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Background. Nonspecific T-cell hyperactivation is the main driving force for human immunodeficiency virus

(HIV)–1 disease progression, but the reasons why the excess immune response is not properly shut off are poorly

defined.

Methods. Eighty-five HIV-1–infected individuals were enrolled to characterize B and T lymphocyte attenuator

(BTLA) expression and function. Infection and blockade assays were used to dissect the factors that influenced

BTLA signaling in vitro.

Results. BTLA expression on overall CD41 and CD81 T cells was progressively decreased in HIV-1

infection, which was directly correlated with disease progression and CD41 T-cell differentiation and activation.

BTLA1CD41 T cells from HIV-1–infected patients also displayed an altered immune status, which was indicated

by reduced expression of naive markers but increased activation and exhaustion markers. Cross-linking of BTLA

can substantially decrease CD41 T-cell activation in vitro. This responsiveness of CD41 T cells to BTLA-

mediated inhibitory signaling was further found to be impaired in HIV-1–infected patients. Furthermore, HIV-1

NL4-3 down-regulated BTLA expression on CD41 T cells dependent on plasmacytoid dendritic cell (pDC)-

derived interferon (IFN)-a. Blockade of IFN-a or depletion of pDCs prevents HIV-1-induced BTLA down-

regulation.

Conclusions. HIV-1 infection potentially impairs BTLA-mediated signaling dependent on pDC-derived IFN-a,
which may contribute to broad T-cell hyperactivation induced by chronic HIV-1 infection.

A chronic generalized immune activation is now

increasingly being recognized to be the main driving

force for T-cell depletion, loss of antiviral immunity,

and disease progression during chronic human

immunodeficiency virus (HIV)-1–infection [1, 2].

Clinical evidence has indicated that T-cell activation

levels are predictive of an adverse prognosis for the

HIV-1–infected patients [3, 4]. Additional evidence

for this pathogenesis is the lack of disease progression

in simian immunodeficiency virus (SIV)-infected

monkeys that quickly down-regulate the initial in-

flammatory response upon SIV infection [5]. Addi-

tional studies indicated that the immune activation is

driven directly by T cells that, in a cognate fashion,

recognize HIV-1 proteins [6], by activation of plas-

macytoid dendritic cells (pDCs) through Toll-like

receptors (TLRs) [7] and by bacterial products

translocated from gut to blood [8]. Thus, excess

immune activation has been regarded as deleterious to

the host; the interventions to temper immune hyper-

activation, therefore, may prevent disease progression

to AIDS. However, it is still unknown why this excess
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immune activation cannot be limited or properly shut off

during HIV-1 infection.

Recently, some cell-surface costimulatory molecules have

been demonstrated to have a substantial impact on the T-cell

activation [9]. These cosignaling pathways play overlapping

and distinct regulatory roles for each lymphocyte subset

during their various stages of immune response, such that

immune responses occur in the correct intensity and manner

[9]. In particular, some immune-inhibitory molecules, such

as PD-1 [10–13], CTLA-4 [14], and Tim-3 [15], have been

implicated mediators of T-cell exhaustion during chronic

HIV-1 infection. Other studies have further shown that ex-

hausted T cells in fact express many coinhibitory molecules

[16], and these coinhibitory receptors regulate T-cell re-

sponses through multiple, complex patterns [17]. Although

these pioneering studies clearly indicate that coinhibitory

signaling mediates T-cell exhaustion and partially leads to

HIV-1 persistence, it is necessary to define whether these

inhibitory pathways experience functional deficits that may

be responsible for the immune hyperactivation in chronic

HIV-1 infection.

B and T lymphocyte attenuator (BTLA, CD272), the most

recently recognized member of the CD28 family, is primarily

expressed by the majority of lymphocytes [18]. Interaction

with its ligand, herpes virus entry mediator (HVEM) induces

tyrosine phosphorylation of immunoreceptor tyrosine-based

inhibition motifs [19] and attenuates T-cell activation [20].

In vitro, BTLA ligation can send a constitutive ‘‘off’’ signal to

T cells and maintain T-cell tolerance [21–23]. BTLA-de-

ficient mice generally develop exacerbated disease, suggest-

ing that BTLA predominantly regulates immune responses

negatively [24, 25]. In human diseases, BTLA was found to

be persistently expressed by melanoma tumor antigen-spe-

cific CD8 T cells, thus inhibiting their anti-tumor function

[26]. These studies have defined the inhibitory roles of BTLA

in regulating immune responses; however, little is known

regarding the functional role of BTLA in chronic HIV-1

infection.

