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Background. Little is known about type-specific associations between prevalent human papillomavirus (HPV)
infections and risk of acquiring other HPV types in men. Data on natural clustering of HPV types are needed as a
prevaccine distribution to which postvaccine data can be compared.

Methods. Using data from a randomized controlled trial of male circumcision in Kisumu, Kenya, adjusted
mean survival ratios were estimated for acquisition of any-HPV, high-risk (HR) HPV, and individual HR-HPV
types among men uninfected as compared to those infected with vaccine-relevant HPV types 16, 18, 31, 45, 6, or 11
at baseline.

Results. Among 1097 human immunodeficiency virus-negative, uncircumcised men, 2303 incident HPV infec-
tions were detected over 2534 person-years of follow-up. Although acquisition of individual HR-HPV types varied by
baseline HPV type, there was no clear evidence of shorter times to acquisition among men without vaccine-relevant
HPV-16, -18, -31, -45, -6, or -11 infections at baseline, as compared to men who did have these infections at baseline.

Conclusions. These prospective data on combinations of HPV infections over time do not suggest the potential
for postvaccination HPV type replacement. Future surveillance studies are needed to definitely determine whether

elimination of HPV types by vaccination will alter the HPV type distribution in the population.

(HPV) infection 1is the

primary cause of cervical cancer in women [1, 2].

Human papillomavirus

Other genital cancers, including vaginal, vulvar, anal,
and penile carcinoma are also caused by HPV infec-
tion. Multiple HPV types have been detected in 20%-
73% of HPV-infected males [3-9] and are important
for the risk of transmission to female sexual partners
and development of anogenital cancers. With the
recent approval of prophylactic HPV vaccination of
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young men [10], data are needed to understand if pat-
terns of HPV acquisition differ among men with spe-
cific HPV type infections as compared to men without
these HPV infections. The effect of current vaccine-
relevant HPV infections on the subsequent acquisition
of different HPV types could impact the long-term
potential for HPV type replacement following popula-
tion-based HPV vaccination [11, 12].

Previous studies have shown that infection with multi-
ple HPV types occurs more often than expected if the
infections were independent [13-17]. Women with HPV
infection at baseline are more likely to acquire additional
HPV types during follow-up than those uninfected
[5, 18-21]. In analyses limited to 5 HPV types, DNA de-
tection of HPV-16, -18, -31, -45 or -6 did not predict
acquisition of any of the other 4 specific HPV types
among female university students from the United States
[21]. In contrast, among cytologically normal women
from Colombia, incident infection with HPV-16 and
HPV-18 was associated with higher odds of acquiring
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HPV-58, but not 5 other HPV types [11]. In a population of cy-
tologically normal women from the United States [18] and in the
ASCUS/LSIL Triage Study [19], all HPV infections, regardless of
type, were associated with higher acquisition rates of other HPV
types, as compared to being uninfected, likely due to a common
mode of transmission, host immunity, or shared risk factors.
While there are differences in the natural history of type-
specific HPV infections between women and men [22, 23], no
prospective studies have examined the interactions between
specific HPV types over time in men. Therefore, using data
from a longitudinal cohort of young uncircumcised men from
Kisumu, Kenya, we compared time to acquisition of overall
HPV, high-risk (HR) HPV, and 14 individual HR-HPV types
among men DNA positive as compared to DNA negative for
vaccine-relevant HPV types 16, 18, 31, 45, 6, or 11 at baseline.

METHODS

Study Population and Design

A randomized controlled trial (RCT) was conducted in
Kisumu, Kenya, from 2002 to 2006 to determine the effective-
ness of male circumcision in reducing the incidence of human
immunodeficiency virus (HIV) infection [24]. A cohort study
on the natural history of HPV infections in men was nested in
the RCT [25, 26]. Briefly, eligible males were between 18 and
24 years old, uncircumcised, HIV seronegative, and sexually
active. Of the 2784 men enrolled in the RCT, 2228 were en-
rolled in the nested HPV study. Of the 1102 men randomized
to the delayed circumcision (control) arm, the present study
includes 1097 men who had HPV DNA results at baseline and
>1 follow-up visit. This analysis focused on uncircumcised
men only because male circumcision has been shown to affect
HPV acquisition and many men may remain uncircumcised
due to lack of access or personal beliefs [27, 28].

