of cells, we detected excitatory inputs from an unknown
cell type in the AVCN located close to the recorded cell. Neither
bushy cells nor the granule cells covering the lateral surface of the
AVCN have axonal projections into the AVCN, and so are un-
likely to provide this excitation. In contrast, the axons of
T-stellate cells have prominent collaterals in the VCN that termi-
nate near the isofrequency lamina occupied by their dendrites
(Oertel et al., 1990, 2011). These terminals contain small spheri-
cal (excitatory) vesicles (Smith and Rhode, 1989), which are sim-
ilar to vesicles in nonprimary excitatory synapses on stellate and
bushy cells (Cant, 1981; Smith and Rhode, 1987; Ostapoff and
Morest, 1991). Ferragamo et al. (1998a) reported that 81% of the
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T-stellate cells in the PVCN had polysynaptic excitatory input
following shocks to the auditory nerve, and suggested that the
delayed excitation arose from nearby T-stellate cells. Although
the excitatory inputs we observed could arise from T-stellate cell
collaterals, the difference in the fraction of cells with input be-
tween our study and the Ferragamo et al. (1998a) study is strik-
ing, and suggests that there may be regional differences in the
local excitatory networks formed by T-stellate cells in the AVCN
and PVCN, or possibly strain differences between CBA and ICR
mice. In addition, Gémez-Nieto and Rubio (2009) suggested that
electrical coupling via gap junctions could provide local excita-
tion among groups of bushy cells. We found no evidence for
electrical coupling; however, a connection between adjacent
bushy cells might be difficult to detect due to overlap of currents
from electrical coupling and direct photostimulation.

We also observed that evoked EPSCs in bushy cells decayed
about four times more slowly than spontaneous auditory nerve
EPSCs. This result was further supported by the presence of sim-
ilarly slow spontaneous EPSCs, even in some cells that had no
evoked excitatory inputs. Whereas auditory nerve synapses onto
bushy cells have exceptionally fast AMPARs that largely lack
GluR?2, stellate cells and DCN fusiform cells have AMPARs that
include GluR2 subunits, giving them slower kinetics that are sim-
ilar to the evoked EPSCs we have observed (Geiger et al., 1995;
Ryugo and Parks, 2003; Cao and Oertel, 2010). Bushy cells do
express GluR2, although at much lower levels than in other cell
types (Hunter et al., 1993). Thus, it is possible that the kinetic
differences between local excitatory and auditory nerve inputs
result from different receptor subunit compositions.

The functional implications of the excitatory inputs we ob-
served are unclear. Bushy cells are thought to precisely encode the
fine temporal structure of sound, whereas T-stellate cells encode
the sound envelope but not the fine temporal structure (Black-
burn and Sachs, 1990; Frisina et al., 1990; Joris et al., 1994; White
et al., 1994; Shofner, 1999). It is thus particularly surprising that
some bushy cells have an excitatory input that would not seem to
support fine timing. However, the spatial structure of the local
excitatory inputs and the infrequency of slower EPSCs suggest
that there may be a subtype of bushy cell that is more engaged
with local excitatory circuits.
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