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Background. There is little information on multiple human papillomavirus (HPV) infections and the potential

for type competition in men, yet competition may impact the type-specific efficacy of HPV vaccination.

Methods. Among 2702 uncircumcised men in Kisumu, Kenya, who were seronegative for human

immunodeficiency virus, the observed numbers of HPV types detected were compared with the expected number,

which was simulated under the assumption of independent infections. To assess the potential for HPV type

competition, adjusted odds ratios for pairwise combinations of prevalent HPV type infections were estimated using

semi-Bayesian methods.

Results. Half of all men were HPV positive, of whom 57% had multiple HPV types. We observed men without

HPV infection and with $4 HPV types more often than expected if infections were independent. No negative

associations between individual HPV types were observed. HPV types 31, 39, 56, 58, and 59 were positively

associated with both carcinogenic vaccine types HPV-16 and HPV-18 (2-sided P value ,.05).

Conclusions. Men who were HPV infected were likely to test positive for .1 HPV type. Cross-sectional

associations between individual HPV types were positive and did not appear to be type-specific. Thus, we did not

identify HPV types that are candidates for potential HPV type competition in men.

Human papillomavirus (HPV) infection is themain cause

of cervical cancer in women [1, 2] and is responsible for

other genital cancers, including anal and penile carcinoma

in men. Coinfection with multiple HPV types is common

and observed in 20%–73% of HPV-infectedmales [3–11].

Multiple HPV-type infections have been associated with

acquisition of other HPV types and increased HPV per-

sistence in men [7] and cervical precancerous lesions in

women [12–14].

There are currently 2 FDA-approved HPV vaccines

that provide protection against HPV-16 and 18 [15–17]

or HPV-16, 18, 6, and 11 [18–20]. Nearly 70% of cases of

cervical cancer have been attributed to infection with

oncogenic HPV types 16 and 18 [21, 22], and low-risk

HPV types 6 and 11 are responsible for 90% of genital

warts. HPV-type coinfections could affect the pop-

ulation-based impact of HPV vaccination in both young

women and men due to potential HPV type competition

and subsequent type replacement [23, 24], that is, an

increase in the prevalence of nonvaccine HPV types in the

population when vaccine-preventable HPV types are re-

duced or eliminated [25]. Type competition may result

from some yet unknown biological mechanism, whereby

infection with 1 HPV type inhibits the acquisition or

persistence of other HPV types [7, 26]. In contrast, if

infection with a specific HPV type facilitates the acqui-

sition or persistence of other HPV types, it is possible that

when 1 HPV type is prevented by vaccination, the other

type might be reduced in the population.

If HPV types do compete, this will be reflected in

the population as a low probability of coinfection with
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2 specific HPV types. However, there are several reasons why, in

addition to the possibility of type competition, that 2 HPV types

may be less likely to occur together within a multiple infection.

The prevalence of HPV types detected in a sample population are

dependent on the HPV type distribution in the general pop-

ulation in that geographical area, as well as the HPV types cir-

culating within individual networks of sexual contacts. In

addition, observed positive associations between HPV types may

be due to the common transmission route and risk factors for all

HPV types, such as age [25, 27, 28], condom use [9], circumci-

sion status [6, 11], and lifetime [9, 29, 30] or recent [28] number

of sexual partners. Thus, any association between individual HPV

types reflects a combination of exposure to HPV, the type dis-

tribution among sexual contacts, and host immunological and

behavioral characteristics [7, 26, 31].

To date, there are no detailed studies of multiple HPV in-

fections and type competition in an African population, where

the HPV genotype distribution may differ from those in North

America, Europe, or South America [32]. Given the recent

approval of HPV prophylactic vaccination in the United States

for young men [33], data on HPV coinfections in men and

their female sexual partners are needed to assess the potential

for future HPV type replacement. We previously reported the

risk factors for HPV infection [3], prevalence by HPV stratified

by penile site [34], and association between HPV infection and

the risk of human immunodeficiency virus (HIV) acquisition

[35] among men from Kisumu, Kenya, participating in a ran-

domized controlled trial (RCT) of male circumcision [36]. In

the present analysis, we investigated the associations between

vaccine-preventable HPV types (16, 18, 6, and 11) and 41 other

HPV types using semi-Bayesian methodology.

METHODS

Study Population and Design
From February 2002 to December 2006, an RCT was conducted

in Kisumu, Kenya, to determine the effectiveness of male cir-

cumcision in reducing HIV incidence [36]. Male participants

were recruited from sexually transmitted infection (STI) clinics,

workplaces, and community organizations. To be included in the

RCT, men were required to be 18–24 years of age, uncircumcised,

HIV-seronegative, and sexually active and to have a hemoglobin

level of $90 g/L.

An observational cohort study of the effect of circumcision

on the natural history of penile HPV infection was nested in the

RCT [3, 34, 35]. The present analysis is a cross-sectional study at

the baseline visit of uncircumcised, HIV-seronegative men who

were eligible for participation in the main RCT (n 5 4489) and

consented to HPV testing (n5 2705) [3]. In the present analysis,

3 men were excluded due to inconsistent records in the database.

