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The proteolytic machinery comprising metalloproteases and y-secretase, an intramembrane aspartyl protease involved in Alzheimer’s
disease, cleaves several substrates in addition to the extensively studied amyloid precursor protein. Some of these substrates, such as
N-cadherin, are synaptic proteins involved in synapse remodeling and maintenance. Here we show, in rats and mice, that metallopro-
teases and y-secretase are physiologic regulators of synapses. Both proteases are synaptic, with y-secretase tethered at the synapse by
d-catenin, a synaptic scaffolding protein that also binds to N-cadherin and, through scaffolds, to AMPA receptor and a metalloprotease.
Activity-dependent proteolysis by metalloproteases and y-secretase takes place at both sides of the synapse, with the metalloprotease
cleavage being NMDA receptor-dependent. This proteolysis decreases levels of synaptic proteins and diminishes synaptic transmission.
Our results suggest that activity-dependent substrate cleavage by synaptic metalloproteases and y-secretase modifies synaptic transmis-

sion, providing a novel form of synaptic autoregulation.

Introduction

Metalloproteases and <y-secretase act in succession to cleave
single-pass transmembrane proteins. Metalloproteases and the
closely related a disintegrin and metallopeptidase (ADAM) or,
for some substrates, B-secretase 1 (BACE1), initiate the proteo-
lytic pathway by shedding the membrane protein substrate’s
ectodomain (Thinakaran and Koo, 2008). y-Secretase, a multi-
subunit aspartyl protease assembled from four proteins [presenilin 1
(PS1), nicastrin, anterior pharynx-defective 1 (Aph1), and prese-
nilin enhancer 2 (Pen2)], cleaves the resulting C-terminal frag-
ment (CTF) within its transmembrane domain (McCarthy et al.,
2009). While this pathway has been studied most extensively for
amyloid precursor protein (APP), whose cleavage yields the AB
peptide, the metalloprotease/y-secretase proteolytic machinery
also cleaves other substrates, especially proteins implicated in
synapse remodeling and maintenance, including EphRs, ephrins,
and cadherins (Dalva et al., 2007; McCarthy et al., 2009). How-
ever, these physiological roles have received very little attention.
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The precise location of the metalloprotease/-y-secretase pro-
teolytic machinery is still unclear. ADAM10, ADAM17, and
membrane type 5 matrix metalloproteinase (MT5-MMP), the
three known metalloproteases that shed the ectodomains of
y-secretase substrates, have been localized at synapses (Monea et
al., 2006; Marcello et al., 2007; Malinverno et al., 2010), whereas
y-secretase has been reported mainly in membranes of endo-
somes, although its presence at the plasma membrane has also
been suggested (Lah et al., 1997; Georgakopoulos et al., 2000;
Kaether et al., 2006). Interestingly, PS1, the catalytic subunit of
y-secretase, binds to a synaptic protein, 8-catenin, which regu-
lates actin polymerization and cell adhesion (Kosik et al., 2005).
We have previously shown that 8-catenin is present in the post-
synaptic density (PSD) (Silverman et al., 2007), where it links the
N-cadherin intracellular domain via synaptic scaffolds to MT5-
MMP, a metalloprotease that cleaves N-cadherin (Monea et al.,
2006) and synaptic proteins, particularly the AMPA receptor
(AMPAR) (Silverman etal., 2007). Therefore, the proteolytic ma-
chinery formed by a metalloprotease and y-secretase may be
present in synaptic complexes with their substrates, where it
could modulate synaptic function.

Synaptic dysfunction is a major early event of Alzheimer dis-
ease (Knobloch and Mansuy, 2008). Considering the putative
role of these proteases in Alzheimer disease (Thinakaran and
Koo, 2008), we here investigate possible physiologically relevant
synaptic functions of metalloproteases and y-secretase. We find
that the metalloprotease and y-secretase proteolytic machinery
operates on both sides of the synapse and cleaves synaptic
N-cadherin. The metalloprotease-mediated cleavage is regulated
by NMDA receptor (NMDAR)-dependent synaptic activity,
whereas <y-secretase activity is insensitive to the activity of the
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synapse. This proteolytic machinery downregulates synaptic
function. We find a protease-dependent regulation of glutama-
tergic neurotransmission in the hippocampal neurons in which
vesicle recycling and synaptic protein levels are modified. Be-
cause the pathway inhibits synaptic transmission in response
to synaptic activity, we propose that this metalloprotease/y-
secretase pathway provides a novel form of activity-dependent
synaptic autoregulation.

Materials and Methods

Mice and rats. 3-Catenin knock-out mice (Israely et al., 2004) were kindly
provided by Dr X. Liu, University of California, Los Angeles, CA (Israely
etal., 2004), and bred in our laboratory. The experiments were done with
12-week-old animals of either sex. Eight-week-old rats of either sex were
used for fractionation experiments as indicated.

Antibodies and inhibitors. Antibodies used were as follows: mouse anti-
PSD-95 antibody (1:500; clone K28.43 or clone K28/86.2; NeuroMab);
rabbit anti-GluA2/3 antibody (1 mg/ml; Millipore); mouse anti-5-
catenin (1/200; BD Biosciences); mouse anti-N-cadherin (1/100; BD Bio-
sciences); mouse anti-synaptophysin (1/1000; Sigma-Aldrich); mouse
anti-synaptotagmin 1 (1/100; Synaptic Systems); rabbit anti-MT5-MMP
(1.5 pg/ml; cytoMT5-MMP, catalog #2850) made in our laboratory and
described previously (Monea et al., 2006); rabbit anti-EphB2 [1/1000
whole brain (WB), Dr. M. Greenberg, Harvard Medical School, Boston,
MAJ; rabbit anti-ADAM 10 [1/200 for immunofluorescence (IF), 1/500
for WB, Sigma-Aldrich]; rabbit anti-ADAM 17 (1/200 for IF, 1/500 for
WB, Abcam); mouse anti-BACE (1/100, 3D5, Dr. R. Vassar, Northwest-
ern University, Chicago, IL); rabbit anti-presenilin N-terminal (1/500 for
IF and 1/1000 for WB, PSINT, Calbiochem); rabbit anti-presenilin loop
domain (1/1000 for WB, Calbiochem); rabbit anti-nicastrin (1/1000, Dr.
P. Fraser, University of Toronto, Toronto, Canada); anti-GluR1 (1/1000;
Millipore); rabbit anti-tubulin (1/1500; Sigma-Aldrich); mouse anti-
APP (clone C1/6.1 and m3.2, 1/1000, and for IF, 1/1000, Millipore).