Study visits were conducted at baseline and every 6 months
for 24 months of follow-up. At baseline and each biannual
visit, trained male interviewers administered a standardized
questionnaire on sociodemographic characteristics, sexual be-
havior, and other medical conditions. A physician or clinical
officer conducted a physical examination during which a urine
sample was collected for polymerase chain reaction (PCR) de-
tection of Chlamydia trachomatis (Roche Diagnostics). For
HPV DNA detection, penile exfoliated cells were collected
separately from 2 anatomical sites using prewetted Dacron
swabs: (1) shaft and external foreskin and (2) glans, coronal
sulcus, and inner foreskin [26]. All participants provided in-
formed consent and all study protocols were approved by in-
stitutional review boards at each collaborating institution.

Detection of HPV DNA
DNA was isolated from penile cell samples and the presence
of human DNA was evaluated by B-globin-specific PCR

[29, 30]. HPV DNA was assessed by GP5+/6+ PCR, followed
by hybridization of PCR products using an enzyme immuno-
assay readout with 2 HPV oligoprobe cocktail probes that
detect 44 HPV types. Subsequent HPV genotyping was per-
formed by reverse line blot hybridization of the PCR products,
as described previously [29, 30]. HPV types 16, 18, 31, 33, 35,
39, 45, 51, 52, 56, 58, 59, 66, and 68 were classified as HR-
HPV types, and the other 30 HPV types were categorized as
low-risk HPV. HPV infections detected by PCR but not by
reverse line blot genotyping were designated as HPV X and
were not included in either the high- or low-risk categories.
HPV detection was performed on the shaft and glans samples
separately. We present here the pooled HPV DNA results
from both anatomical sites combined.

Statistical Analysis

HPV types 16, 18, 6, and 11 were chosen as baseline types of
interest due to their inclusion in current generation HPV pro-
phylactic vaccines [31, 32]. Given the relatively high prevalence
of HPV-45 in adenocarcinoma and the potential for HPV
cross-protection against HPV-31 [33], we also investigated as-
sociations between HPV-31 and HPV-45 and future HPV ac-
quisition. The study outcomes were time to acquisition of any
other HPV types except the baseline type of interest, any other
HR-HPV infection, and acquisition of each of the other 13
individual HR-HPV types. For all analyses, type-specific HPV
acquisition was defined as the detection of a new HPV geno-
type at the current visit that was not detected at any of the
previous study visits.

Time to first infection for each HPV type was analyzed
using interval-censored survival methods, because acquisition
events were only known to have occurred between the last
HPV-negative visit and the first HPV-positive visit [34]. For
each HPV type where an acquisition was not observed, the
data were right censored at the final study visit. If men
crossed-over to the circumcision arm during the study period
before acquiring a type-specific infection (n=>51), they were
right censored at their last visit with HPV DNA results prior
to circumcision. If HPV DNA results were missing for the
visit(s) before the first HPV-positive visit, the acquisition in-
terval spanned from the last nonmissing HPV-negative visit to
the first HPV-positive visit. If a result was missing between 2
HPV-negative visits, then the missing value was assumed to
be HPV negative. When this assumption was evaluated by
changing the missing values from HPV negative to HPV posi-
tive, there was a minimal effect on the adjusted mean survival
ratios (aMSRs) for HPV acquisition (data not shown).

Unadjusted survival curves were used to graphically display
the pattern of HPV acquisition, stratified by HPV-16, -18, -31,
-45, -6, and -11 DNA status at baseline. The probability of
acquiring an HPV infection as a function of time was estimat-
ed using the generalized Kaplan-Meier estimator [35, 36],
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which allows for arbitrarily (interval) censored data via the
published SAS macro %ICE [37]. Differences between groups
were assessed using a generalization of the log-rank test for
interval-censored data [38].