The final population for this analysis includes 2702 men who

provided penile samples and information on sexual risk factors

at baseline, of which 2228 were enrolled in the RCT. The study

protocol was approved by the institutional review boards at all

collaborating institutions.

Medical Examination and Sample Collection
After participants provided informed consent, trained male in-

terviewers administered a standardized questionnaire on socio-

demographic characteristics, medical conditions, and sexual

behavior. A trained physician or clinical officer conducted

a physical exam during which a genital examination was con-

ducted to inspect for ulcers and warts. Blood was collected for

herpes simplex virus type 2 (Kalon Biological) and syphilis testing

(Becton Dickinson; rapid plasma reagin with Treponema pallidum

hemagglutination assay confirmation). Urine samples were col-

lected for polymerase chain reaction (PCR) detection of Neisseria

gonorrhoeae and Chlamydia trachomatis (Roche Diagnostics).

Exfoliated penile cells were collected from 2 anatomical sites

using 2 prewetted Dacron swabs: (1) shaft and external foreskin

tissue (shaft specimen) and (2) glans, coronal sulcus, and inner

foreskin tissue (glans specimen) [34]. The penile swabs were

placed in separate 15-mL tubes containing 2-mL of Tris buffer

0.01 mol/L and processed on the day of collection. All samples

were sent to theDepartment of Pathology at the Vrije Universiteit

University Medical Center for laboratory detection of HPVDNA.

Detection of HPV DNA
Laboratory Detection

HPV DNA testing was performed on uncircumcised men at the

baseline study visit. DNA was isolated from exfoliated penile cell

samples [37, 38], and the presence of human DNA was evaluated

by b-globin–specific PCR, followed by agarose gel electrophoresis.
The presence of HPV DNA was assessed by GP51/61 PCR,

followed by hybridization of PCR products using an enzyme im-

munoassay readout with 2 HPV oligoprobe cocktails that together

detect 44 HPV types. Subsequent HPV genotyping was performed

by reverse line blot hybridization (RLBH) of PCR products, as

described elsewhere [37, 38]. HPV types 16, 18, 31, 33, 35, 39, 45,

51, 52, 56, 58, 59, 66, and 68 were classified as high-risk (carci-

nogenic) HPV (HR-HPV) types. Low-risk (LR-HPV) types in-

cluded 6, 11, 26, 30, 32, 34, 40, 42, 43, 44, 53, 54 55, 57, 61, 64, 67,

69, 70, 71 (equivalent to CP8061), 72, 73, 81 (CP8304), 82 (IS39

and MM4 subtypes), 83 (MM7), 84 (MM8), 85 (cand85), 86, 89

(cand89 equivalent to CP6108), and JC9710. Types considered

vaccine preventable were HPV-16, 18, 6, and 11, whereas all others

were nonvaccine preventable HPV types. HPV types detected by

PCR but not genotyped were designated as HPV-X, indicating

a type, subtype, or variant undetectable with RLBH probes.

Definition of Multiple Infections

HPV DNA detection methods were carried out on the shaft

and glans samples separately. Given that the aims of the present

analyses relate to evaluating the potential for HPV type re-

placement following population-based HPV vaccination and

Multiple HPV Infections in Men d JID 2012:205 (1 January) d 73



not site-specific infection, we present pooled HPV results for the

shaft and glans specimens. A single infection is defined as HPV

DNA positivity to any 1 single HPV type in the glans, the shaft,

or both sites. A multiple infection is defined as the detection of

$2 different HPV types in either the glans or the shaft com-

bined. For example, if a man was HPV-16 positive in the shaft

and HPV-35 positive in the glans, or if a man was HPV-16 and

HPV-35 positive in the glans and HPV negative in the shaft,

the man was classified as having multiple infections. If HPV-X

occurred alone, the infection was classified as a single infection,

although it could represent.1 untyped HPV infection. If HPV-X

was detected with additional typed infections, the infection was

classified as a multiple HPV infection.

Statistical Analysis
Distribution of Number of HPV Genotypes

The observed number of men with 0, 1, 2, 3, 4, 5, and 6 or more

concurrent HPV type infections was compared to the frequency

that would be expected under the assumption that each HPV

infection is independent of all others. Infection with each of the

45 possible HPV types was simulated for each man by random

generation of a binary variable with the probability of infection

equal to the observed prevalence of that type in the study pop-

ulation. Expected frequencies for each number of concurrent

HPV infections were calculated as the average frequency over

1000 stochastic simulations of 2702 observations [26]. For HR-

HPV simulations, the observed probabilities of the 14 HR-HPV

types were used to simulate the expected number of infections

with only HR-HPV types. As done elsewhere [3], all analyses

included males who were HPV positive regardless of b-globin
positivity and were conducted using SAS software, version 9.2

(SAS).