Secondary antibodies were used at 1/1000, including monoclonal sec-
ondary antibodies (Alexa Fluor color; Invitrogen), isotype-specific
monoclonal secondary antibodies IgG1 (Alexa Fluor color; Invitrogen),
IgG2A (Alexa Fluor color; Invitrogen), and polyclonal secondary anti-
bodies (Alexa Fluor color; Invitrogen).

Inhibitors used were: GM6001 (10 M, ilomastat; Millipore Biosci-
ence Research Reagents); epoxomicin (1 um; Peptides International);
L-685458 (1-10 um y-secretase inhibitor X; Calbiochem); DAPT (10 um,
y-secretase inhibitor IX; Calbiochem); PP2 (10 um;Calbiochem); KN-93
[calcium/calmodulin-dependent protein kinase II (CaMKII) inhibi-
tor, 5 um; Calbiochem]; p-APV (100 um; Sigma-Aldrich); JNK inhib-
itor IT (50 um; Calbiochem); bicuculline (40 wuMm; Tocris Bioscience);
NMDA (40 uym; Sigma-Aldrich); glutamate (40 pm; Sigma-Aldrich);
4-aminopyridine (4AP, 100 um; Tocris Bioscience).

Hippocampal and cortical culture. Cultures were prepared from embry-
onic day 19 Sprague Dawley rat embryonic brain tissue. Animals were
killed by CO, in compliance with New York University Medical Center’s
Institutional Animal Care and Use Committee. Hippocampal and corti-
cal primary neurons were prepared as described previously (Osten et al.,
1998). Neurons were plated at a density of 100,000 cells on poly-1-lysine-
coated glass coverslips in a six-well plate for immunofluorescence or 3.5
millions on poly-L-lysine-coated 10 cm dishes for biochemical experi-
ments. Neurons were grown in Neurobasal medium with B27 (Invitro-
gen). At the first change of medium, a one-time dose of the drug AraC (4
uM; Sigma-Aldrich) was added to inhibit growth of dividing cells for
immunofluorescence experiments (Macaskill et al., 2009).

Immunofluorescence. At 1821 days in vitro (DIV), neurons were fixed
with 2% paraformaldehyde (Electron Microscopy Sciences) in 0.12 M
sucrose in PBS (15 min at room temperature), permeabilized with 0.2%
Triton X-100 (5 min at room temperature), blocked in 10% bovine se-
rum albumin (BSA) in PBS, and then incubated with primary antibodies
in 3% BSA. Cells were then washed three times in 1X PBS. Secondary
antibodies conjugated to Alexa Fluor probes were incubated in 3% BSA
for 1 h and mounted on slides. Images were captured with a Zeiss LSM
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510 Meta laser-scanning confocal microscope using a Plan-Apochromat
63X objective and LSM 510 Meta software.

Synaptotagmin reuptake. Fourteen days in vitro neurons were treated
overnight with inhibitors and incubated with synaptotagmin antibody
for 5 min. Neurons were washed, fixed, and permeabilized as described in
the previous section. Ten neurons per coverslip were imaged, and nine
separate experiments were performed. Each experiment was averaged.
The nine experiments were then averaged.

Electron microscopy. Pentobarbital-anesthetized adult Sprague Dawley
rats were perfused intracardially with mixed aldehyde fixatives (0.1%
glutaraldehyde/4% depolymerized paraformaldehyde or 2% glutaralde-
hyde/2% paraformaldehyde) dissolved in 0.1 M phosphate buffer (PB;
pH 7.4) after a quick rinse with heparinized saline. After overnight post-
fixation in the same fixative at 4°C, 50 wm brain sections were cut on a
Vibratome and collected in PB. Sections containing cortex and hip-
pocampus were incubated 30 min on a shaker at room temperature with
1% sodium borohydride in PBS to block free aldehyde groups, then in
10% normal goat serum to block nonspecific antibody binding. Sections
were incubated overnight in primary antibody (rabbit anti-nicastrin;
1:1000-1:2000), rinsed, and then for 2 h in goat anti-rabbit IgG (1:100),
conjugated to ultrasmall gold particles (~1 nm; British BioCell). Sections
were then rinsed in 0.01 M acetate buffer, and gold particles were silver
intensified using an IntenSE M kit (GE Healthcare). Sections for electron
microscopy were postfixed in 0.5-1% osmium tetroxide in PB for 1 h,
rinsed in 0.1 M maleate buffer, pH 6, then stained en bloc with 1% uranyl
acetate for 1 h. After dehydration in ascending ethanol series and propyl-
ene oxide, sections were infiltrated with Epon/Spurr resin, flat mounted
between sheets of ACLAR plastic, and polymerized at 60° for 48 h. Sev-
enty nanometer sections from selected areas were cut with a diamond
knife, collected on 300 mesh copper grids, stained with uranyl acetate and
Sato’s lead, and examined with a Tecnai 10 transmission electron micro-
scope (Philips). Images were collected with a 12 bit 1024 X 1024 pixel
CCD camera (Gatan); final photomicrographs were prepared using
Adobe Photoshop to compose, crop, and adjust contrast.

Treatment and stimulation experiments. Eighteen days in vitro cortical
or hippocampal neurons in culture were stimulated with bicuculline and
4-aminopyridine for 1 h or bicuculline for 24 h, washed three times with
PBS, and lysed with 50 mwm Tris, pH 7.4, and 2% SDS. Equal amount of
total lysate (1520 ug) were loaded on 8—12% SDS-PAGE gels or precast
gradient 4—20% SDS-PAGE gels (Thermo Scientific). Western blotting
was further performed with N-cadherin. Tubulin was used as loading
control. For most of the experiments otherwise indicated, we quantified
the ratio CTF1/full-length protein. For NMDA and glutamate stimula-
tion, cortical neurons were stimulated for the time indicated. Medium
was then exchanged for conditioned medium for another hour. Cells
were washed and lysed as before. Inhibitors were applied 15 min before
stimulation, during stimulation, and for the hour after stimulation.