Parametric frailty survival models, allowing for the correla-
tion between HPV types among men with multiple infections
and for interval-censored data [34], were used to estimate the
associations between type-specific infections at baseline and
acquisition of any-HPV and HR-HPV infections. To estimate
the association between vaccine-relevant HPV infections at
baseline and acquisition of each individual HR-HPV type,
parametric survival models without the random effects frailty
term were used. Log-logistic, log-normal, and Weibull paramet-
ric accelerated failure time models were considered [39]. Model
diagnostics suggested that the log-logistic distribution pro-
vided the best fit to the data. The models were parameterized
such that the aMSR equaled the mean time until type-specific
HPV acquisition in men without a specific vaccine-relevant
HPYV type at baseline divided by the mean time to acquisition
in men with that HPV type at baseline. Estimated aMSRs
<1.0 indicate that men without the vaccine-relevant HPV type
infection at baseline acquire other HPV types earlier on
average and suggest the potential for type replacement. An
aMSR >1.0 indicates that men without a vaccine relevant
type at baseline acquire other HPV types later than men with
that type at baseline.

All models were adjusted for potential confounding vari-
ables, including baseline age (centered at 20 years), number of
sexual partners (6 months prior to baseline), consistent
condom use (in 6 months prior to baseline), bathing frequen-
cy, and C. trachomatis infection, which were previously shown
to be associated with multiple HPV infections in this cohort
[40]. Interpretation of study results were based on patterns of
HPV acquisition, defined by the magnitude and precision of
the estimates, rather than on statistical significance alone.

RESULTS

The median age of the 1097 men was 20 years (interquartile
range [IQR], 19-22 years) (Table 1). Most men were not
married (94%) and were not earning an income (52%), with a
median of 11 years of education (IQR, 8-12 years) (Table 1).
The median age at sexual debut was 16 years (IQR, 14-17
years), and over half of men reported 0 or 1 sexual partners in
the previous 6 months (57%). Consistent condom use in the
previous 6 months was reported by roughly a quarter of men
(23%) and C. trachomatis infection was detected in 4% of men
at baseline. There was a median of 184 days (IQR, 183-187
days) between study visits.

At baseline, 50% of men were HPV infected, with multiple
infections (n=314; 29%) detected more often than single
HPV infections (n=231; 21%; P<.01) (Table 2). The

Table 1. Baseline Characteristics of the Uncircumcised,
HIV-Negative Male Study Population (N =1097)

Study Population?
N (%) or Median (IQR)

Age in years 20 (19-22)
Marital status

Not married 1025 (93.8)

Married 67 (6.2)
Earning an income

No 570 (562.2)

Yes 523 (47.9)
Years of education 11 (8-12)
Bathing frequency

Less than daily 22 (2.0)

Daily 1062 (98.0)
Age at sexual debut in years 16 (14-17)
Number of sexual partners (6 mo)

0-1 Partners 618 (56.5)

>2 partners 475 (43.5)
Condom use (6 mo)

Not always 751 (76.8)

Always® 227 (23.2)
C. trachomatis infection

No 1041 (96.1)

Yes 42 (3.9)
Length of testing interval (days) 184 (183-187)
Number of visits per person 5 (4-5)

Abbreviations: N, number; %, percentage; IQR, interquartile range.

2 Missing: marital status (n = 5), employment status (n = 4), bathing frequency
(n=13), age at sexual debut (n =4), number of partners (n =4), condom use
(n=119), C. trachomatis (n = 14).

b Condom use “always” category includes men reporting no sex in last 6
months (n=19).

prevalence of vaccine-relevant types at baseline ranged from
9% for HPV-16 (n=103) to 2% for HPV-11 (n=21). During
follow-up, the prevalence of HPV ranged from 49% (18
months) to 41% (24 months), and the median number of
types among men with detectable HPV was 2 (range, 1-15). A
total of 132 men (12%) had no detectable HPV at all 5 study
visits. B-globin was detected in 73% of all penile samples
(range per visit, 63%-85%). The prevalence of HPV among
B-globin-positive samples at baseline (52%) was very similar
to the prevalence in the entire cohort (50%) and results of
parametric frailty models were similar when restricting only
to men with B-globin-positive samples (online Supplementary
Appendix Table 1).