Correlates of Multiple HPV Infections

Univariate logistic regression was used to estimate odds ratios

(ORs) and 95% confidence intervals (CIs) for potential correlates

of multiple versus single HPV infections. Variables were identified

a priori as potential correlates of multiple HPV infection based on

the previous literature [3, 7, 9]. Multivariate logistic regression

was used to estimate associations between each potential correlate

and multiple HPV infections, simultaneously adjusting for all

other potential correlates.

HPV Type Associations in Multiple Infections

We used hierarchical regression analysis to obtain semi-Bayesian

estimates of the ORs [39] between the 4 vaccine-preventable HPV

types and 41 other outcome HPV types, adjusting for the po-

tential correlates of multiple HPV infections. Shrinkage methods,

such as the one we used here, reliably reduce the overall error in

the ensemble of estimates and enhance the precision of each

estimate by incorporating prior information from the study

data [40, 41]. HPV-16, 18, 6, and 11 type-specific prior means,

lj, where j 5 1–4, were estimated from the data, and their vari-

ability was propagated through hyperpriors. The lj are the av-

erage of the log OR between the individual vaccine type and

all 41 other HPV types, adjusted for age, travel to Nairobi

(in 6 months prior to baseline), bathing frequency, number of

sexual partners (in the 6 months prior to baseline), consistent

condom use (in the 6 months prior to baseline), and current

N. gonorrhoeae and C. trachomatis infections. The prior vari-

ance for each lj, s
2, was set equal to 0.17 because we assumed

that 95% of the log ORs should fall within a 5-fold range based

on previous literature [24, 26, 31, 42, 43], which corresponds to

a variance of [ln(5)/3.92]2 5 0.17.

Model estimates are reported as the exponentiated poste-

rior medians and 95% credible intervals, analogous to ad-

justed odds ratios (AORs) and corresponding 95% CIs.

Potential evidence of HPV type nonindependence is an AOR

estimate ,1.0: the odds of a nonvaccine-preventable type are

lower in men with a vaccine-preventable HPV type compared

with men without a vaccine-preventable type.

Sensitivity Analysis

The case of thebivalentHPVvaccinewas also considered; analyses

were conducted as outlined above, except HPV-16 and 18 were

considered exposure types, and the 43 other types, including

HPV-6 and 11, were considered outcome types. Further, we ex-

plored results obtained when setting s2 to 0.35 or 1.38, reflecting

a 10- and 100-fold prior 95% confidence limit. For comparison,

maximum likelihood estimates of HPV type associations are also

presented (Supplementary Table 1).

RESULTS

Among 2702 men, with a median age of 20 years (range, 17–28),

51% were HPV positive (n 5 1379). A single HPV type was

detected in 22% (n 5 592) and multiple HPV types were de-

tected in 29% (n 5 787) of men. The 5 most prevalent types

overall were HPV-16 (n 5 263; 10%), HPV-X (n 5 164; 6%),

HPV-56 (n 5 164; 6%), HPV-42 (n 5 140; 5%), and HPV-67

(n 5 139; 5%). The 5 most prevalent types within multiple

infections were HPV-16 (n 5 196; 25%), HPV-56 (n 5 135;

17%), HPV-42 (n 5 120; 15%), HPV-67 (n 5 117; 15%), and

HPV-52 (n 5 116; 15%) (Figure 1). All HPV types were more

likely to be detected as multiple infections rather than single

infections, with the exception of HPV-X, which was less likely

to be detected in the presence of other typed HPV infections

(37% multiple infections, 63% single infections).

The number of HPV types detected within an individual

ranged from 0 to 11 infections. The observed frequency of zero

HPV infections and infections with 4, 5, and 6 or more HPV

types were higher than expected under the assumption that in-

fections are independent (2-sided P value ,.01) (Table 1).

Frequencies of 1 or 2 HPV types were less than expected
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(P , .01). The distribution of observed high-risk genotype in-

fections was similar to infection with any HPV genotype.

Multiple HPV infections were more common among men who

were younger, bathed less often than daily, and had chlamydial

infection. Men were less likely to have multiple versus single HPV

type infections if they were older, or reported consistent condom

use in the previous 6 months (Table 2). The strongest in-

dependent positive correlate of multiple HPV infections was

bathing less often than daily (AOR, 2.1 [95% confidence interval,

1.0–4.4] vs daily bathing). In contrast, men who reported always

using a condom in the previous 6months had a 30% lower odds of

multiple HPV infections (AOR, 0.7 [0.5–0.9] vs inconsistent users).

In the main analysis using semi-Bayesian logistic regression,

there were no negative associations between the 4 vaccine-

preventable HPV types (HPV-16, 18, 6, and 11) and the other

41 HPV types (AORs .1.0; Table 3). Although a few negative

Figure 1. Human papillomavirus (HPV) genotype distribution of single and multiple infections, in order of descending prevalence.
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associations were observed in the semi-Bayesian models with

less precision and in the maximum likelihood models, all

confidence intervals were wide and included the null value 1.0

(Supplementary Table 1). There was no clear pattern of dif-

ferences in HPV type associations within or across HPV clades.