Postsynaptic density purification. Synaptosomal and PSD fractions
from rat and mouse brain and primary hippocampal cultures were pre-
pared as described previously (Jordan et al., 2004). Equal amount of
fractions (10-15 pug) were loaded onto SDS-PAGE gel. Western blots
were probed with different antibodies. Synaptophysin was used as load-
ing control for WB, total membrane (P2), and synaptosome (syn) frac-
tions, and PSD-95 was used for PSD fractions.

Presynaptic and postsynaptic fractionation. Presynaptic and postsynap-
tic fractions were prepared from synaptosomes by extraction at differen-
tial buffer pH as described previously (Phillips et al., 2001). Equal
amount of fractions (10-15 ug) were loaded on SDS-PAGE gel. Western
blots were probed with different antibodies. Synaptophysin was used as
loading control for WB, P2, syn, and presynaptic fractions. PSD-95 was
used as loading control for postsynaptic fractions.

Surface biotinylation. For the biotinylation experiments, cortical neu-
rons in culture were washed and incubated with 2 mg/ml sulfo-NHS-SS-
biotin (Pierce) in PBS for 15 min at 4°C. Nonreacted biotin was
quenched with 50 mum glycine in PBS, and cells were rinsed twice with
cold PBS. Total membrane (P2) and synaptosome fractions were pre-
pared in RIPA buffer (50 mm Tris, pH 7.4,150 mm NaCl, 5 mm EDTA,
0.1% SDS, 1% NP-40, 0.5% sodium deoxycholate) and complete pro-
tease inhibitor cocktail (Roche). Biotinylated surface proteins were pu-



Restituito et al. @ Metalloprotease and -y-Secretase at Synapses

rified with UltraLink-immobilized NutrAvidin beads (Pierce) and
analyzed by SDS-PAGE and Western blot. Densitometry of the bands
and quantification of surface proteins were performed using Image]J soft-
ware (NIH), and p values were determined by standard ¢ test and
ANOVA analysis when indicated. Equal amounts of proteins were loaded
on gels.

Immunoprecipitations. The synaptosomal fraction was also solubilized
in immunoprecipitation buffer [50 mm Tris, pH 7.4,150 mm NaCl, 5 mm
EDTA, and 1% 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-
1-propanesulfonate (CHAPSO)] for 2 h at 4°C and cleared at 16,000 X g
for 10 min at 4°C. Supernatants containing 1 mg of protein were incu-
bated with the antibodies rabbit anti-nicastrin, rabbit anti-PSINT, and a
rabbit IgG negative control (2 pg of antibody) overnight, then 20 ug of
protein G or protein A beads (Santa Cruz Biotechnology), as determined
by the genotype of the antibody, were added at the reaction for an addi-
tional 2 h followed by two washes with immunoprecipitation buffer con-
taining 350 mm NaCl and one wash with immunoprecipitation buffer
containing 150 mM NaCl and then eluted with loading buffer.

y-Secretase assay. In vitro vy-secretase assays were performed as de-
scribed previously (Farmery et al., 2003). Briefly, synaptosomal extracts
from rat brain were solubilized in CHAPSO buffer and incubated with a
fluorogenic peptide probe at 37°C overnight in the presence of inhibitors.
The probe contains a consensus aspartic acid cleavage site that, when
proteolyzed by y-secretase, generates a fluorescent peptide whose fluo-
rescence is measured on a plate reader with an excitation wavelength of
340 nm and an emission wavelength of 490 nm. Results were from six
independent replicates.

Miniature EPSC recording. Miniature EPSCs (mEPSCs) were assayed
in cultured hippocampal neurons at DIV 14. Neurons were voltage
clamped with the whole cell ruptured patch technique throughout the
experiment. The bath solution consisted of the following (in mm): 119
NaCl, 5 KCl, 20 HEPES, 2 CaCl,, 2 MgCl,, 30 glucose, 0.001 glycine, 0.01
bicuculline, pH 7.3; osmolarity was adjusted to 330 mOsm with sucrose.
The solution in the whole cell patch electrode consisted of the following
(in mm): 130 K-gluconate, 10 KCI, 5 MgCl,, 0.6 EGTA, 5 HEPES, 0.06
CaCl,, 2 Mg-ATP, 0.2 GTP, 0.2 leupeptin, 20 phosphocreatine, and
creatine-phosphokinase at 50 U/ml. Tetrodotoxin at 1 um was also added
to the bath to suppress action potentials. Currents were recorded with a
Warner amplifier (model PC-501A) and filtered at 1 kHz. To eliminate
artifacts due to variation of the seal properties, the access resistance was
monitored for constancy throughout all experiments. The recordings
were digitized (Digidata 1440A, Molecular Devices) and analyzed with
the Mini Analysis Program, version 4.0, from Synaptosoft.

Results

The proteolytic machinery and its substrates are present

at synapses

Although +y-secretase in neurons is found mainly in endosomes
(Kaether et al., 2006), synaptic pools of both y-secretase and
metalloproteases have been suggested (Lah et al., 1997; Georga-
kopoulos et al., 2000; Peiretti et al., 2003; Monea et al., 2006;
Marcello et al., 2007). Indeed, the synaptic scaffolding proteins
glutamate receptor-interacting protein/AMPA receptor-binding
protein (GRIP/ABP) and synapse-associated protein 97 (SAP97)
associate, respectively, with MT5-MMP and ADAM10/17, pro-
teases involved in the ectodomain shedding of y-secretase sub-
strates (Peiretti et al., 2003; Monea et al., 2006; Marcello et al.,
2007). Moreover, y-secretase interacts with 8-catenin, a scaffold-
ing protein that also binds ABP/GRIP (Silverman et al., 2007).
These interactions suggest the presence of the proteases in
multiprotein complexes at synapses. To test this possibility,
we performed immunofluorescence on 21 DIV dissociated hip-
pocampal neurons. We found three metalloproteases that can
shed ectodomains of +y-secretase substrates (Reiss et al., 2005;
Monea et al., 2006; Postina, 2008), ADAM10, ADAM17, and MT5-
MMP (Fig. 1 A, arrows), and two components of y-secretase, nicas-
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trin and PS1 (Fig. 1B, arrows), colocalized with the postsynaptic
marker PSD-95.