Our previously preliminary data indicated that BTLA was

down-regulated and associated with the decrease in CD41 T-

cell counts and the increase of plasma HIV-1 loads [27]. The

present study greatly extends our previous data and further

confirms that BTLA expression on T cells is progressively

down-regulated during chronic HIV-1 infection. The BTLA

down-regulation was dependent on pDC-derived interferon

(IFN)-a induced by HIV-1 isolates in vitro and that it im-

paired BTLA-mediated inhibitory signaling on CD41 T-cell

activation, thus contributing to broad T-cell activation in

chronic HIV-1 infection. Enhancing BTLA function may

therefore present an alternative therapeutic strategy for

overcoming aggressive immune activation in chronic HIV-1

infection.

SUBJECTS, MATERIALS, AND METHODS

Subjects
Eighty-five HIV-1–infected individuals were enrolled in our

study. They were divided into 3 groups according to their in-

fection status (Table 1.) [12, 28]. Twenty-six HIV-1–uninfected

subjects were used as healthy control subjects. All HIV-

1–infected subjects were divided into 3 groups, including a

cohort of 14 long-term nonprogressors (LTNPs; defined as

those who had a persistent peripheral CD41 T-cell count

. 500 cells/lL and plasma HIV-1 RNA level , 500 copies/mL,

who had received no antiretroviral therapy, and who had

experienced no clinical signs of disease forR10 years), 44 typical

progressors (defined as those who exhibited a typical progressive

disease with peripheral CD41 T-cell counts .200 cells/lL
and plasma HIV-1 RNA level .1000 copies/mL, without

receiving antiviral treatment, and no AIDS-defining condition),

and 27 patients with AIDS (defined as those who had an AIDS-

defining condition, according to theWorld Health Organization

classification, including a progressive decrease in peripheral

CD41 T-cell counts to , 200 cells/lL and a plasma viral RNA

level . 1000 copies/mL, without receipt of antiviral treatment,

and present or previous opportunistic infections). The majority

of these individuals (89.4%) were paid blood donors who had

become infected through illegal blood collection during the

period 1994–1995, whereas other patients had been infected

with HIV-1 via sexual transmission. The study protocol was

approved by the ethics committee of our unit, and written

informed consent was obtained from each subject.

Antibodies and Reagents
All antibodies were purchased from BD Biosciences, except

for biotinylated anti-BTLA (clone MIH26); its isotype control

antibody IgG2a-Biotin, allophycocyanin (APC)-, and phy-

coerythrin (PE)-conjugated streptavidin (eBioscience); and

APC-conjugated major histocompatibility complex class I

pentamers (ProImmune), which are reported to be frequently

targeted by HIV-1–specific T cells (p17 gag; SLYNTVATL,

SL9) [29], cytomegalovirus (CMV; pp65 495–503;

NLVPMVATV, NV9), or influenza virus epitopes (matrix 58-

66; GILGFVFTL, GL9) [30]. Anti-HLA-A2 Ab (Catalog

Number: 551285, clone BB7.2; BD Pharmingen) was used to

determine genotypes of the enrolled subjects. The pentamer

analysis was limited to 36 of HLA-A2–positive subjects, in-

cluding 12 healthy subjects, 7 LTNPs, and 17 typical pro-

gressors/patients with AIDS. All HIV-1 isolates were prepared

according to previous described protocols [31]. Anti-HIV

drug nevirapine, HIV-1 gp120 monoclonal antibody (IgG1

B12), and monoclonal antibodies against human IFN-a and

IFN-b were obtained through the National Institutes of

Health AIDS Research and Reference Reagent Program.

Chloroquine was obtained commercially (Sigma-Aldrich).
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Cytokines IFN-a, interleukin (IL)–1b, IL-6, IL-17, IL-7, and
IL-15 were purchased from Peprotec, and anti-IFN-a/b
receptor chain 2 Ab (anti-IFN-aR) was purchased from R&D

Systems.

Cell Isolation and Phenotypic Analysis
Peripheral blood mononuclear cells (PBMCs) were isolated

from freshly heparinized blood, and CD41 T cells were purified

by positive selection using the MiniMACS system (Miltenyi

Biotech). In pDC depletion experiments, PBMCs were labeled

with fluorescein isothiocyanate (FITC)-conjugated anti-BDCA-2

and APC-conjugated anti-CD123 (Miltenyi Biotech) and were

then sorted using a FACSAria cell sorter (Becton Dickinson).