A total of 2303 HPV infections were acquired over study
follow-up, of which 1147 (50%) were HR-HPV types
(Table 3). The most commonly acquired types were HPV-16
(n = 185), HPV-56 (n = 122), HPV-35 (n = 109), HPV-42 (n =
102), HPV-67 (n=99), and HPV-6 (n=98). For the fitted
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Table 2. Prevalence of HPV Infection in 1097 Uncircumcised Males Over 24 Months of Follow-up

Visit 1 (baseline) Visit 2 (6 mo) Visit 3 (12 mo) Visit 4 (18 mo) Visit 5 (24 mo)
N (%) N (%) N (%) N (%) N (%)

HPV DNA positive 545 (49.7) 440 (45.3) 479 (48.4) 474 (49.1) 378 (41.0)
Single HPV infection 231 (21.1) 210 (21.6) 226 (22.8) 222 (23.0) 173 (18.8)
Multiple HPV infections 314 (28.6) 230 (23.7) 253 (25.6) 252 (26.1) 205 (22.2)
Number of HPV types?® 2(1-11) 2 (1-15) 2 (1-10) 2 (1-8) 2 (1-8)
HPV-16 103 (9.4) 91 (9.4) 78 (7.9) 58 (6.0) 7 (8.4)
HPV-18 7 (3.4) 34 (3.5) 31 (3.1) 42 (4.4) 9(3.2)
HPV-31 0(3.7) 24 (2.5) 28 (2.8) 19 (2.0) 8(2.0)
HPV-45 0 (5.6) 19(2.0) 25 (2.5) 28(2.9) 0(2.2)
HPV-6 8 (3.5) 33 (3.4) 37 (3.7) 51 (56.3) 1(3.4)
HPV-11 1(1.9 16 (1.7) 22 (2.2) 21 (2.2) 0(1.1)
Missing HPV results® 125 107 132 175

Abbreviations: N, number; %, percentage; HPV, human papillomavirus.
@ Median (range) among men with detectable HPV infection.

b Includes missed study visits and samples that were inadequate for HPV testing.

parametric frailty models, the mean times to acquisition of
any-other HPV infection were about 2 times longer among
men without HPV-18 (aMSR, 2.2; 95% confidence interval

Table 3. Associations Between Type-Specific HPV Infections
at Baseline and Future Acquisition of Any Other HPV (n=2303
infections) and HR-HPV (n=1147 infections) Over 24 Months of
Follow-up

HPV Acquisition

Any-HPV® HR-HPV®
Baseline HPV aMSR (95% CI)°  aMSR (95% ClI)°
HPV-16 (n = 103) 1.2(.9,1.6) 1(.8,1.5)
HPV-18 (n = 37) 2.2(1.4,323) 1.7 (1.0, 2.7)
HPV-31 (n = 40) 1.5(1.0,2.3) 1.6 (1.0, 2.5)
HPV-45 (n = 50) 2.1(1.5,2.9) 1.8(1.3,2.7)
HPV-6 (n = 38) 1.2(8,1.9) 1.1(7,1.8)
HPV-11 (n = 21) 1.6(.9,2.7) 5(.9,27)
HPV-16, 18 (n = 136)° 1.5(1.1,1.9) 1.3(1.0,1.7)
HPV-6, 11 (n =58)° 1.4(1.0,1.9) 1.3(.9,1.9)
HPV-16, 18,6, 11 (n=178)" 1.4(1.1,1.8) 1.3(1.0,1.7)

Abbreviations: HPV, human papillomavirus; HR, high-risk; aMSR, adjusted
mean survival ratio; Cl, confidence interval.

@ Acquisition of all other HPV type infections except exposure HPV type:
number of HPV-16 acquisition events = 185; HPV-18 = 94; HPV-31 = 57; HPV-
45 =70; HPV-6 = 98; HPV-11 =51.

b Al other HR-HPV types except exposure HPV type.

¢ Parametric frailty models adjusted for age(centered at 20 years), bathing
frequency, number of sexual partners (in 6 months prior to baseline),
consistent condom use (in 6 months prior to baseline), current C. trachomatis
infection.

9 Index group HPV-16 and -18 negative vs referent group HPV-16 and/or -18
positive.

® Index group HPV-6 and -11 negative vs referent group HPV-6 and/or -11
positive.

fIndex group HPV-16, -18, -6, and -11 negative vs referent group HPV-16, -18,
-6, and/or -11 positive.