Western blotting demonstrated that metalloproteases and two
7y-secretase components, nicastrin and PS1 (including the PS1 N-
and C-terminal fragments PSINTF and CTF), were present in
synaptosomes fractionated from adult rat brain (Fig. 1C,D). We
used differential pH extraction to fractionate synaptosomal pre-
synaptic and postsynaptic components (Phillips et al., 2001).
Western blotting revealed the presence of the three sheddases,
ADAM10, ADAM17, and MT5-MMP, in presynaptic and post-
synaptic fractions with a postsynaptic enrichment (Fig. 1C). PS1-
NTF and PSI-CTF were distributed equally between the
presynaptic and postsynaptic fractions (Fig. 1 D), while nicastrin
showed presynaptic enrichment (Fig. 1 D). However, the integ-
rity of the y-secretase complex is highly detergent sensitive (Li et
al., 2000); thus, nicastrin may be lost from the postsynaptic frac-
tion because it may detach from PS1 during the fractionation
process. We therefore used pre-embedding immunogold elec-
tron microscopy to confirm that the y-secretase complex may be
both presynaptic and postsynaptic. We detected nicastrin silver-
intensified label postsynaptically at the edge of the PSD (Fig. 1 Ei),
presynaptically (Fig. 1Eii), and on endomembranes (Fig. 1 Eiii).
We also detected the +y-secretase substrates N-cadherin and
EphRB2 at the synapse by immunofluorescence (Fig. 1 F, arrows)
(Dalva et al., 2007; McCarthy et al., 2009), and Western blotting
revealed their presence in both presynaptic and postsynaptic
fractions (Fig. 1G). Thus, we conclude that the proteolytic ma-
chinery is present on both side of the synapse. These data raise the
possibility that the metalloprotease and y-secretase are tethered
to the PSD through a direct interaction with synaptic scaffolding
proteins.

v-Secretase forms an active complex at synapses

We wondered whether the y-secretase components, which are
assembled in the secretory pathway (Kaether et al., 2006), reach
the synapse as an active complex. PS1 coimmunoprecipitated
with nicastrin from rat brain synaptosomes that were solubilized
in CHAPSO to maintain y-secretase integrity (Li et al., 2000),
demonstrating that PS1 and nicastrin reach the vicinity of syn-
apses as a physical complex (Fig. 2A). Furthermore, we detected
y-secretase enzymatic activity in solubilized synaptosomes by us-
ing a <y-secretase fluorogenic substrate (Farmery et al., 2003).
This activity was partially but significantly inhibited by two
y-secretase inhibitors, DAPT and L-685458 (Fig. 2B: n = 6, 1.5-
fold; p < 0.005), demonstrating the presence of enzymatically
active y-secretase at synapses. Total membrane (P2) was used as
positive control (data not shown). Finally, biotinylation of sur-
face proteins in live neurons, followed by synaptosomal fraction-
ation, demonstrated both nicastrin and PSINT at the synaptic
plasma membrane (Fig. 2C). The GluR1 AMPAR subunit (a sur-
face protein used as positive control) was also detected, whereas
tubulin (an intracellular protein serving as negative control) was
absent (Fig. 2C). These data suggest that yy-secretase components
are present at the plasma membrane of synapses in an enzymat-
ically active complex.

y-Secretase is tethered by §-catenin at synapses

We next analyzed the physical interactions that maintain these
proteases at the synapse. PS1 binds to the adherens junction pro-
tein 8-catenin (Zhou et al., 1997; Levesque et al., 1999; Tanahashi
and Tabira, 1999), which associates with synaptic N-cadherin
(Kosik et al., 2005). We had previously shown that 8-catenin is a
component of the PSD, where it is linked to the AMPA receptor
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subunit GluA2 by the scaffolding proteins GRIP/ABP (Silverman
etal., 2007). To determine whether 8-catenin is required for teth-
ering PS1 at synapses, we compared PS1 levels in brain subcellu-
lar fractions (Jordan et al., 2004) from 6-catenin knock-out and
wild-type mice (Israely et al., 2004) (Fig. 2 Di). PS1 was decreased
in the crude postsynaptic density fraction (cPSD) in the knock-
out mice but not in other fractions (cPSD: 0.5, p < 0.005; n = 7),
suggesting that for PS1 to associate with the PSD it requires the
PS1-6-catenin interaction, while PS1 outside the PSD does not
depend on &-catenin. This suggests that the PS1-5-catenin interac-
tion selectively tethers the synaptic fraction of y-secretase. Unlike
PS1, levels of full-length N-cadherin were decreased in all fractions
in 8-catenin knock-out mice, especially in synaptosomes and the

cPSD, suggesting that 8-catenin is necessary for the stabilization of
synaptic N-cadherin (Fig. 2Dii) [WB, 0.79; total membrane (P2),
0.61, p < 0.005; syn, 0.67, p < 0.0005; and cPSD, 0.64, p < 0.05; 1 =
7]. Interestingly, GluA2 was also decreased in the total membrane
(P2), synaptosome, and cPSD fractions (P2, 0.58, p < 0.005; syn, 0.9;
and cPSD, 0.72, p < 0.05; n = 7) (Fig. 2 Diii), consistent with previ-
ous evidence that 8-catenin tethers GluA2-containing AMPA recep-
tors at synapses (Silverman et al., 2007). Together with previous
reports of synaptic tethering of metalloproteases by PSD proteins
(Peiretti et al., 2003; Monea et al., 2006; Marcello et al., 2007), our
data suggest that synaptic scaffolds stabilize the metalloprotease/y-
secretase proteolytic machinery at synapses, positioning the pro-
teases close to their synaptic substrates.
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Metalloproteases and y-secretase cleave N-cadherin at
synapses