Isolated memory CD41 T cell and pDC populations were

.95% in purity, whereas pDC-depleted PBMCs just contained

few pDCs (,0.001% BDCA-21CD1231 pDCs).

PBMCs were labeled with anti-CD3-peridin chlorophyll

protein (PerCP), anti-CD4 or anti-CD8-FITC, anti-CD8 or

pentamer-APC, and anti-BTLA-PE for measuring BTLA ex-

pression on total T-cells subsets or on virus-specific CD81

T cells. For CD41 T subset staining, PBMCs or purified CD41

T cells were incubated with a cocktail of antibodies: CD4-PerCP,

BTLA-PE, CD45RO-APC, and CD27-FITC. To characterize

the phenotypes of BTLA1 and BTLA–CD41 T cells, PBMCs

were stained with anti-CD3-FITC, anti-CD4-PerCP, anti-BTLA-

APC, and PE-conjugated anti-CD127, anti-CD38, anti-PD-1,

anti-CD95, anti-ki67, and corresponding isotype antibodies.

The cells were then washed, fixed, and analyzed using a FACS-

Calibur flow cytometer (Becton Dickinson) and FlowJo software

(TreeStar).

CD41 T-Cell Activation and Functional Analysis
Freshly isolated PBMCs were stimulated with anti-CD3/CD28

antibodies (each 1 lg/mL) in medium, plus either plate-coated

anti-BTLA (10 lg/mL; clone MIH26, eBioscience, San Diego,

CA) or isotype antibodies for 24 hours. The cells were then

collected, and CD69, CD38 and CD25 expressions were analyzed

by FACS. PBMCs were also stimulated with anti-CD3/CD28

antibodies (each 1 lg/mL) or PMA/ionomycin (50 ng/mL and

1 lg/mL, respectively), plus either plate-coated anti-BTLA

(10 lg/mL) or isotype antibodies for 6 h. GolgiStop (BD

PharMingen) was added into cells after 2 h of stimulation.

The cells were then labeled with surface antibodies and in-

tracellular anti-IFN-c-FITC and anti-IL-2-APC, as previously

described [12, 30].

Cytokine Stimulation and HIV-1 Infection Assay
PBMCs from healthy subjects were stimulated with IFN-a
(1000 IU/mL), with or without anti-IFN-a/b receptor chain 2

(10 lg/mL), IL-7, IL-15, IL-1b, IL-6, and IL-17 for 5 days. The

cells were then washed and were detected BTLA expression was

detected on T cells. For the HIV-1 infection assay, fresh PBMCs

(13 106 cells/mL) were incubated in 96-well plates with 100 lL
mock or diluted HIV-1 R3A, R3B, and NL4-3 (50 ng/mL p24

antigen) virus supernatants, along with the anti-HIV-1 reagents

anti-IFN-a/b (5 ng/mL), B12 IgG (10 lg/mL), nevirapine

(5 lmol/L), and chloroquine (50 lmol/L) in the presence of

IL-2 (20 U/mL) for 3 days. Alternatively, PBMCs, PBMCs-

pDCs, CD41 T cells, and CD41 T cells plus pDCs (10:1) were

incubated with NL4-3 isolates for 5 days. The cells were then

collected for evaluation of BTLA expression on CD4 T cells

with use of FACS-Calibur. 7-AAD was used to exclude dead

cells. At least 10,000 live cells were acquired per run.

Semi-quantitative Real-time Polymerase Chain Reaction
Total RNA was extracted from the isolated total or CD41 T-cell

subsets using an RNAeasy Mini Kit (Qiagen). Total RNA was

extracted and then reversed-transcribed to cDNA using oligo (dT)

with avian myeloblastosis virus reverse transcriptase (Invitrogen)

at 42�C for 30 min and 95�C for 5 min. The quantitative

expressions of BTLA transcripts were subsequently determined

using fluorogenic dye SYBR Green and primers. Glyceraldehyde

Table 1. Characteristics of Subjects in the Study

Characteristic

Healthy control

subjects

Long-term

nonprogressors Typical progressors Patients with AIDS

No. of subjects 26 14 44 27

Age, median years (range) 32 (19–31) 36 (26–43) 45 (32–56) 49 (25–61)

