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Abstract

IFNβ has been implicated as an effector of oviduct pathology resulting from genital chlamydial 

infection in the mouse model. In this study, we investigated the role of cytosolic DNA and 

engagement of DNA sensors in IFNβ expression during chlamydial infection. We determined that 

TREX-1, a host 3’to 5’ exonuclease, reduced IFNβ expression significantly during chlamydial 

infection using siRNA and gene knock out fibroblasts, implicating cytosolic DNA as a ligand for 

this response. The DNA sensor cGAS has been shown to bind cytosolic DNA to generate cGAMP, 

which binds to the signaling adaptor STING to induce IFNβ expression. We determined that cGAS 

is required for IFNβ expression during chlamydial infection in multiple cell types. Interestingly, 

although infected cells deficient for STING or cGAS alone failed to induce IFNβ, co-culture of 

cells depleted for either STING or cGAS rescued IFNβ expression. These data demonstrate that 

cGAMP produced in infected cGAS+STING− cells can migrate into adjacent cells via gap 

junctions to function in trans in cGAS−STING+ cells. Further, we observed cGAS localized in 

punctate regions on the cytosolic side of the chlamydial inclusion membrane in association with 

STING, indicating that chlamydial DNA is likely recognized outside the inclusion as infection 

progresses. These novel findings provide evidence that cGAS-mediated-DNA sensing directs 

IFNβ expression during C.trachomatis infection and suggests that effectors from infected cells can 

directly upregulate IFNβ expression in adjacent uninfected cells during in vivo infection, 

contributing to pathogenesis.
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Introduction

Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in the 

world and infection can lead to pelvic inflammatory disease and infertility in women. 

Chlamydial infection of epithelial cells upregulates proinflammatory cytokines, chemokines, 

type I IFNs, and IFN stimulatory genes (1–3). We and others have shown that type I IFN 

(IFNα and IFNβ) signaling exacerbates host pathology during the course of genital (4) or 

pulmonary (5) C. muridarum infection in the mouse model. Further, IFNβ depletion protects 

mice from oviduct pathology during genital chlamydial infection (6), demonstrating a 

significant contribution of IFNβ to host pathology. A similar detrimental effect of IFNβ 

signaling has been reported during other bacterial infections as well [reviewed in (7)].

A consensus mechanism for IFNβ induction during intracellular bacterial infection is yet to 

be defined. However, multiple host pathogen recognition receptors that can induce IFNβ 

expression during viral infection [reviewed in (8)] have been identified. These include the 

RNA sensors, RIG-I (Retinoic acid-inducible gene) and MDA5 (Melanoma differentiation-

associated protein 5) (9, 10), which recognize viral RNA and signal via the adaptor MAVS 

(Mitochondrial antiviral signaling) to induce IFNβ expression (11). In addition, several 

DNA sensors have been identified that recognize cytosolic DNA and induce IFNβ 

expression. These include RNA polymerase III (9, 10), DAI (DNA-dependent activator of 

IFN regulatory factors) (12), IFI16 (IFNγ inducible protein 16) (13), LRRFIP1 (Leucine rich 

repeat protein FLII interacting protein) (14), DDX41 (DEAD box polypeptide 41) (15), 

MRE11 (Meiotic recombination 11 homolog) (16), LSm14A (member of LSm protein 

family) (17) and DNA-PKcs (DNA-protein kinase catalytic subunit) (18). The large number 

of DNA sensors identified in the host suggests that they may play redundant roles during 

infection. On the other hand, STING (Stimulator of IFN genes), an ER resident 

transmembrane protein, has been reported to be crucial for independent recognition of 

cytosolic DNA during viral infection and induction of IFN-β (19). STING is not a direct 

sensor of DNA, but functions as an integral adaptor molecule in DNA recognition. STING 

binds to a novel second messenger, cyclic GAMP (cGAMP) generated by a host DNA 

sensor, cGAS (cyclic GMP-AMP synthase) (20) upon DNA-binding in the cytosol (21). 

This interaction of cGAMP with STING activates the signaling events that lead to IFNβ 

expression. Additionally, STING also directly binds bacterial second messengers, cyclic di-

GMP and di-AMP to induce IFNβ (22), suggesting that it can also function as a direct sensor 

of intracellular pathogens. Indeed, cyclic di-AMP has been shown to be produced by Listeria 
monocytogenes (23) and Chlamydia trachomatis (24). However, the direct contribution of 

STING relative to its co-operation with DNA sensors in IFNβ expression during bacterial 

infection remains unclear.