As shown previously (Marambaud et al., 2003; Reiss et al., 2005;
Uemura et al., 2006), N-cadherin ectodomain shedding by a metal-
loprotease generates a membrane-anchored C-terminal fragment,
CTF1, which is further processed by y-secretase to yield the soluble
CTE?2 fragment (Fig. 3A). To test whether this processing occurs at
synapses, we prepared synaptosomes from cultured neurons treated
with a broad metalloprotease inhibitor (ilomastat), y-secretase in-
hibitors (L-685458 or DAPT'), or with epoxomicin, a proteosome
inhibitor. While metalloprotease inhibition decreased the CTF1
levels in synaptosomes, y-secretase inhibition significantly increased the
CTF1 levels, suggesting that CTF1 production by metalloprotease cleav-
age and its subsequent processing by y-secretase take place at synapses
(n=28,1.5-fold, p <0.05) (Fig. 3 B, C). The CTE2 fragment generated by
y-secretase cleavage of CTF1 was only detected in the supernatant of
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of synaptosomes with a fluorogenic y-secretase substrate probe in the presence of two y-secretase inhibitors, DAPT (10 wm) or
1-685458 (5 um). Measurement of fluorescence revealed -y-secretase activity, which was significantly blocked with y-secretase
inhibitorsin optic density (DO) (**p << 0.005). The remaining activity is due to y-secretase independent proteolysis. There were six
independent replicates. €, Cortical neurons were surface biotinylated and fractionated. Aliquots of total lysate (total) from whole
cell (WC), total membrane (P2) and synaptosome (syn) were kept and used as controls for the biotinylated fractions (surface).
Nicastrin and PS1 are present at the surface of synaptosomes. The lower PS1level presumably reflects the limited extent of the PS1
extracellular domain. GluA1 and tubulin were used as positive and negative controls respectively. D, 5-Catenin knock-out (KO) and
wild-type (WT) mouse brains were fractionated into WB, P2, syn, and crude postsynaptic density, cPSD, and levels of full-length

PST (**p << 0.005) (i), N-cadherin (**p << 0.005 and *p << 0.05, respectively) (if), and GluA2/3 (**p < 0.005 and *p < 0.05,
respectively) (fif) were measured by Western blotting. Graph shows normalization of KO to WT.
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total lysate after treatment with the pro-
teosome inhibitor, epoxomicin, sug-
gesting that normally the cleaved
fragment is rapidly degraded by the pro-
teosome (Fig. 3B, bottom panel). Thus,
we conclude that N-cadherin is cleaved
by metalloproteases and vy-secretase at
synapses.  Subcellular  fractionation
showed the presence of the CTF1 frag-
ment in both presynaptic and postsyn-
aptic compartments, suggesting that
N-cadherin cleavage occurs at both sides
of the synapses (Fig. 3D).

N-cadherin cleavage is influenced by
activity

Discrepant findings have been reported
regarding the effect of synaptic activity on
cadherins. Synaptic activity can either sta-
bilize or cleave cadherins (Tanaka et al.,
2000; Marambaud et al., 2003; Reiss et al.,
2005; Uemura et al., 2006; Tai et al., 2007).
To analyze the effects of activity on the
metalloprotease and y-secretase pathway,
we first assayed the effects of glutamate
and NMDA stimulation on N-cadherin
cleavage (Lee et al., 1998; Tai et al., 2007).
We detected an increase in N-cadherin
CTF1 levels in total lysate following brief
glutamate stimulation (1 min, n = 4, 3.2-
fold; 3 min, n = 7, 3.8-fold; p < 0.05) (Fig.
3E). Similarly, stimulating cultured neu-
rons with NMDA produced a significant
increase in N-cadherin CTF1 level in total
lysate (1 min, n = 12, 2.2-fold; 3 min, n =
12, 2.2-fold; 5 min, n = 11, 3.2; 15 min,
n = 11, 2.5-fold; p < 0.05) (Fig. 3F). A
similar increase was also observed in syn-
aptosomes, although the effect was not
significant (1 min, n = 11, 1.4-fold; 3 min,
n = 11, 2-fold; and 5 min, n = 8, 1.7-fold)
(Fig. 3F). Similar kinetics were observed
when the ratio of CTF1/tubulin was eval-
uated (data not shown).

Addition of glutamate or NMDA to
the culture medium stimulates both
synaptic and extrasynaptic receptors,
which might result in nonspecific effects. To determine the
effects of selective synaptic stimulation, we enhanced synaptic
transmission by simultaneous application of bicuculline, a
GABA, receptor (GABA,R) antagonist, and 4-aminopyridine
(4AP), a K" channel inhibitor, and observed an increase in
N-cadherin CTF1 production (n = 15, 1.7-fold and 1.4-fold,
p < 0.05) (Fig. 3G) (Ehlers, 2000; Tai et al., 2007). This effect
was blocked by inhibition of NMDARs (D-APV, n = 5, p <
0.05) (Fig. 4A). We conclude that synaptic activation stimu-
lates CTF1 production in an NMDA receptor-dependent
manner. Likewise, N-cadherin CTF1 production was de-
creased when action potentials were blocked with the sodium
channel blocker tetrodotoxin (TTX, n = 4, 0.5-fold; p < 0.05)
(Fig. 4A). Thus, activation of synaptic NMDARs stimulates
the cleavage of N-cadherin by proteolytic machinery com-
posed of a metalloprotease and y-secretase.

WB P2 Syn cPSD
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Metalloprotease cleavage regulation
depends on Src and ¢-Jun

N-terminal kinase

To investigate the pathway by which
NMDAR activation regulates N-cadherin
cleavage, we stimulated cultured neurons
with glutamate, with or without inhibitors
of NMDARs or of specific kinases (Fig.
4 B). Total lysate fractions were probed in
Western blots for the N-cadherin CTF1
fragment. As shown above (Fig. 3E), CTF1
fragment production increased after
glutamate stimulation. The glutamate-
induced increase in CTF1 fragment produc-
tion was blocked by an NMDAR inhibitor
(D-APV, n = 4,0.9-fold; p < 0.05) (Fig. 4 B).
The addition of a Src or JNK inhibitor (PP2
or JNK inhibitor II, respectively) also
blocked the glutamate-induced increase in
CTF1 fragment (n = 6, respectively, 0.6-
fold, p < 0.005; 0.75-fold, p < 0.05) (Fig.
4B). In contrast, KN93, an inhibitor of
CaMKII, had no effect. These data suggest
that glutamate stimulation of N-cadherin
ectodomain shedding by a metalloprotease
depends on the activation of the NMDA re-
ceptor and Src and JNK kinases.