[CI], 1.4-3.3) or HPV-45 (aMSR, 2.1; 1.5-2.9) than in men
with that type at baseline. Infection with HPV-16 at baseline
was not associated with time to any-HPV (aMSR, 1.2; 95% CI,
.9-1.6) and HR-HPV (aMSR, 1.1; .8-1.5) acquisition. For the
group of types included in the HPV vaccines (Table 3), there
was a longer time to any-HPV (aMSR, 1.5; 1.1-1.9) and HR-
HPV (aMSR, 1.3; 1.0-1.7) acquisition among men negative for
both HPV-16 and HPV-18 at baseline than in men positive
for HPV-16 and/or HPV-18. Similar aMSRs were observed
when comparing men without any HPV-16, -18, -6, or -11 at
baseline to men with HPV-16, -18, -6, and/or -11 infection at
baseline.

Patterns of HR-HPV acquisition presented in the unadjust-
ed survival curve estimates (Figure 1) are consistent with the
results from the parametric frailty models (Table 3). Over
study follow-up, there was no difference in HR-HPV acquisi-
tion between men uninfected with HPV-16 or HPV-6 at base-
line and infected men, whereas men without HPV-31 or -11
had slightly lower probabilities of HR-HPV acquisition than
infected men. Baseline infection with HPV-18 and HPV-45
resulted in consistently higher probabilities of acquiring other
HR-HPYV types over 24 months of study follow-up.

None of the 13 individual HR-HPV types were acquired
earlier in men without HPV-16 at baseline than in men infect-
ed with HPV-16 at baseline (Table 4). Men who were HPV-16
uninfected at baseline acquired HPV-31 (aMSR, 2.1; 95% CI,
1.0-4.6) and HPV-58 (aMSR, 3.7; 95% CI, 1.8-7.4) later, on
average, than men with HPV-16. Among men without HPV-
18 at baseline, compared to HPV-18-infected men, time to
acquisition of each of the individual HR-HPV types appeared
to be equal or slightly longer, except for HPV-31 (aMSR, 0.7;
95% CI, .1-4.3). Similarly, for HPV-31 DNA status at baseline,
aMSRs ranged from 0.5 (95% CI, .1-2.6) for acquisition of
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Figure 1. Estimates of the cumulative probability of acquisition of other high-risk human papillomavirus (HPV) types over 24 months by baseline

infection status. A, HPV-16 DNA negative (solid line) versus positive (dashed line) at baseline. B, HPV-18 DNA negative versus positive. C, HPV-31 DNA
negative versus positive. [, HPV-45 DNA negative versus positive. £, HPV-6 DNA negative versus positive. £, HPV-11 DNA negative versus positive.

HPV-45 to 2.3 (95% CI, .8-6.3) for acquisition of HPV-66,
and all CIs included 1.0. Men without a baseline HPV-45 in-
fection acquired HPV-31 (aMSR, 3.0; 95% CIs, 1.1-7.6),
HPV-39 (aMSR, 3.7; 95% CI, 1.7-7.8), HPV-66 (aMSR, 3.4;
95% CI, 1.4-8.2), and HPV-51(aMSR, 2.2; 1.0-4.9) later, on
average, than men with HPV-45 at baseline. Baseline negativi-
ty to low-risk HPV-6 or HPV-11 was generally associated
with a similar or longer time to acquisition of the 14 individu-
al HR-HPV types as compared to men infected with HPV-6
or HPV-11 at baseline. The aMSR for acquisition of HPV-35,
comparing men without and those with HPV-11 at baseline,

was the largest of the type-specific point estimates (aMSR, 5.8;
95% CI, 1.8-18.7). Mean survival ratios did not indicate that
men without HPV-6 or HPV-11 at baseline acquired other
HR-HPYV infections earlier than men who were infected with
HPV-6 or HPV-11 at baseline.

A comparison of average time until type-specific HPV ac-
quisition between men with no vaccine-included HPV types
and men with any of the 2 or 4 vaccine-included HPV types is
presented in Table 5. The results of this analysis indicate that
the times to acquisition of most non-vaccine-preventable HR-
HPV types are similar or slightly longer among men negative
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Table 4. Associations Between Type-Specific HPV Infections at Baseline and Future Acquisition of Individual HR-HPV Types

Baseline HPV Infection

HPV-16 (n=103) HPV-18 (n =37) HPV-31 (n = 40) HPV-45 (n = 50) HPV-6 (n = 38) HPV-11 (n=21)