HPV-16 was positively associated with 17 of the 41 nonvaccine

HPV types (range of AORs, 1.7–3.6). Men with HPV-16

infection were 3.6 times as likely to also be infected with HPV-

40 compared with men without HPV-16 infection (Table 3;

AOR, 3.6 [2.4–5.2]). HPV-18 was positively associated with 33

nonvaccine types (range of AORs, 1.8–4.3) and had the

strongest association with HPV-26 (AOR, 4.3 [2.1–7.7]). For

the vaccine-preventable low-risk types 6 and 11, 12 nonvaccine

HPV types were positively associated with HPV-6, and 14 HPV

Table 1. Comparison of the Observed and Expected Number of Human Papillomavirus Types Detected

No. of HPV Genotypes

Any HPV HR-HPV

Observed Expected P Valuea Observed Expected P Valuea

0 1323 832.9 ,.01 1749 1494.3 ,.01

1 592 1002.1 ,.01 571 909.4 ,.01

2 349 581.1 ,.01 230 251.5 .15

3 194 214.6 .15 103 41.6 ,.01

4 111 57.3 ,.01 34 4.8 ,.01

5 68 11.9 ,.01 11 0.4 ,.01

$6 65 2.2 ,.01 4 0.0 ,.01

Mean (SD) 1.15 (1.60) 1.15 (1.05) 0.58 (0.96) 0.58 (0.74)

Abbreviation: HR-HPV, high-risk human papillomavirus.
a Two-sided P-value calculation: For i 5 0–61 types, let Oi be the observed number of men with i infections and let Ei be the expected number of men with i

infections (based on 1000 simulations) assuming independence. For simulated data sets j 5 1–1000, let Oij be the number of men with i infections. Then for

i 5 0–61 types, the 2-sided P value was calculated as proportion of simulated data sets where jOij-Eij.5 jOi-Eij.

Table 2. Correlates Multiple Human Papillomavirus (HPV) Infections Among 1379 Men With HPV Infection at Baselinea

Single HPV Multiple HPV Unadjusted OR (95% CI) Adjusted OR (95% CI)b

Median (IQR) Age, years 21 (19–22) 20 (19–22) 0.9 (.9–1.0) 0.9 (.9–1.0)

Recent travel to Nairobic

No 480 (81.4) 670 (85.5) ref ref

Yes 110 (18.6) 114 (14.5) 0.7 (.6–1.0) 0.7 (.5–1.0)

Bathing frequency

Daily 571 (97.6) 751 (96.3) ref ref

Less than daily 14 (2.4) 29 (3.7) 1.6 (.8–3.0) 2.1 (1.0–4.4)

Recent no. of sexual partnersc

0–1 330 (56.2) 417 (53.1) ref ref

$2 257 (43.8) 369 (47.0) 1.1 (.9–1.4) 1.1 (.9–1.4)

Recent condom usec

Not always 410 (76.2) 590 (82.9) ref ref

Always 128 (23.8) 122 (17.1) 0.7 (.5–0.9) 0.7 (.5–0.9)

Neisseria gonorrhoeae

No 565 (98.1) 754 (96.7) ref ref

Yes 11 (1.9) 26 (3.3) 1.8 (.9–3.6) 1.9 (.9–4.2)

Chlamydia trachomatis

No 551 (95.8) 723 (92.7) ref ref

Yes 24 (4.2) 57 (7.3) 1.8 (1.1–3.0) 1.7 (1.0–2.8)

Missing data: Travel to Nairobi in 6 months prior to baseline (n5 5), bathing frequency (n5 14), number of sexual partners in 6 months prior to baseline (n5 6), condom

use in 6 months prior to baseline (men reporting no sex in last 6 months included in ‘‘always’’ category; (n 5 129), N. gonorrhoeae (n 5 23), C. trachomatis (n 5 24).

Abbreviations: CI, confidence interval; HPV, human papillomavirus; IQR, interquartile range; ref, reference category for the odds ratio.
a Data are numbers (%) unless otherwise specified.
b Estimates are adjusted for all potential correlates.
c In the previous 6 months.
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Table 3. Estimated Odds Ratios Between the 4 Vaccine-Preventable Human Papillomavirus (HPV) Types and All Other Nonvaccine HPV
Types Among All Men

HPV-16, AOR (95% CI)a HPV-18, AOR (95% CI)a HPV-6, AOR (95% CI)a HPV-11, AOR (95% CI)a

Clade A3

HPV-61 2.2 (.9–4.5) 2.7 (1.1–5.5) 2.0 (.8–4.0) 2.3 (.9–4.7)

HPV-72 2.7 (1.3–4.8) 2.6 (1.2–4.9) 1.8 (.8–3.4) 2.7 (1.2–5.2)

HPV-81 1.7 (1.0–2.8) 2.4 (1.2–4.0) 2.8 (1.5–4.7) 1.8 (.8–3.3)