y-secretase cleavage is not influenced
by activity

We next examined whether glutamate
stimulation differentially regulates the
two N-cadherin cleavage steps. As shown
above (Fig. 3F) NMDAR activation stim-
ulates CTF1 production. A direct assay
of CTF2 production that would reflect
y-secretase cleavage of CTF1 was unfeasi-
ble, because CTF2 was detected at very
low levels only in the supernatants of total
neuron lysates (Fig. 3B). As an alternative,
we treated neurons with the metallopro-
tease inhibitor ilomastat to inhibit pro-
duction of CTFI. In agreement with
Figure 3E, glutamate stimulation in the
absence of any protease inhibitor in-
creased the level of the CTF1 fragment
(Fig. 4Cb: n = 16, 4-fold, p < 0.05). This
increase was inhibited by ilomastat (Fig. 4,
compare Cb, Cd, p < 0.05), suggesting
that the metalloprotease is activated by
glutamate stimulation. We reasoned that
since ilomastat blocks the production of
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Figure 3.  Metalloprotease/y-secretase complex cleaves N-cadherin at synapses and is influenced by synaptic activity. A,
Schematic drawing of N-cadherin cleavage. The cleavage by metalloproteases releases an extracellular (sSNTF) and an intracellular
(CTF1) fragment. y-Secretase cleavage of CTF1 yields CTF2. B, Cortical neurons treated overnight with DMSO, 10 um ilomastat
(metalloproteases inhibitor), 1 wum L-685458 or 10 um DAPT (-y-secretase inhibitors), or 1 wum epoxomicin (proteosome inhibitor)
and fractionated. Western blotting detected full-length N-cadherin (Cad-FL) and CTF1 in synaptosomes and CTF2 in cytosol. €,
Quantification of the ratio of CTF1/full-length N-cadherin in B, normalized to untreated condition, suggests synaptic y-secretase
cleavage. *p << 0.05. D, Subcellular fractionation of rat brain as described above. Western blotting detected N-cadherin CTF1 both
presynaptically (Pre) and postsynaptically (Post). E-G, Neurons were treated with glutamate (E), NMDA (F), or bicuculline (G) for
the durations indicated. The ratio of CTF1/full-length N-cadherin was quantified and normalized to the unstimulated condition,
after Western blotting. E, N-cadherin CTF1 levels increase significantly with brief glutamate (Glu) (50 M) stimulation in total
lysate. *p << 0.05. Graph shows an average of four experiments. Western blots represent a typical experiment. F, N-cadherin CTF1
levels were increased in total and synaptosomal fractions after a brief NMDA (40 wum) stimulation. *p << 0.05. Graph shows an
average of 12 experiments. Western blots represent a typical experiment, with 3 min time point from a separate experi-
ment. G, A significant increase in N-cadherin CTF1 levels was detected after 1 h bicuculline (40 rm) plus 4AP (100 um), as
well as 24 h bicuculline-alone treatment. *p < 0.05. Graph shows an average of 15 experiments. Western blots represent
a typical experiment.

ulation regulates the metalloprotease cleavage of N-cadherin, but

new CTF1, a decrease in CTF1 levels caused by glutamate stimu-
lation in the presence of ilomastat would imply an activation of
the y-secretase cleavage step. We found that addition of ilomastat
decreased the level of CTF1 compared to the control condition,
which is as expected if y-secretase cleaves CTF1 fragments that
existed before glutamate stimulation (Fig. 4Cc: n = 6, 0.56-fold).
However we did not observe a further decrease in CTF1 levels
when neurons were first treated with ilomastat (to block CTF1
production) and then stimulated with glutamate (Fig. 4, compare
Cd, Cc), suggesting that glutamate stimulation does not increase
y-secretase cleavage of CTF1. We conclude that glutamate stim-

not the cleavage by y-secretase.

To confirm this result, we assessed y-secretase regulation by
synaptic activity. By comparing the effects of a y-secretase inhib-
itor (L-685458) on bicuculline-treated and untreated neurons,
we could determine whether the bicuculline-dependent increase
in synaptic transmission influences the rate of y-secretase cleav-
age of CTF1. We analyzed two pairs of dishes of cultured neurons:
one pair of unstimulated control dishes and a pair of bicuculline-
treated dishes. In one dish of each pair, we inhibited y-secretase
for the duration of the bicuculline exposure. The N-cadherin
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CTF1 was quantified in the total lysates of the four dishes by
Western blots. In both the control and the L-685458-treated
cultures, CTF1 fragment production increased with bicucull-
ine treatment, as expected (Fig. 4 Dc, 4.96-fold, p < 0.05;
Fig.4 Dd, 4.84-fold; n = 15). Inhibition of y-secretase increased
CTF1 fragment levels in both untreated and bicuculline-treated
cultures (Fig. 4 Db, control: n = 15, 1.4-fold; Fig. 4 Dd, stimu-
lated: n = 9, 4.84-fold). However, when we compared the effect of
y-secretase inhibition on bicuculline-treated and untreated control
neurons, no significant difference was observed (Fig. 4D: ratio
bla = 4.96 compared to d/c = 4.03, p = 0.53), confirming that
synaptic activation did not regulate <y-secretase cleavage of
CTF1.

We conclude that synaptic activation following bicuculline
treatment or glutamate stimulation has little or no influence on
the rate of y-secretase cleavage of CTF1, suggesting that the in-
creased rate of cleavage of N-cadherin induced by neuronal ac-
tivity results specifically from activity-dependent stimulation of
ectodomain shedding by a metalloprotease.

S

Synaptic activity enhances metalloprotease cleavage, but not y-secretase cleavage, via NMDA receptors, Src, and
INK.A, Cortical neurons were treated with bicuculline and 4AP for Th and then NMDARs were blocked with o-APV. Neuronal activity
was also blocked with TTX (*p << 0.05and **p << 0.005, respectively). B, Cortical neurons were stimulated with glutamate (50 m,
3'min) in the presence of KN93, PP2, and JNK inhibitor Il (CaMKII, Src, and JNK kinases inhibitors, respectively). N-cadherin CTF1
level was significantly decreased by APV, PP2, and JNK inhibitor Il but not by KN93 (*p << 0.05 and **p << 0.005, respectively). C,
Neurons were stimulated with glutamate (50 v, 3 min) and treated with a metalloprotease inhibitor (ilomastat, 5 h) asindicated.
N-cadherin CTF1 levelsin the total lysate fraction were analyzed as before. Addition of ilomastat decreased CTF1 level compared to
control condition (c), (*p << 0.05), but no further decrease was observed when neurons were first treated with ilomastat and then
stimulated by glutamate (d). D, Effect of -y-secretase inhibition on bicuculline-treated and untreated neurons (40 pum, 24 h). -y-secretase
inhibition (L-685458, 1 um, 24 h) did not affect CTF1 levels in either bicuculline-treated or untreated neurons (*p << 0.05).
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Inhibition of metalloprotease or
y-secretase modifies mEPSCs