Sex, no. of men/no. of women 17/9 8/6 34/10 17/10

CD41 T-cell count, median cells/lL
(range)

NA 569 (507–1020)a 339 (203–482)a 112 (55–189)

HIV-1 load, median copies/ mL (range) NA ,500a 38,000
(1800–1,200,000)a

43,000
(5500–8,500,000)

Infection route

Blood transfusion NA 14 40 23

Sex NA 1 4 4

NOTE. NA, not applicable
a P , .05, compared with patients with AIDS.
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3-phosphate dehydrogenase was used to normalize the samples in

each PCR reaction. Bothmelting-curve and gel-migration analyses

were used to ensure the absence of nonspecific and primer-dimer

products. The results are expressed as relative mRNA quantifica-

tion calculated using the 22DCt method.

Statistical Analysis
All data were analyzed using SPSS software (SPSS Inc). The

Kruskal–Wallis H nonparametric test was performed for mul-

tiple comparisons among R3 groups. Statistical differences

between 2 groups were determined by the Mann–Whitney

nonparametric U test. Data from the same individuals were

compared by the Wilcoxon matched-pairs t test. Correlations

between variables were evaluated using the Spearman rank

correlation test. For all tests, a P value of ,.05 was considered

statistically significant.

RESULTS

BTLA Expression Is Progressively Down-regulated by All
T Cells in Patients With Chronic HIV-1 Infection
We first determined BTLA expression profiles at cellular levels in

healthy donors, and we found that BTLA was mainly expressed by

B cells, CD41 T cells and CD81 T cells, NKT cells, and monocytes

rather than on NK cells (data not shown). We further monitored

BTLA expression on both CD41 and CD81 T cells in 85 HIV-

1–infected individuals and 27 healthy subjects (Figure 1A). We

found that BTLA expression on T cells was significantly down-

regulated in HIV-1–infected subjects, compared with healthy

subjects. Importantly, LTNPs exhibited higher levels of BTLA

expression on CD41 and CD81 T cells than did typical

progressors and patients with AIDS, while the lowest levels of

BTLA expression on T cells were observed in patients with AIDS

Figure 1. B and T lymphocyte attenuator (BTLA) expression on human T cells during chronic human immunodeficiency virus (HIV)-1–infection. A,
Representative dot plots of BTLA staining in T cells isolated from healthy subjects and HIV-1–infected individuals. Values in the upper-left and upper-right
quadrants represent the percentages of CD41 T cells and CD81 T cells that express BTLA, respectively. B and C, Statistical analysis of BTLA percentage
and mean fluorescence intensity in CD41 T cells (B) and CD81 T cells (C) in healthy control subjects (HC; n5 26), long-term nonprogressors (LTNP; n5
14), typical progressors (TP; n 5 44), and patients with AIDS (n 5 27). D, Representative gel analysis of semi-quantitative real-time polymerase chain
reaction products of BTLA mRNA transcripts extracted from purified CD41 T cells from 2 HIV-1 infected TPs and 2 HCs. P, patient; H, healthy subject. E,
Statistical analysis of BTLA mRNA expression in CD41 T cells from HIV-1-infected TPs/patients with AIDS (n5 11) and HCs (n5 5). F, Representative dot
plots of BTLA-expressing HIV-, cytomegalovirus (CMV)-, or influenza virus–specific CD81 T cells from HIV-1-infected patients and HCs. Values in the
upper-right quadrant represent the percentage of pentamer-positive CD81 T cells that express BTLA. G, The frequency and mean fluorescence of BTLA
expressed on HIV-, CMV-, or influenza virus–specific CD81 T cells in the different study groups. In panels B, C, E, and G, each dot represents 1 individual,
and horizontal bars represent the median values. Multiple comparisons were made using the Kruskal-Wallis H nonparametric test among the different
groups. The Mann-Whitney U test was used to compare data from 2 different groups. The significant P values are shown.
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(Figure 1B and 1C). We also found that BTLA mRNA expression

in purified CD41 T cells was also significantly lower in HIV-

1–infected patients than in healthy subjects (Figure 1D and 1E).

The data clearly indicate that BTLA expression on T-cell subsets is

progressively down-regulated during chronic HIV-1 infection.