HPV-83 1.8 (.9–3.0) 2.8 (1.4–5.0) 1.9 (.9–3.5) 2.6 (1.2–4.8)

HPV-84 1.8 (.8–3.4) 2.2 (1.0–4.3) 1.8 (.8–3.5) 2.1 (.9–4.3)

HPV-89 1.7 (1.0–2.9) 2.5 (1.3–4.2) 1.5 (.7–2.8) 1.9 (.9–3.5)

Clade A5

HPV-26 1.7 (.8–3.1) 4.3 (2.1–7.7) 1.7 (.8–3.3) 2.6 (1.1–5.1)

HPV-51 2.2 (1.4–3.4) 1.8 (1.0–3.1) 2.1 (1.1–3.6) 1.8 (.9–3.2)

HPV-69 2.5 (1.4–4.2) 2.8 (1.4–5.0) 1.9 (.9–3.6) 1.8 (.8–3.4)

HPV-82 1.5 (.7–2.7) 2.3 (1.0–4.3) 1.8 (.8–3.5) 2.7 (1.2–5.2)

Clade A6

HPV-53 2.6 (1.3–4.6) 2.3 (1.0–4.2) 1.8 (.8–3.4) 2.3 (1.0–4.5)

HPV-56 2.1 (1.4–3.0) 1.9 (1.1–2.9) 2.9 (1.8–4.3) 2.4 (1.3–3.9)

HPV-66 2.0 (1.3–3.0) 2.3 (1.3–3.5) 1.8 (1.0–2.9) 1.7 (.8–2.9)

Clade A7

HPV-39 2.1 (1.2–3.4) 2.2 (1.1–3.9) 2.0 (1.0–3.5) 2.4 (1.1–4.4)

HPV-45 1.7 (1.1–2.6) 2.9 (1.7–4.6) 2.0 (1.1–3.3) 2.8 (1.5–4.9)

HPV-59 2.3 (1.5–3.5) 2.9 (1.7–4.6) 1.7 (.9–2.9) 2.4 (1.2–4.2)

HPV-68 1.3 (.7–2.2) 2.1 (1.0–3.9) 1.6 (.7–2.9) 2.1 (.9–4.0)

HPV-70 1.6 (.9–2.6) 1.7 (.9–3.0) 1.3 (.6–2.4) 2.0 (1.0–3.8)

Clade A9

HPV-31 2.9 (1.9–4.2) 2.8 (1.6–4.4) 1.6 (.8–2.7) 1.8 (.9–3.2)

HPV-33 1.9 (1.0–3.1) 2.6 (1.3–4.5) 1.4 (.7–2.6) 2.5 (1.1–4.6)

HPV-35 2.5 (1.6–3.7) 1.9 (1.1–3.1) 2.4 (1.4–3.9) 2.0 (1.0–3.4)

HPV-52 1.7 (1.1–2.5) 2.3 (1.3–3.6) 3.4 (2.1–5.3) 1.9 (1.0–3.3)

HPV-58 2.6 (1.7–3.9) 2.3 (1.3–3.6) 1.7 (.9–2.8) 1.9 (.9–3.2)

Clade A10

HPV-44 2.1 (.9–4.2) 2.7 (1.1–5.5) 2.0 (.8–4.0) 2.3 (.9–4.6)

HPV-55 1.5 (.8–2.6) 2.0 (1.0–3.5) 2.6 (1.3–4.5) 2.6 (1.2–4.8)

Clade A11

HPV-34 2.0 (.9–4.0) 3.1 (1.3–6.3) 2.0 (.8–4.1) 2.3 (.9–4.6)

HPV-64 2.1 (.9–4.2) 2.7 (1.1–5.5) 2.0 (.8–4.0) 2.3 (.9–4.6)

HPV-73 2.2 (1.2–3.5) 3.0 (1.6–5.1) 2.0 (1.0–3.6) 2.3 (1.1–4.2)

Other

HPV-30 1.7 (.9–2.9) 3.1 (1.5–5.3) 1.7 (.8–3.1) 2.3 (1.0–4.3)

HPV-32 1.7 (.9–2.9) 2.3 (1.1–4.0) 2.4 (1.2–4.3) 2.3 (1.0–4.3)

HPV-40 3.6 (2.4–5.2) 2.2 (1.3–3.5) 2.0 (1.1–3.3) 2.4 (1.2–4.2)

HPV-42 2.1 (1.4–3.0) 2.3 (1.3–3.6) 2.0 (1.2–3.2) 2.6 (1.4–4.4)

HPV-43 1.7 (1.1–2.6) 2.3 (1.3–3.7) 3.0 (1.7–4.8) 2.0 (1.0–3.6)

HPV-54 1.4 (.7–2.6) 2.6 (1.2–4.7) 1.8 (.8–3.4) 2.0 (.9–3.9)

HPV-57 2.2 (.9–4.5) 2.7 (1.1–5.5) 2.0 (.8–4.0) 2.3 (.9–4.7)