Cleavage of synaptic substrates by metal-
loproteases and <y-secretase might alter
synaptic architecture or modify compo-
nents of the transmission machinery;
either effect could lead to functional
changes. To determine whether metallopro-
teases or ‘y-secretase have an effect on syn-
aptic function, we recorded mEPSCs from
cultured hippocampal neurons treated
overnight with the <y-secretase inhibitor,
L-685458 (1 uMm), or the metalloprotease in-
hibitor, illomastat (10 um) (Fig. 5). Changes
in mEPSC frequency and amplitude are
usually attributed to changes in presynaptic
and postsynaptic functions, respectively
« (Wierenga et al., 2006). While we ob-
served significant increases in both the
frequency and the amplitude of mEPSCs
in L-685458-treated neurons compared
to vehicle-treated neurons (p < 0.05),
ilomastat-treated neurons showed a selec-
tive enhancement of mEPSC frequency
(p < 0.05) with no effect on mEPSC am-
plitude ( p > 0.05) [frequency, 2.3 * 0.2
(vehicle), 6.2 = 0.8 (ilomastat), 3.5 = 0.4
(L-685458); amplitude: 13.9 = 0.4 (vehi-
cle), 14 *= 0.3 (ilomastat), 18.5 * 0.6
(L685458); N = 17 (vehicle), 15 (ilomas-
tat), and 15 (L-685458)] (Fig. 5). These
results suggest that the activities of both
y-secretase and metalloproteases nega-
tively regulate glutamatergic transmission
in cultured hippocampal neurons; fur-
thermore, y-secretase activity appears to
affect both presynaptic and postsynaptic
functions, whereas metalloprotease activ-
ity selectively reduces presynaptic gluta-
mate release. The decrease in mEPSC
frequency could possibly also reflect a
postsynaptic effect, for example one re-
sulting from a reduction of spine or recep-
tor numbers.

[ B
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Inhibition of metalloprotease or yy-secretase modifies
synaptic proteins
To explore the mechanistic basis for these electrophysiological
changes, we assayed whether inhibition of metalloproteases or
7y-secretase affects synaptic protein levels or functions. Inhibition of
metalloprotease (ilomastat) or y-secretase (L685458) activity did
not change the level of the presynaptic marker synaptophysin as
assayed by immunofluorescence (total intensity: 1.08 and 0.99, re-
spectively; n = 9) (Fig. 6 Ai,Aii). However, an increase in the rate of
synaptic vesicle cycling, as reflected in the level of synaptotagmin
reuptake measured by an antibody-feeding assay (Matteoli et al.,
1992), could be detected after metalloprotease but not y-secretase
inhibition (total intensity: 1.2 and 0.97, respectively; n = 5) (Fig.
6 Bi,Bii). This effect is consistent with the increase in mEPSC fre-
quency recorded after metalloprotease inhibition (Fig. 5), suggesting
that a metalloprotease decreases the rate of synaptic vesicle recycling.
We next assayed changes in postsynaptic proteins after inhi-
bition of the proteolytic machinery. Inhibition of metallopro-
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teases or ‘y-secretase increased the level of A
PSD-95 as measured by immunofluores-
cence (total intensity: 1.14 and 1.19, re-
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llomastat L-685458

spectively; p < 0.05, n = 9) (Fig. 6Ci,Cii)
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in agreement with previous reports (Par-
ent et al., 2005). Moreover, a significant

e T YT

increase of surface GluA2, but not r
N-cadherin, was detected by a live neuron
biotinylation assay after inhibition of B
metalloproteases or y-secretase (GluA2:

3.24 and 2.94, respectively, p < 0.05; N-
cadherin: 1.25 and 1.28, respectively) (Fig.

6 Di,Dii). We conclude that the activity of

the proteolytic machinery decreases levels

of a postsynaptic scaffold and an AMPA

receptor subunit, consistent with a role

for these enzymes in attenuating synaptic
transmission.
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Proteolytic enzymes can regulate synaptic
efficacy (Cartier et al., 2009; Mabb and
Ehlers, 2010; Malinverno et al., 2010), but 0.0 -
this regulatory mechanism is still largely
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synaptic functions of metalloproteases D
and +y-secretase, two proteases that act

in succession to cleave single-pass trans-
membrane proteins. Our work indicates

that the proteolytic machinery might be

part of multiprotein complexes contain-

ing the proteases and their substrates and
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tethered to the PSD by synaptic scaffold
proteins. Synaptic activity stimulates
proteolysis through enhancement of
the metalloprotease cleavage, leading to
protease-dependent decreases in synaptic
efficacy through both presynaptic and post-
synaptic mechanisms, providing a novel
form of synaptic autoregulation.
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Effect of metalloprotease or ~y-secretase inhibition on synaptic transmission. Inhibition of metalloproteases or
y-secretase enhanced glutamatergic neurotransmission in cultured hippocampal neurons. A, Examples of mEPSC recordings in
vehicle (Control)-, ilomastat-, and L-685458-treated neurons. B, ¢, Cumulative probability distribution of mEPSC inter-event
interval (B) and amplitude (C) in vehicle-, ilomastat (llo)-, and L-685458-treated neurons. D, E, Average mEPSC frequency (D) and
amplitude (E) in vehicle-, ilomastat-, and L-685458-treated neurons. While ilomastat selectively increased mEPSC frequency,

1-685458 increased both the frequency and amplitude of mEPSCs (*p << 0.05).

The cleavage machinery and its

substrates

We find that the proteolytic machinery processes N-cadherin on
both sides of the synapse, consistent with the homophilic nature
of the N-cadherin interaction and with the observed distribution
of the metalloproteases ADAM10, ADAM17, and MT5-MMP
and the presence of the y-secretase in both presynaptic and post-
synaptic compartments. The postsynaptic localization of the
metalloproteases may be a consequence of the tethering of
ADAMI10, ADAM17, and MT5-MMP by the postsynaptic scaf-
folds SAP97 (Peiretti et al., 2003; Marcello et al., 2007) and ABP/
GRIP (Monea et al., 2006). Likewise, the association of the
y-secretase catalytic subunit PS1 and of the ADAMs with the
presynaptic scaffold X11 and with the postsynaptic protein
o-catenin (Leonoudakis et al., 2004; Kosik et al., 2005; Miller et
al., 2006; McCarthy et al., 2009) may enable y-secretase to func-
tion at both sides of the synapse.