HPV Acquisition aMSR (95% CI)*  aMSR (95% CI)*  aMSR (95% CI)*  aMSR (95% CI)®*  aMSR (95% Cl)®*  aMSR (95% CI)®
Clade A9

HPV-16 (n = 185) N/A 1.5 (.6, 3.9) 1.4 (.5,3.5) 1.3 (.6, 2.8) 1.2 (4,3.1) 3.0(.9,9.9)

HPV-31 (n =57) 2.1(1.0,4.6) 0.7 (.1,4.3) N/A 3.0(1.1,7.6) 1.8 (.5, 6.3) 3.0(.8,10.7)

HPV-33 (n=72) 1.2(7,2.2) 1.9(.8, 4.4) 0.9 (.3, 2.6) 1.6 (.8,3.3) 0.9(3,2.7) 1.3(4,4.2)

HPV-35 (n = 109) 1.0 (4, 2.2) 2.2(.7,6.8) 1.2 (4,3.9) 1.1 (.4,3.1) 1.1 (.3, 3.6) 5.8 (1.8, 18.7)

HPV-52 (n = 64) 0.7 (3,1.9) 2.0(.6,6.4) 2.2(.8,6.1) 1.5(.6,4.2) 2.3 (.8, 6.5) N/E

HPV-568 (n=77) 3.7(1.8,7.4) 1.9 (.6, 6.2) 2.2(.7,6.8) 2.2 (.8, 6.0 1.5(4,4.9) 2.1 (.5, 8.5)
Clade A7

HPV-18 (n = 94) 1.0 (.5, 2.0) N/A 1.3(.4, 3.8) 0.7 (.2,2.3) 1.4 (.5, 3.8) 1.0(.3,3.9)

HPV-39 (n=52) 0.7 (.3, 1.8) 1.2(4,4.2) 1.1(3,3.7) 3.7(1.7,7.8) 0.5 (.1, 3.0) N/E

HPV-45 (n=70) 0.5(.2, 1.4) 1.0 (.3, 3.4) 0.5 (.1, 2.6) N/A 0.8 (.2, 3.0) 1.5(4,5.4)

HPV-59 (n = 58) 0.4(.1,1.5) 1.5(.4,5.3) 1.6 (.6, 4.6) 1.5(.5,4.2) 1.0(.3,3.4) 1.0(.2,6.0)

HPV-68 (n = 20) 0.7 (.1, 3.1) 1.7 (.3, 8.6) N/E 0.4 (.0, 3.9) 1.4(2,7.9) N/E
Clade A6

HPV-56 (n =122) 1.0 (.5, 1.9) 1.2(5,3.2) 2.0(.9,4.2) 1.9(.9, 3.7) 0.3 (.0, 1.9) 1.3(.4,3.9)

HPV-66 (n=91) 0.9 (.4, 2.1) 1.9 (.6, 6.2) 2.3(.8,6.9) 3.4(1.4,8.2) 1.0(.3,3.9) 1.1(2,5.4)
Clade A5

HPV-51 (n =76) 1.5(.7,3.0) 2.0(.7,5.7) 2.2(.9,5.5) 2.2(1.0,4.9) 0.8 (.2, 3.0) 1.1(3,4.4)

Abbreviations: HPV, human papillomavirus; HR, high-risk; aMSR, adjusted mean survival ratio; Cl, confidence interval; N/A, not an applicable outcome type; N/E,

not able to estimate.

@ Parametric survival regression models adjusted for age (centered at 20 years), bathing frequency, number of sexual partners (in 6 months), consistent condom

use (in 6 months), C. trachomatis infection.

for all of the HPV types included in the bivalent (HPV-16
and -18) and the quadrivalent (HPV-16, -18, -6, and -11) vac-
cines than in men with any of these HPV types at baseline.

DISCUSSION

This study presents, to our knowledge, the first epidemiologi-
cal data in men on the type-specific associations between
prevalent HPV infections and future acquisition of other HPV
types, to assess the potential for HPV type competition and
replacement following widespread prophylactic HPV vaccina-
tion. Among 1097 men from Kenya, HPV negativity to the
vaccine-relevant HPV types 16, 18, 31, 45, 6, or 11 at baseline
was associated with a similar or longer time to acquisition of
any other HPV and HR-HPV infections. Type-specific associ-
ations between baseline infections and acquisition of individu-
al HR-HPV types varied greatly by HPV type; however, we
did not observe a clear pattern of differences in the times to
HPV acquisition by the degree of phylogenetic relatedness to
the baseline HPV infection. Men without HPV-16, -18, -31,
-45, -6, or -11 at baseline did not acquire other HPV infec-
tions earlier than men with baseline infections. Therefore, we
found no clear evidence to indicate the potential for HPV type
competition and replacement.