HPV-67 2.4 (1.6–3.4) 1.8 (1.1–2.9) 2.6 (1.5–4.1) 2.0 (1.0–3.5)

HPV-71 2.2 (0.9–4.5) 2.7 (1.1–5.5) 2.0 (.8–4.0) 2.3 (.9–4.7)

HPV-85 2.0 (.9–3.8) 2.8 (1.2–5.6) 2.1 (.9–4.3) 2.2 (.9–4.5)

HPV-86 1.8 (.9–3.4) 3.2 (1.5–6.1) 1.7 (.7–3.2) 2.4 (1.0–4.7)

HPV-JC9710 1.8 (1.1–2.6) 2.8 (1.7–4.3) 1.5 (.8–2.5) 2.1 (1.1–3.7)

HPV-X 1.2 (.8–1.8) 1.7 (1.0–2.7) 1.7 (1.0–2.7) 1.3 (.6–2.3)

Abbreviations: AOR, adjusted odds ratio; CI, confidence interval.
a ORs for pairwise associations are adjusted for age, travel to Nairobi (in previous 6 months), bathing frequency, number of sexual partners (in previous 6 months),

consistent condom use (in previous 6 months), and current Neisseria gonorrhoeae and Chlamydia trachomatis infection.
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types were positively associated with HPV-11. HPV-52 was

most strongly associated with HPV-6 (AOR, 3.4 [2.1–5.3]), and

HPV-45 was most strongly associated with HPV-11 (AOR, 2.8

[1.5–4.9]). Results from models including only HPV-16 and

HPV-18 as the vaccine-preventable types were almost identical to

the 4 vaccine type models (Supplementary Table 2). Additional

positive associations between low-risk types HPV-6 and HPV-11

with HPV-16 and HPV-18 were observed. When analyses were

restricted to HPV-positive men, point estimates tended to be

closer to the null, and HPV type associations appeared not to

differ within or across HPV clades (Table 4). HPV-40 (AOR, 2.1

[1.4–2.9]) and HPV-26 (AOR, 3.4 [1.7–5.8] remained the HPV

types most strongly associated with HPV-16 and HPV-18,

respectively.

DISCUSSION

Half of all uncircumcised, HIV-negative men in this study from

Kenya were infected with at least 1 HPV type at baseline. Nearly

30% of surveyed men had multiple penile HPV type infections,

with HPV-16 and 18 accounting for .25% of all infections. If

prevalent carcinogenic HPV-16 and 18 infections were prevented

by mass vaccination, there is a theoretical possibility that this

could result in other HR-HPV types filling the ecological niche of

HPV-16 and/or 18 [44]. Because there are reported differences in

genotype distributions across sexes and geographical regions

[5, 32, 45], the potential for HPV type replacement could differ

across study populations. The present study represents, to our

knowledge, the first detailed investigation of multiple HPV in-

fections and type associations within a cohort of young men from

Africa. Using a cross-sectional study design, we did not find any

negative associations between vaccine-preventable types HPV 16,

18, 6, and 11, and 41 nonvaccine-preventable HPV types.

All HPV genotypes were more likely to be detected as multiple

rather than single-type infections. Further, all associations be-

tween HPV types were positive, suggesting that men who be-

come infected are more likely to have .1 HPV infection,

possibly due to host behavioral or immunological factors [7, 26,

31]. When analyses were restricted to HPV-infected men, as-

sociations between specific HPV types generally shifted closer

toward 1.0, which suggests that specific HPV types are not as-

sociated with one another. We also observed a higher number of

men than expected with $4 HPV type infections, suggesting

that individual HPV infections were not independent from each

other. This is likely due to the fact that men with $4 HPV

infections reported less condom use in the last 6 months and

more lifetime partners than did men with fewer HPV infections.

These observations inmen are consistent with results from studies

among women [42, 46, 47]. Numerous prospective studies have

found that women with HPV infection at baseline are more likely

to acquire additional HPV types [7, 23, 26, 31, 43] and that

acquisition of multiple HPV types occurs more often than

expected [7, 24, 26]. Therefore, it is likely that the observed

pattern of number and types of HPV infections reflect differences

in HPV persistence or acquisition in men with multiple in-

fections.

Positive associations between HPV types were observed yet

appeared not to be type-specific. Our results among Kenyan

men are consistent with a prospective study of American female

college students that found no 2 HPV types are more likely to be

acquired together than any other HPV types [26]. Most studies

that have examined HPV type associations in women have re-

ported positive or no associations between HPV types, regard-

less of the pairwise combinations, analytical methods, HPV

genotyping methods, or study population [26, 46]. However,

among female colposcopy clinic attendees in Italy, where the ge-

notype distribution likely differs compared to the general pop-

ulation, coinfection with species A7 and A10 and with HPV-31

and 52 occurred less often than expected [48]. A large cross-

sectional study of Danish women referred for testing based on

clinical suspicion of infection found that HPV-51 was negatively

associated with HPV-16 [42].