We have shown that STING is required for IFNβ induction during chlamydial infection in 

HeLa cells and murine oviduct epithelial cells, while the cytosolic RNA sensing pathway is 
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dispensable for this response (25). In this study, we demonstrate for the first time that 

cytosolic DNA is a trigger for IFNβ expression during C. trachomatis infection and that the 

DNA sensor cGAS plays an integral role in sensing this DNA to induce IFNβ expression. 

cGAS localized in close proximity to the chlamydial inclusion membrane and co-localized 

with STING, suggesting that chlamydial DNA is likely recognized on membrane 

compartments outside the chlamydial inclusion. We also provide indirect evidence for 

cGAS-mediated generation of cGAMP during infection, by demonstrating rescue of IFNβ 

expression during co-culture of cGAS+STING− cells with cGAS−STING+ cells, suggesting 

that cGAMP from infected cGAS+ cells can migrate into adjacent cells to induce STING-

dependent IFNβ expression.

Materials and Methods

Cell culture, Primary cells, Reagents, cDNA constructs, chlamydial stocks and infection

HeLa cells, WT (wild-type) and TREX1 KO mouse embryonic fibroblasts (MEFs), and 

HEK293T were cultured in supplemented DMEM and mouse J774 cells cultured in 

complete media for macrophages, as described earlier (25). Mouse BM1.11 cells (26) and 

human OE-E6/E7 (oviduct epithelial cells) (27) were cultured in supplemented F12-DMEM 

as described (25). Poly dA:dT/LyoVec (100 µg/ml), Poly I:C/LyoVec (50 µg/ml) and 2’3’ 

cGAMP (1 mg/ml) were purchased from Invivogen. Carbenoxolone (working concentration 

0.2 mM) was purchased from SIGMA. pBluscript vector (1–2.5 µg) was used as 

immunostimulatory DNA (ISD). cDNA constructs for human cGAS (pCMV-cGAS) and 

STING (pCMV-STING) were purchased from Origene. C. muridarum, C. trachomatis D and 

L2 were propagated in McCoy cells and infections performed at 1 MOI or as indicated, as 

previously described (25).

Small interfering RNA (siRNA)

siRNA targeting human cGAS (MB21D1) (s41746 and s453378), human DDX41 (s28120), 

human TRIM56 (s37816), human LSM14A (s25051), human STING (s50645), or 

corresponding non-targeting (NT; control, Cat #4390843) were obtained from Ambion Life 

Technologies, and were used for HeLa and OE cells. For BM1.11 cells, accell™ SMART 

pool siRNA duplexes targeting mouse STING (E-055528), mouse cGAS (E-055608) and 

corresponding accell™ non-targeting siRNA (D-001910-10) from Dharmacon, were used. 

For J774 cells, two mouse cGAS (MB21D1) siRNA oligos (Cat# 2675, SIGMA), described 

earlier (20) were used in parallel with the corresponding non-targeting siRNA from SIGMA 

(Cat# SIC001). For TREX-1 knock down siGenome SMART pool mouse TREX1 

(M-042223-00) were used in BM1.11 cells, while siGenome SMART pool human TREX1 

(M-013239-02) were used in HeLa cells with corresponding non-targeting pools.

siRNA, ISD transfection and cGAMP treatment

HeLa cells were plated at 1 × 105 cells /well in 24-well plates for 18 to 24 h before 

transfection. Thirty pmol of siRNA were transfected using Lipofectamine RNAiMAX 

reagent (Invitrogen). Forty-eight hours post-transfection, siRNA transfected cells were split 

into 4 wells in a 24 well dish for multiple treatments. siRNA (10 pmol) transfections were 

repeated on each well the next day to achieve maximal knock down in expression. Twenty-
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four hours after second siRNA transfection, one set of cells were infected with Chlamydia 
and harvested 18–24 h post infection. In parallel, cells were transfected with ISD (positive 

control) or with poly I:C (negative control), 6–8 h prior to harvest, so that all cells, including 

untreated controls were harvested at the same time. BM1.11 cells were transfected directly 

using accell™ siRNA (100 pmol/well) in a 24 well dish for multiple treatments. OE-E6/E7 

cells and J774 cells were transfected with siRNA (100 pmol/well and 30 µM, respectively) 

in a 24 well dish for multiple treatments using INTERFERin (Polyplus transfection™). 

Seventy-two hours after siRNA transfection, cells were infected with C. trachomatis or 

transfected with ISD (positive control) 8 h before harvest, as described previously. The 

effect of specific siRNAs on target gene mRNA was assessed by qRT-PCR. For ISD 

transfection, 1 µg of ISD were transfected into HeLa, and 2.5 µg of ISD was transfected into 

OE-E6/E7 or BM1.11 cells using FuGene HD transfection reagent (Promega). For cGAMP 

treatment, cGAMP (1 µg/ml) was added to cells at 37°C in a permeabilization buffer (50 

mM HEPES, 100 mM KCl, 3 mM MgCl2, 85 mM Sucrose, 0.1 mM DTT, 0.2% BSA, 1mM 

ATP, 10 µg/ml Digitonin) described earlier (23) and replaced with media 30 min after 

treatment. Cells were harvested 6 h post treatment.