Next, we found that BTLA expression was similar in HIV-

1–specific versus CMV-specific and influenza-specific pentam-

er-positive CD81 T cells in typical progressors/patients with

AIDS (Figure 1F). As compared with healthy subjects, BTLA

expression on both CMV-specific and influenza virus-specific

pentamer-positive cells was significantly reduced in typical pro-

gressors/patients with AIDS (Figure 1F and 1G). These data in-

dicate that BTLA expression is also progressively down-regulated

in HIV-specific CD81 T cells during HIV-1 infection.

BTLA Down-regulation on CD4 T Cells Is Associated With
Disease Progression and Immune Activation in Chronic HIV-1
Infection
We further examined the relationships between BTLA expression

on T cells and plasma viral load, peripheral CD41 T-cell counts

and CD38 expression on CD8 T cells, which has been widely used

as an activation marker predicting disease progression in HIV-1

infection [1, 3]. We found that the BTLA1 cell percentage in

total CD41 T cells was positively correlated with peripheral CD41

T cell count but inversely correlated with plasma viral load and

CD38 expression on CD81 T cells (Figure 2A). Simultaneously,

we also found that BTLA expression on total CD41 T cells was

negatively correlated with PD-1 [10, 12] and Ki67 [32] expression

levels, but it was positively correlated with CD127 [33] expression

in typical progressors/patients with AIDS (Figure 2B). These

data indicate that BTLA down-regulation in CD41 T cells can

potentially serve as a marker of disease progression and immune

hyperactivation in HIV-1 infection.

BTLA Expression Is Down-regulated in Various Differentiated
CD41 T-Cell Subsets in HIV-1 Infection
We then examined the distribution of BTLA expression in

CD41 naive T cell (Tn), central memory T cell (Tcm), and

effector memory T cell (Tem) subsets on the basis of CD45RO

and CD27 expression [34]. As in our previous report [12],

chronic HIV-1 infection leads to a significant decrease in naive

CD41 T-cell subset levels but a continuous increase in memory

CD41 T-cell subset levels in HIV-1–infected typical progressors/

patients with AIDS (Figure 3A, left). Importantly, we found that

BTLA expression was more predominant in Tn cells in healthy

subjects but gradually decreased in the Tn, Tcm, and Tem

populations in HIV-1–infected individuals, regardless of disease

status (Figure 3A, right). Pooled data further confirmed that

BTLA expression on the 3 subsets was significantly decreased

in HIV-1-infected subjects, compared with healthy subjects

(Figure 3B). These data indicate that persistent HIV-1 infection

leads to a significant loss of BTLA expression on both naive and

memory CD41 T-cell subsets.

Figure 2. B and T lymphocyte attenuator (BTLA) down-regulation and human immunodeficiency virus (HIV)-1 disease progression. The correlation
analysis is between BTLA expression on CD41 T cells with CD41 T-cell numbers (n5 71), HIV load (n5 71), and CD38 expression on CD8 T cells (n5 30;
A) as well as the expression of Ki67 (n 5 18), PD-1 expression (n 5 30), and CD127 (n 5 21; B) on CD4 T cells in HIV-1–infected patients. P values are
shown. The Spearman rank correlation test was used to evaluate the correlations between variables.
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BTLA1CD41 T Cells Display an Altered Immune Status in HIV-1
Infection
We next determined whether HIV-1 infection influences

BTLA1CD41 T-cell status. In healthy subjects, BTLA1CD41

T cells often displayed an immature profile, with 65% Tn, 30%

Tcm, and 5% Tem subsets, whereas BTLA– CD41 T cells

displayed a relatively mature profile, with 25% Tn, 45% Tcm,

and 30% Tem subsets (Figure 4A). This distribution was sig-

nificantly altered in BTLA1 but not in BTLA– CD41 T cells in

HIV-1–infected subjects. Similar alterations were also occurred

in CD38 (activation), CD95 (preapoptosis), PD-1 (exhaustion),

Ki67 (proliferation), and perforin (cytolytic function) (Figure

4B). Compared with healthy subjects, patients with chronic

HIV-1 infection had markedly increased CD38, CD95, PD-1,

Ki67, and perforin expression and decreased CD127 expression

in BTLA1 CD41 T-cell subsets, but HIV-1 infection seldom

influenced the expression of these markers in the BTLA– CD41

T-cell population, except for CD38, which was also elevated in

HIV-1–infected subjects. This comprehensive analysis suggests

that HIV-1 infection significantly skews BTLA1 rather than

BTLA– CD41 T cells toward differentiation and maturation.