In this large sample of men with an HPV prevalence of 50%,

we examined type-type associations, even for rarer HPV types,

using semi-Bayesian methods that incorporated a shrinkage

factor. We chose shrinkage methods because they allowed us to

include all 4 vaccine types and numerous potential confounders

in each model. In addition, these methods serve as an adjust-

ment for multiple comparisons [49] and reduce the number of

spurious associations as compared with maximum likelihood

methods [50]. There is, however, a trade-off between precision

and bias in methods that incorporate a shrinkage factor [40].We

therefore conducted sensitivity analyses to understand the effect

of our statistical model choices and to compare our results with

other studies that used maximum likelihood estimation [42, 46,

47]. Different methods to analyze our data resulted in wider

confidence intervals and, in some cases, nonsignificant ORs

,1.0. However, all methods resulted in the same conclusions

regarding the lack of evidence of negative associations between

prevalent HPV type infections in men. As in previous studies

[42, 46–48], we made multiple comparisons across outcomes,

which can increase the possibility of falsely concluding that

certain HPV types are associated. By including all 4 vaccine types

in each of our models, the number of comparisons was reduced

compared with other pairwise analyses [24, 42, 43, 46, 47].

In the present study, we could only determine if the number

and type of HPV infections were independent. The causes of

nonindependence may be differences in host susceptibility,

the distribution of HPV genotypes among female sexual

partners, primer competition during PCR detection, or mo-

lecular interactions between HPV types that inhibit infection

with other HPV types (type competition). Although we were

able to control for several measured confounders, it is likely

that there is residual confounding by other unmeasured
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Table 4. Estimated Odds Ratios Between the 4 Vaccine-Preventable Human Papillomavirus (HPV) Types and All Other Nonvaccine HPV
Types Among Men With at Least 1 HPV Infection

HPV-16, AOR (95% CI)a HPV-18, AOR (95% CI)a HPV-6, AOR (95% CI)a HPV-11, AOR (95% CI)a

Clade A3

HPV-61 2.1 (.9–4.4) 2.8 (1.1–5.8) 2.1 (.8–4.2) 2.3 (1.0–4.8)

HPV-72 2.1 (1.0–3.6) 2.3 (1.1–4.3) 1.6 (.7–3.1) 2.4 (1.1–4.7)

HPV-81 1.1 (.7–1.8) 1.7 (.9–2.8) 2.0 (1.1–3.3) 1.5 (.7–2.6)

HPV-83 1.2 (.7–2.0) 2.1 (1.1–3.7) 1.6 (.8–2.8) 2.2 (1.1–4.0)

HPV-84 1.5 (.7–2.7) 2.0 (.9–3.8) 1.6 (.7–3.0) 2.0 (.9–3.9)

HPV-89 1.2 (.7–1.8) 1.8 (1.0–3.0) 1.2 (.6–2.1) 1.6 (.8–2.8)

Clade A5

HPV-26 1.3 (.7–2.2) 3.4 (1.7–5.8) 1.5 (.7–2.8) 2.3 (1.1–4.4)

HPV-51 1.3 (.8–2.0) 1.3 (.7–2.1) 1.5 (.8–2.4) 1.4 (.7–2.4)

HPV-69 1.8 (1.0–2.8) 2.2 (1.1–3.7) 1.6 (.8–2.8) 1.6 (.7–2.9)

HPV-82 1.2 (.6–2.2) 1.9 (.9–3.6) 1.6 (.7–3.0) 2.4 (1.1–4.6)

Clade A6

HPV-53 1.9 (1.0–3.4) 1.9 (.9–3.5) 1.6 (.7–3.0) 2.1 (1.0–4.0)

HPV-56 1.2 (.8–1.6) 1.2 (.7–1.8) 1.8 (1.1–2.6) 1.7 (.9–2.7)

HPV-66 1.1 (.8–1.6) 1.5 (.9–2.2) 1.2 (.7–1.8) 1.2 (.6–2.1)

Clade A7

HPV-39 1.4 (.8–2.2) 1.7 (.9–2.9) 1.5 (.8–2.6) 2.0 (1.0–3.6)

HPV-45 1.1 (.7–1.6) 1.9 (1.1–3.0) 1.4 (.8–2.2) 2.1 (1.1–3.5)

HPV-59 1.4 (.9–2.1) 2.0 (1.2–3.1) 1.2 (.7–2.0) 1.8 (.9–3.1)

HPV-68 0.9 (.5–1.6) 1.7 (.8–2.9) 1.3 (.6–2.3) 1.8 (.8–3.2)

HPV-70 1.0 (.6–1.6) 1.3 (.7–2.2) 1.0 (.5–1.8) 1.7 (.8–3.0)

Clade A9

HPV-31 1.7 (1.1–2.4) 1.9 (1.1–3.0) 1.1 (.6–1.9) 1.4 (.7–2.4)

HPV-33 1.3 (.7–2.0) 1.9 (1.0–3.2) 1.2 (.6–2.1) 2.0 (1.0–3.6)