Several metalloproteases can shed y-secretase substrates (Re-
iss et al., 2005; Monea et al., 2006; Uemura et al., 2006; Postina,
2008). A number of them are tethered to synaptic scaffold pro-
teins and could thus cleave synaptic substrates (Peiretti et al.,
2003; Monea et al., 2006; Marcello et al., 2007). Indeed, in this

study we identified three metalloproteases, MT5-MMP, ADAM
10, and ADAM 17, at synapses. We have then focused our study
on understanding the general mechanism of metalloprotease
cleavage regulation. Each metalloprotease might have a substrate
or location preference, but little is yet known regarding possible
differences (Postina, 2008).

The role of &-catenin, which anchors PS1 (Zhou et al., 1997;
Levesque et al., 1999; Tanahashi and Tabira, 1999), is of particu-
lar interest. 8-Catenin can also bind to N-cadherin (Kosik et al.,
2005), PSD-95, and ABP/GRIP (Silverman et al., 2007). The ABP/
GRIP scaffolds, in turn, can bind to the metalloprotease MT5-
MMP, which cleaves N-cadherin to release a CTF that is a
substrate of y-secretase (Monea et al., 2006). The ABP/GRIP scaf-
folds also bind to Eph receptors, ephrins, and LAR (Briickner et
al., 1999; Dunabh et al., 2005; McCarthy et al., 2009), all potential
synaptic substrates of the proteolytic pathway (Georgakopoulos
etal., 2006; Haapasalo et al., 2007). This suggests the existence of
large, supramolecular synaptic complexes containing metallo-
proteases and 7y-secretase and lying close to cadherins and other
synaptic substrates of these proteases. The synaptic tethering of
AMPAR complexes by ABP/GRIP and PSD-95 (Silverman et al,,
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Figure 6.  Effect of metalloproteases or y-secretase inhibition on synaptic proteins. 4i, 14 DIV hippocampal neuronsin culture ~ implied in previous studies of PS1 knock-

stained with synaptophysin after inhibition of metalloprotease (ilomastat) or y-secretase (L685458). Aii, Total intensity of fluo-
rescence per 10 wm was measured and normalized to control. Average fluorescence intensity is shown for control (C), ilomastat
(IL0), and L685458 (L685) groups. Bi, Synaptotagmin reuptake in 14 DIV hippocampal neurons exposed to ILO and L685 overnight.
Bii, Total intensity of fluorescence per 10 umwas measured and normalized to control. Average fluorescence intensity is shown for
control, ilomastat, and L685458 groups (*p << 0.05). Ci, Same experiment as in A stained for PSD-95. Gii, Total intensity of
fluorescence per 10 M was measured and normalized to control. Average fluorescence intensity is shown for control, ilomastat,
and L685458 groups (*p << 0.05). D, 14 DIV cortical neurons in culture were biotinylated and total cell fraction was prepared. The
ilomastat and L685458 conditions were normalized to untreated condition for each experiment. Western blotting of GluA2/3 (i)
and N-cadherin (ii) shows a significant increase of surface GluA2 after metalloprotease (llo) or y-secretase (L685) inhibition, but no

effect on surface N-cadherin (*p << 0.05).

2007) raises the possibility that disruption of these complexes
could release AMPARs from the synapse. 6-Catenin may serve as
a central organizer of these supramolecular complexes, as has
been described in non-neuronal cells (Kouchi et al., 2009). In
support of this model, we observed that synaptic levels of PS1,
N-cadherin, and GluA2 are markedly decreased in 8-catenin
knock-out mice.

Synaptic protease cleavage as an activity-dependent
regulatory mechanism

Application of glutamate or NMDA increased the cleavage of
N-cadherin by metalloproteases, as did enhancement of synaptic

out mice (Parent et al., 2005; Pratt et al.,
2011).

The level of full-length N-cadherin
showed little change with synaptic activ-
ity, and only a small fraction of full-length
N-cadherin underwent metalloprotease/
y-secretase cleavage. Although the sub-
population of N-cadherin that is degraded
remains to be identified, it is likely to in-
clude the synaptic pool, since substantial
levels of N-cadherin CTF1 were found at synapses. Cleavage of
the CTF1 pool by y-secretase might play a structural role, but of
special interest is its possible role in synaptic regulation. Besides
releasing 8-catenin and associated components, cleavage of CTF1
releases an intracellular signaling peptide, like other peptides re-
leased by y-secretase from adhesion molecules and related pro-
teins (Marambaud et al., 2003; Bao et al., 2004; Hass et al., 2009;
McCarthy et al., 2009). Indeed, cleavage of N-cadherin CTF1 by
y-secretase releases the CTF2 fragment, which represses CBP/
CREB-dependent transcription (Marambaud et al., 2003). This
dual effect might explain discrepancies between previous reports
suggesting that synaptic activity can either stabilize or degrade
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cadherins at synapses (Tanaka et al., 2000; Marambaud et al.,
2003).

Our work demonstrates a synaptic autoregulatory loop in-
volving proteases. The finding that metalloproteases are induced
by synaptic activity and that the cleavage machinery in turn neg-
atively regulates synaptic function suggests a negative autoregu-
latory loop at the synapse reminiscent of homeostatic plasticity
(Pozo and Goda, 2010). This specialized proteolytic machinery
may provide novel pathways for modification of the number,
shape, or function of synapses, modifications that may contribute
to the cellular basis of memory (Segal, 2005). Indeed, changes in
synaptic plasticity and spine morphology have been observed in
PS1 knock-out and familial Alzheimer’s disease mutant mice
(Sauraetal., 2004; Auffret et al., 2009). Pathological disruption of
synapses through deregulation of the metalloprotease and
y-secretase cleavage pathways could play a role in early synaptic
deficits which subsequently lead to cognitive dysfunction and
neurodegenerative changes in Alzheimer’s disease (Knobloch
and Mansuy, 2008).
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