HIV-1 Induces BTLA Down-regulation on CD41 T Cells
Dependent on pDC-Derived IFN-a In Vitro
We investigated the impacts of IFN-a; inflammatory cytokines

IL-1b, IL-6, and IL-17; and c-chain cytokines IL-7 and IL-15 on

Figure 3. B and T lymphocyte attenuator (BTLA) down-regulation in CD41 T-cell subsets in human immunodeficiency virus (HIV)-1–infected individuals.
A, Representative BTLA expressions on CD41 T-cell subsets from a healthy subject and an HIV-1-infected individual. The percentages of each CD41 T-cell
population are shown in each quadrant (left panel). The BTLA percentages in each CD41 T-cell population are shown as histograms (right panel). B,
Statistical analysis of the BTLA expression levels in CD41 T-cell subsets in the different study groups. *P, .05. Multiple comparisons were made using
the Kruskal-Wallis H nonparametric test among the different groups. The Mann-Whitney U test was used to compare data from 2 different groups. Tn,
naive T cells; Tcm, central memory T cells; Tem, effector memory T cells.
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BTLA expression in vitro. We found that IFN-a can signifi-

cantly reduce BTLA expression on CD41 T cells. Blockade of

IFN-a pathway using anti-IFN-a receptor reversed the BTLA

down-regulation. In contrast, IL-1b, IL-6, IL-17, IL-7, and IL-15
failed to decrease BTLA expression in vitro (Figure 5A). In

addition, we found that various HIV-1 isolates can also directly

down-regulate BTLA expression on CD41 T cells in vitro,

particularly NL4-3 isolate induced the most significant BTLA

down-regulation compared with R3A and R3B (Figure 5B).

More importantly, we found that anti-IFNa/b, B12 (the an-

tagonist of viral gp120 binding to CD41 T cells), and chloro-

quine (endocytosis inhibitor) but not nevirapine (which blocks

viral replication) can efficiently prevent NL4-3-induced BTLA

down-regulation (Figure 5C). Pooled data further confirmed

these observations (Figure 5D). Interestingly, the depletion of

pDCs from PBMCs partially blocked NL4-3-induced BTLA

down-regulation on CD41 T cells (Figure 5E, left). Notably,

NL4-3 infection of purified CD4 T cells substantially reduces

BTLA expression, whereas addition of the pDCs in vitro further

decreased BTLA expression on CD41 T cells. Blockade of the

IFN-a-mediated pathway using both anti-IFN-a/b antibodies

and anti-IFN-a receptor antibodies reversed the BTLA down-

regulation on CD41 T cells (Figure 5E, right). These lines of

evidence indicate that HIV-1 can down-regulate BTLA expres-

sion on CD41 T cells via induction of pDC-derived IFN-a,
although some other alternative molecular pathways may be

responsible for BTLA down-regulation in HIV-1 infection.

BTLA-Mediated Inhibition on CD41 T-Cell Activation and
Function Is Impaired in HIV-1 Infection
We further investigated the functional relevance of

diminished BTLA expression on CD41 T cells in HIV-1–

infected subjects. Cross-linking of BTLA using an agonistic

anti-BTLA monoclonal Ab (MIH26) substantially decreased

Figure 4. B and T lymphocyte attenuator (BTLA)–positive CD41 T cells and abnormal immune status in human immunodeficiency virus (HIV)–1
infection. A, The analysis of percentages of BTLA1 and BTLA– CD41 T cells in naive T cell (Tn), central memory T cell (Tcm), and effector memory T-cell
(Tem) subsets in healthy subjects and HIV-1–infected individuals. B, The phenotypic profiles of BTLA1 and BTLA– CD41 T cells analyzed for CD38, CD95,
CD127, perforin, PD-1, and Ki67 expression in healthy subjects (n5 16) and HIV-1-infected subjects (8 long-term nonprogressors 10 typical progressors,
and 9 patients with AIDS). *P ,.05, **P ,.01. Multiple comparisons were made using the Kruskal-Wallis H nonparametric test among the different
groups. The Mann-Whitney U test was used to compare data from 2 different groups.
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CD69, CD38, and CD25 expression on CD41 T cells in

healthy subjects (Figure 6A). However, the inhibition of

BTLA cross-linking on CD38, CD25, and CD69 expression

was significantly reduced in typical progressors/patients with

AIDS (Figure 6B). Similar results were also demonstrated

in cytokine production by CD4 T cells. Anti-BTLA cross-

linking significantly inhibits anti-CD3/CD28 and PMA/

ionomycin-induced IL-2 and IFN-c production by CD41 T

cells in healthy subjects (Figure 6C). This BTLA-mediated

suppression of IL-2 and IFN-c production was significantly

reduced in typical progressors/patients with AIDS, com-

pared with healthy subjects (Figure 6D). These data indicate

that BTLA-mediated suppression of CD41 T-cell activation

and function is significantly impaired in chronic HIV-1

infected typical progressors/patients with AIDS.