HPV-35 1.4 (.9–2.1) 1.3 (.8–2.1) 1.6 (1.0–2.5) 1.5 (.8–2.5)

HPV-52 1.0 (.6–1.4) 1.5 (.9–2.3) 2.1 (1.3–3.2) 1.4 (.8–2.5)

HPV-58 1.5 (1.0–2.2) 1.6 (.9–2.4) 1.2 (.7–1.9) 1.5 (.7–2.5)

Clade A10

HPV-44 2.0 (.8–4.1) 2.7 (1.1–5.5) 2.0 (.8–4.0) 2.3 (.9–4.8)

HPV-55 1.1 (.6–1.8) 1.5 (.8–2.7) 2.0 (1.0–3.4) 2.1 (1.0–3.9)

Clade A11

HPV-34 1.9 (.8–3.9) 3.1 (1.3–6.3) 1.9 (.8–3.8) 2.3 (.9–4.7)

HPV-64 2.0 (.8–4.1) 2.7 (1.1–5.5) 2.0 (.8–4.0) 2.3 (.9–4.8)

HPV-73 1.4 (.8–2.3) 2.2 (1.2–3.6) 1.6 (.8–2.6) 1.9 (.9–3.4)

Other

HPV-30 1.2 (.7–2.0) 2.3 (1.2–3.9) 1.4 (.7–2.4) 1.9 (.9–3.5)

HPV-32 1.2 (.7–2.0) 1.7 (.9–3.0) 1.9 (.9–3.2) 1.9 (.9–3.6)

HPV-40 2.1 (1.4–2.9) 1.6 (.9–2.5) 1.4 (.8–2.3) 1.8 (1.0–3.1)

HPV-42 1.2 (.8–1.7) 1.5 (.9–2.2) 1.3 (.8–2.0) 1.9 (1.0–3.0)

HPV-43 1.0 (.7–1.5) 1.5 (.9–2.4) 2.0 (1.2–3.0) 1.5 (.8–2.6)

HPV-54 1.1 (.6–2.0) 2.1 (1.0–3.9) 1.5 (.7–2.9) 1.8 (.8–3.4)

HPV-57 2.1 (.9–4.4) 2.8 (1.1–5.8) 2.1 (.8–4.2) 2.3 (1.0–4.8)

HPV-67 1.3 (.9–1.9) 1.2 (.7–1.9) 1.7 (1.0–2.5) 1.5 (.8–2.5)

HPV-71 2.1 (.9–4.4) 2.8 (1.1–5.8) 2.1 (.8–4.2) 2.3 (1.0–4.8)

HPV-85 1.8 (.8–3.4) 2.6 (1.2–5.2) 2.0 (.9–4.0) 2.1 (.9–4.2)

HPV-86 1.5 (.7–2.8) 2.7 (1.3–5.2) 1.5 (.7–2.9) 2.2 (1.0–4.3)

HPV-JC9710 1.0 (.7–1.5) 1.8 (1.1–2.7) 1.0 (.6–1.6) 1.6 (.8–2.6)

HPV-X 0.7 (.4–.9) 1.1 (.6–1.7) 1.1 (.6–1.6) 0.9 (.5–1.6)

Abbreviations: AOR, adjusted odds ratio; CI, confidence interval.
a ORs for pairwise associations are adjusted for age, travel to Nairobi (in previous 6 months), bathing frequency, number of sexual partner (in previous 6 months),

consistent condom use (in previous 6 months), and current Neisseria gonorrhoeae and Chlamydia trachomatis infection.
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behavioral risk factors, immunological differences between

men [7, 26], and HPV-type exposure from female sexual

partners. In populations where negative associations between

HPV types are observed, molecular studies and prospective

studies of couples are needed to address whether these asso-

ciations are likely due to true biological type competition or

competition for consensus primers.

Our study has additional limitations to consider when in-

terpreting the findings. We detected 103 single HPV-X in-

fections. If HPV-X represents multiple untyped infections, our

reported prevalence of multiple infections and the number of

HPV types detected are an underestimation. The likely impact of

untyped HPV infections on the conclusions regarding HPV-type

competition is minimal because inferences are mainly drawn

from type-specific analyses. In addition, the prevalence and the

type distribution of HPV has been shown to differ by circum-

cision status; thus, the results from this cohort of uncircumcised

men may not be generalizable to circumcised populations

[6, 11]. No participants received HPV prophylactic vaccination,

so we could only observe differences between individuals who

were naturally HPV uninfected and infected with HPV-16, 18, 6,

and 11. Given the cross-sectional design, it is also not known

whether infection with specific HPV types affects HPV acqui-

sition or HPV persistence of additional HPV types.

With the recent approval of HPV vaccination in men [33],

these data fill an important gap in our knowledge of the dis-

tribution and associations between HPV types in multiple in-

fections among men. Future prospective studies in populations

pre- and postvaccination are needed to observe the natural

history of multiple infections and assess the long-term potential

for HPV type replacement.
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