To better understand which HPV types were contributing
to the overall association between prevalent infections and
HPV acquisition, we analyzed acquisition of the 14 HR-HPV
types separately. There were 47 positive associations (aMSR >
1.1) among the 76 type-specific comparisons, 16 null (aMSR,
0.9-1.1), and 13 negative associations (aMSR < 0.9) between
baseline HPV types and type-specific acquisition. Estimates
below 1.0 were generally imprecise, with relatively wide Cls
that always included 1.0. The wide range in estimates and cor-
responding 95% Cls for type-specific HPV acquisition indicate
that men without baseline infections had a longer time to ac-
quisition for some, but not all, HR-HPV types. For example,
men without HPV-16 (clade A9) tended to have shorter time
until acquisition of clade A7 types (aMSRs < 1.0) but longer
time until acquisition of related types HPV-31 and HPV-58.
These findings are consistent with an analysis of the ASCUS/
LSIL Triage Study that found among HPV-16-negative
women a slight increase in incidence of some clade A7 types
and a decrease in incidence of HPV-31 [19].

We observed an overall trend of longer times to acquisition
of non-vaccine-preventable HR-HPV among men without
any of the vaccine-included HPV types 16, 18, 6, and 11 than
in men with any of these 4 HPV types. These findings are
consistent with a previous study of women from Colombia,
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Table 5. Associations Between Grouped HPV-16, -18, -6,
and -11 Infections at Baseline and Acquisition of Individual
HR-HPV Types

Baseline HPV Infection

HPV-16, -18,
HPV-16, -18° HPV-6, -11P 6,-11°
(n=136) (n=58) (n=178)
aMSR aMSR aMSR

HPV Acquisition (95% CI) (95% ClI) (95% ClI)
Clade A9

HPV-16 1.7 (.8,3.5)

HPV-31 1.8(.9,3.7) 24(1.0,6.1) 1.8(9 3.6)

HPV-33 1.5(.9,2.4) 1.1 (5, 2.4) 1.2(7,2.0)

HPV-35 1.3(7,2.6) 24(1.0,66) 1.4(8, 26)

HPV-52 1.0 (.5,2.2) 1.2 (5,3.4) 1.1(.6,2.1)

HPV-58 3.3(1.7,6.3) 1.8(.7, 4.6) 2.8(1.5,5.2)
Clade A7

HPV-18 1.3 (.6, 2.9)

HPV-39 0.8(4,1.8) 0.4(1,2.1) 0.7 (.4, 1.5)

HPV-45 0.6 (.3, 1.4) 1.1 (.4, 2.7) 0.8 (4, 1.4)

HPV-59 0.6 (.3, 1.6) 1.0 (.3, 2.9) 0.8(4,1.7)

HPV-68 1.0 (.3, 3.0) 0.9 (.2, 5.1) 1.0 (4, 2.8)
Clade A6

HPV-56 1.1(.6,1.9) 0.7(3,1.8) 1.0 (.6, 1.6)

HPV-66 1.1 (.6, 2.4) 1.1(4, 3.0 1.3(7,2.4)
Clade Ab

HPV-51 1.7(9,3.2) 0.9(3,2.5) 1.6(.9,2.7)

Abbreviations: HPV, human papillomavirus; HR, high-risk; aMSR, adjusted
mean survival ratio; Cl, confidence interval; N/A, not an applicable outcome
type.

@ Index group HPV-16 and -18 negative vs referent group HPV-16 and/or -18
positive.

® |ndex group HPV-6 and 11 negative vs referent group HPV-6 and/or -11
positive.

° Index group HPV-16, -18, -6, and -11 negative vs referent group HPV-16,
-18, -6, and/or -11 positive.