DISCUSSION

Nonspecific T-cell hyperactivation is associated with HIV-1

disease progression, but its mechanisms are poorly defined.

Here, we present several novel observations that may shed new

light on the mechanism of immune activation in HIV-1 in-

fection: (1) BTLA is progressively down-regulated in HIV-1–

infected patients, and this loss of BTLA expression is associated

with skewed CD4 T-cell activation and differentiation; (2) BTLA

down-regulation is dependent on IFN-a from pDCs, which is

induced by HIV-1 isolates; and (3) BTLA-mediated inhibitory

signaling on T-cell activation and function is severely impaired

in HIV-1–infected patients. These findings have unveiled the

regulatory role of BTLA in HIV-1 infection.

We first observed that BTLA expression was progressively

down-regulated by both CD41 and CD81 T cells in LTNPs,

typical progressors, and patients with AIDS, strongly suggesting

that BTLA expression may potentially serve as a surrogate

marker for HIV-1 immune hyperactivation and disease pro-

gression. We further identified the BTLA expression patterns

differing from the expression of other coinhibitory molecules,

such as PD-1 and CTLA-4, during HIV-1 infection [10–13].

BTLA was highly constitutively expressed by T cells, but it was

down-regulated by HIV-1 infection. By contrast, PD-1 and

CTLA-4 were only slightly expressed by a small fraction of ex-

hausted T cells, and are both up-regulated by HIV-1 infection

Figure 5. B and T lymphocyte attenuator (BTLA) down-regulation on CD41 T cells is dependent on pDC-derived interferon (IFN)-a induced by human
immunodeficiency virus (HIV)–1 exposure. A, Representative histograms indicating the effects of various cytokines on BTLA expression on CD4 T cells
from healthy subjects in vitro. Values represent the BTLA percentages and mean fluorescence intensity (MFI) on CD41 T cells. The data are representative
of 3 independent experiments. B, Representative histograms indicating the effects of various HIV-1 isolates on BTLA expression by CD41 T cells in vitro.
Values represent the BTLA percentages and MFI on CD41 T cells. The data are representative of 4 independent experiments. C, Representative
histograms indicating that the CD4 interaction (B12 antibody), endocytosis (chloroquine), and IFN-a (anti-IFN-a/b) but not reverse-transcriptase inhibitor
(nevirapine) are required for NL4-3-induced BTLA down-regulation. Values represent the percentages of CD41 T cells that express BTLA. D, Pooled data
confirming that NL4-3 isolates down-regulated BTLA expression (percentages and MFI) dependening on IFN-a in vitro. Error bars indicate standard
deviations. *P, .05. E, Representative histograms indicating that NL4-3 exposure induces BTLA down-regulation on CD41 T cells in vitro depending on
plasmacytoid dendritic cell -derived IFN-a. Values represent the percentages and MFI of CD41 T cells that express BTLA.
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[10–13]. In addition, BTLAwas preferentially expressed by naive

CD41 T cells, and its expression significantly decreased with

the T-cell differentiation naive T cells to memory T cells in

HIV-1–infected patients; this pattern is similar to recent data for

patients with melanoma [26] and in a mouse model [17].

Meanwhile, PD-1 and CTLA-4 are seldom expressed by resting

CD41 T cells, and levels are generally elevated in Tem subsets

during HIV-1 infection [12, 14]. These findings open new ave-

nues for studying the role of BTLA in HIV-1 infection.