RNA extraction, quantitative RT-PCR analysis and ELISA

The ISD transfected cells, infected cells, or un-treated cells (UT) were processed at the same 

time for RNA extraction using the RNeasy kit (Qiagen). The RNA were then processed for 

reverse transcription and quantitative PCR using an SsoAdvanced SYBR mix (Bio-Rad) 

using a CFX iCycler (Bio-Rad) as described previously (25) . Primers sequences for IFNβ, 

IL-8, 16S rRNA were described previously (25). Additional primers include, mcGAS-F: 

TAGCGGTCTCAACTCAAG, mcGAS-R: TGGTGTCTGTTCATAGCA, hcGAS-F: 

CCTGCTGTAACACTTCTTAT, hcGAS-R; TTAGTCGTAGTTGCTTCCT, hTREX1-F: 

TGCCTTCTGTGTGGATAG, hTREX1-R: AGTGTAGATGCTGCCTAG, mTREX1-F: 

CAATAGCCACTCTGTATG, and mTREX1-R: TGACCGCTATGACTTTCC. All primers 

were designed using Beacon Design software (Bio-Rad). Culture supernatants were 

collected at 24 h post infection (p.i) for IFNβ and CXCL10 by ELISA (R&D).

HeLa cell co-culture following siRNA transfection to demonstrate cGAMP transfer

Twenty-four hours after second individual siRNA transfection, the cells were trypsinized 

and counted. cGAS siRNA and STING siRNA cells were re-plated individually or mixed at 

different ratio (1:3, 1:1, and 3:1). Equal numbers of the mixed or individual siRNA 

transfected cells were plated into a new 24-well plate (2 × 105cell /well) and were infected 

with C. muridarum (3 moi) 18 h later. ISD transfection (1 µg/well) was done on parallel 

wells 6 h before harvest, so that all cells were harvested at the same time for RNA 

extraction. In an independent experiment, cGAS KD and STING KD cells were co-cultured 

in a transwell separated by permeable support, to determine the requirement of cell-cell 

contact.

HEK293T transfection and Immunoblots

HEK293T cells were transfected with pCMV-cGAS (Origene), pCMV-STING (Origene) or 

pcDNA3.1 vector (60 ng DNA). Cells were trypsinized 24 post transfection and re-plated 

individually or mixed at 1:1 ratio, such that each well contained a total of 4 × 105 cells/well 
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in a 24 well dish. Cells were infected, or permeabilized with positive control ligands 

cGAMP (1µg/ml) or transfected with ISD (1µg), 6 hours after plating and harvested at 

indicated times and processed for RNA and qRT-PCR. Immunoblots for cGAS or STING 

protein in HEK293, HEK293T and HeLa cells were carried out using cell lysate prepared 

using RIPA buffer (Pierce-Thermo Scientific) and protease inhibitor cocktails (Sigma). Anti 

cGAS Ab (Cat# AP10510c, Abgent), anti-STING poly clonal Ab (Cat# PA5-26751, Thermo 

Scientific) and anti-actin Ab (Cat# A2228, Sigma) were used at the 1:500, 1:500 and 1:1000 

concentration respectively.

Confocal microscopy

HeLa cells were grown on 12 mm glass coverslips (#1, 0.17 mm thickness) at 50% density 

in 24-well plate, one day before infection with 1 MOI of C. muridarum or C. trachomatis. 

Twenty four hours post-infection (pi), cells were fixed with 4% paraformaldehyde (Electron 

Microscopy Sciences, Hatfield, PA) for immunostaining as described previously (25). 

Rabbit anti cGAS was used at 1:200 dilution. Chlamydiae were stained with C. muridarum 
antiserum obtained from convalescent mice post infection diluted 1:300, while Alexa Fluor 

(AF) 488 conjugated anti-mouse and AF568 anti-rabbit (Invitrogen) were used at 1:1000 

dilution as secondary Abs for detection. AF488 conjugated mouse mAb for STING (R & D) 

was used at 1:100 dilution in conjunction with anti-cGAS polyclonal antibody for co-

localization studies. AF647 anti GM130 (BD BioScience) was used for Golgi staining at 

1:100 dilution in some experiments. Transfected cells were stained using mouse anti-FLAG 

(Origene). Cells were washed and mounted using Prolong anti-fade containing DAPI 

(Invitrogen). Confocal images were acquired with the 63X oil 0.8 numerical aperture 

objective using Zeiss confocal microscope (LSM 510 META) and images analyzed using 

AxioVision software (Thornwood, NY).