4 Adjusted for age (centered at 20 years), bathing frequency, number of
sexual partners (in 6 months), consistent condom use (in 6 months), C.
trachomatis infection.

which reported an increased risk of HPV-58 among women
with HPV-16 or HPV-18 [11]. It is possible that for compari-
sons between men who are negative to all 4 HPV types and
men with up to 4 HPV type infections, the aMSRs reflect dif-
ferences in HPV acquisition by risk group or host immunity
rather than differences by HPV type. In fact, when we limited
our analysis to men with detectable HPV during the study
period (n=965), aMSRs tended to be closer to 1.0, indicating
smaller relative differences in time until HPV acquisition
between men without each individual HPV type at baseline and
those with the specific HPV type (online Supplementary Ap-
pendix Table 2).

In epidemiological studies of associations between HPV
types, point estimates reflect the combined effect of factors

that may increase HPV acquisition, such as unmeasured be-
havioral risk factors or potential biological facilitation of HPV
acquisition by other HPV types [5, 11, 21], and factors that
may decrease acquisition among men with prior or prevalent
HPV infections, such as host-acquired immunity [20, 21],
cross-protection [11, 18, 21], and potential HPV type competi-
tion. Because HPV acquisition is strongly related to sexual be-
havior, we adjusted all estimates for age, recent number of
sexual partners, consistent condom use, and laboratory-
diagnosed C. trachomatis infection, which was previously
shown in this population to be associated with multiple HPV
infections [40]. In addition, a strength of this prospective study
in men is the use of statistical models for interval-censored
HPV outcomes that include a random effects frailty term to
account for the correlations among acquisition of multiple
HPV types that arise from unmeasured sexual behavior and
host immunological factors [34]. However, our exposure ascer-
tainment for HPV infection was limited to type-specific HPV
status at baseline. Subsequent analyses of HPV type competi-
tion might consider modeling infection with vaccine relevant
HPYV types as a time-varying exposure, although such models
are necessarily more challenging to fit and interpret.

Despite the large sample size, a limitation of this study was
the small number of infections for rare HPV types, which is
reflected in the wide CIs. In addition, the use of GP5+/6+
primers with reverse line blot hybridization may reduce the
detection of multiple infections as compared to other detec-
tion methods [41, 42], however, it has been shown to reduce
cross-hybridization between HPV types [14, 29]. An additional
consideration when interpreting the study results is the restric-
tion of our sample to young, uncircumcised men. Our find-
ings may not be generalizable to circumcised males, who may
have lower rates of HPV acquisition and multiple infections
[27, 43], or to older populations with a longer history of HPV
exposure [20]. We examined HPV DNA positivity, not seropo-
sitivity, at baseline and acquisition of HPV types not previous-
ly detected in the study [44]. It is possible that a previous
infection with a specific HPV type could reduce the likelihood
of acquiring that type over follow-up [20, 21, 45, 46], which
could potentially differ by baseline HPV status. However, men
in our study population were young (median age, 20 years)
with relatively few lifetime partners (median, 4 partners), and
neither of these characteristics differed by baseline status for
individual HPV types.

Using data from a large cohort of HIV-uninfected men
from Kisumu, Kenya, we contribute to the previous literature
in women by presenting data on the associations between
baseline HPV infections and acquisition of other HPV types
in men. The young male study population is particularly rele-
vant, given that the Food and Drug Administration has recent-
ly approved extending HPV vaccine coverage to males aged
9-26 years [10]. Our data indicate that current infections are
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generally associated with a slightly shorter time to acquisition
of other HPV infections and that men without infections
acquire other HPV types later, on average. In terms of individ-
ual HPV types, there were no consistently negative associa-
tions between specific HPV types that could indicate strong
potential for HPV type replacement following HPV vaccina-
tion. However, our study of HPV type competition was based
on men who were either naturally infected or uninfected (eg
unvaccinated men). There may be important immunological
differences between individuals who are naturally uninfected,
as opposed to protected from infection via vaccination, that
could affect acquisition of other HPV types. Ongoing vaccine
surveillance studies will provide more definitive data on poten-
tial changes in the distribution of non-vaccine-preventable
HPYV types following widespread HPV vaccination. However,
the prevaccine data presented here on the natural patterns of
association between HPV types will be extremely useful when
interpreting the postvaccine data to attribute any potential
changes in nonvaccine types to vaccination as opposed to
natural clustering of HPV types.
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