BTLA also displayed its uniquely functional property differing

from other coinhibitory molecules in HIV-1 infection. It is

generally believed that PD-1 and CTLA-4 up-regulation during

HIV-1 infection can lead to T-cell exhaustion [10–13]. We

proposed that BTLA loss in CD41 T cells may cause generalized

immune activation during HIV-1 infection. The present study

provides several lines of evidence in support of this notion: (1)

BTLA expression on CD4 T cells was negatively associated with

immune activation in HIV-1 infected patients; (2) enhancing

BTLA-mediated inhibitory signaling significantly decreased

TCR- and PMA-induced T-cell activation and cytokine pro-

duction in vitro, but BTLA-mediated inhibitory function is

largely impaired in HIV-1–infected patients, thus promoting

generalized T cell immune activation; and (3) HIV isolate-

induced IFN-a can decrease BTLA expression and increase T-

cell activation. Indeed, other several studies have also demon-

strated that BTLA ligation can send a constitutive ‘‘off ’’ signal to

T cells and maintain T-cell tolerance in vitro [21–23]. BTLA-

deficient mice generally develop an exacerbated autoimmune

disease symptom, suggesting that BTLA silence or down-regu-

lation may increase the abnormal activation of immune cells,

including T cells [24, 25]. Collectively, these findings strongly

suggested that HIV-1 can down-regulate BTLA expression on T

cells, which subsequently causes more nonspecific activation of

T cells to allow for greater replication of HIV-1 in as a positive

feedback loop. Therefore, HIV-1 may manipulate the BTLA

inhibitory pathway for its own survival.

More important, we found that BTLA down-regulation de-

pends on pDC-derived IFN-a induced by HIV-1 isolates;

blockade of IFN-a-mediated pathway or depletion of pDCs

partially blocked NL4-3–induced BTLA down-regulation in vi-

tro. In addition, some anti-HIV reagents targeting HIV-1 entry

(B12) and endocytosis of pDCs (chloroquine) can also effi-

ciently rescue HIV-1–induced BTLA down-regulation. Specially,

chloroquine can specially inhibit pDCs producing type I IFNs

through blocking TLR endocytosis, and it can further decrease

CD8 T-cell activation [35]. These findings, in combination with

Figure 6. B and T lymphocyte attenuator (BTLA)–mediated inhibition on CD41 T-cell activation during human immunodeficiency virus (HIV)–1 infection.
A, Representative histograms depicting the expression of CD38, CD25, and CD69 in CD41 T cells from a healthy subject. Values represent the percentage
of CD41 T cells that express CD38, CD25, and CD69. B, Pooled data showing the fold-inhibition of anti-BTLA cross-linking on anti-CD3-induced CD41 T-
cell activation in HIV-1–infected typical progressors/patients with AIDS (n 5 26) and healthy subjects (n 5 8). C, Representative dot plots show the
effects of anti-BTLA cross-linking on interleukin (IL)-2 and interferon (IFN)–c production of CD41 T cells induced by anti-CD3 or PMA/ionomycin
stimulation in a healthy subject. Values in the 3 quadrants represent the percentages of CD41 T cells that express IFN-c and IL-2. D, Pooled data showing
the fold-inhibition of anti-BTLA cross-linking on IL-2 and IFN-c production of CD41 T cells induced by anti-CD3– and PMA/ionomycin–stimulation in HIV-
infected typical progressors and patients with AIDS (n 5 16) and healthy subjects (n 5 8). In panels B and D, fold-inhibition was calculated as the
differences between the baseline activation marker expression on isotype control antibody stimulation and anti-BTLA antibody stimulation were divided
by the baseline activation marker expression on CD41 T cells with isotype control antibody stimulation. The Mann-Whitney U test was used to compare
data from 2 different groups. P values are shown.
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a recent study demonstrating that CpG can down-regulate

BTLA expression on tumor-specific CD8 T cells in vivo [26],

suggest that pDC-derived IFN-a is likely responsible for the

BTLA down-regulation during HIV-1 infection. These data in-

dicate that multiple virological factors (such as Vpr [36] and Nef

[37]) and immunological factors (such as common c-chain
cytokines [38]) have the ability to regulate the expression of

costimulatory molecules on T cells.

Taken together, this study emphasizes host-autologous

immune regulatory mechanisms, and highlights BTLA down-

regulation may link IFN-a production by pDCs to T-cell over-

activation in HIV-1 infection [6, 39, 40]. Indeed, pDCs-derived

IFN-a has been demonstrated closely with immune activation

in HIV infection [39, 41]. These findings, therefore, shed a new

light on the understanding of coinhibitory molecules in the view

of protective response aiming to restrict damage by an out-of-

control T-cell immune response in HIV-1 infection.
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