Statistical analysis

At least three independent repeats were performed for each siRNA experiment and a 

representative experiment shown. Error bar indicates the standard error for technical 

replicates for qRT-PCR. To determine statistical significance in siRNA experiments, percent 

decrease/increase in expression levels of IFNβ relative to non-targeting (NT) siRNA (100%) 

were averaged from multiple experiments and significance determined by paired T test or 

one-way ANOVA with Holm-Sidak multiple comparison test using Graphpad Prism™. For 

transfection experiments in HEK293T cells, fold changes from 3 independent experiments 

were averaged, represented with SD, and significance determined by one way ANOVA with 

Holm-Sidak multiple comparison test.

Results

Cytosolic nucleic acid is a potential ligand for IFNβ expression during chlamydial infection

During intracellular bacterial or viral infection, nucleic acids released into the cytosol can 

result in IFNβ expression. Host exonucleases, such as Three prime Repair EXonuclease-1 

(TREX1), cleave intracellular DNA and have been shown to regulate IFNβ expression 

during viral (28) or bacterial infection (29). To determine if cytosolic DNA contributes to 

IFNβ expression during chlamydial infection, TREX1 KO mouse embryonic fibroblast 
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(MEF) and their corresponding WT controls (Fig 1A) were infected with C. muridarum. 

TREX1 KO cells showed a significant 2–3 fold increase in IFNβ expression compared to 

wild type (WT) MEF during C. muridarum infection (Fig 1B), without altering chlamydial 

growth, as measured by comparable levels of chlamydial 16S rRNA (Fig 1C). TREX1 KO 

cells were also hyper-responsive to the DNA analog poly (dA-dT), used as a positive control 

(Fig 1B). Further, complementation of TREX1 KO cells with a cDNA construct expressing 

human TREX1 (Fig 1D), resulted in 50–70% reduction in IFNβ expression during 

chlamydial infection or poly (dA-dT) treatment (Fig 1E) relative to their respective vector 

controls, without altering chlamydial replication (Fig 1F).

To further establish the contribution of cytosolic DNA to IFNβ expression in chlamydial 

infection, siRNA knock down of TREX1 was carried out in mouse oviduct epithelial cells 

BM1.11 (Fig 2A). A significant increase in IFNβ expression was observed in cells 

transfected with TREX1 siRNA compared to non-targeting (NT) siRNA, during poly (dA-

dT) treatment (P=0.04) or C. muridarum infection (P=0.01) (Fig 2B and Fig S1), again 

without affecting chlamydial replication (Fig 2C). The role of TREX-1 was further 

confirmed in HeLa cells, where siRNA transfection can be performed with high efficiency. 

Knock down of TREX-1 (Fig 2D) resulted in significant increase (P=0.045) in chlamydia-

induced IFNβ expression relative to NT siRNA (Fig 2E and Fig S1), without altering 

chlamydial replication (Fig 2F). The effect of TREX-1 siRNA was specific for 

immunostimulatory DNA (ISD)- but not RNA-induced IFNβ expression as evidenced in 

cells transfected with the RNA–analog poly I:C (Fig 2E and Fig S1). Overall, these data 

suggest that cytosolic DNA is a ligand required for IFNβ expression during chlamydial 

infection.

The DNA sensor, cyclic GMP-AMP synthase (cGAS) is essential for IFNβ expression during 
C. muridarum and C. trachomatis infection

That DNA serves as a ligand for IFNβ expression during chlamydial infection suggested that 

host DNA sensors detect cytosolic DNA during infection. We have previously shown that 

the adaptor molecule STING is required for IFNβ expression during chlamydial infection in 

HeLa cells (25). Using these cells, we investigated potential DNA sensors involved in 

recognition of this ligand during infection. siRNA knockdown of several DNA sensors, 

specifically DAI, IFI16, LRRFIP1, DDX41, Lsm14A, and TRIM56 in HeLa cells had no 

effect on IFNβ expression during infection (data not shown). Recently, the host enzyme 

cGAS was shown to catalyze the generation of the STING ligand, cyclic GAMP, after 

binding cytosolic DNA (20, 21). We tested the contribution of cGAS to IFNβ expression 

during chlamydial infection via knock down using two independent siRNAs directed against 

cGAS in comparison to a non-targeting (NT) siRNA from the same provider. siRNA-

mediated knock down for cGAS and STING resulted in >90% and >99% reduction in 

mRNA expression of cGAS and STING, respectively (data not shown). cGAS knock down 

with cGAS1 siRNA and cGAS2 siRNA decreased the expression of IFNβ by > 75% 

(p<0.001) and >97% (p<0.001) relative to NT controls during C. muridarum infection. (Fig 

3A and Fig 3K). Similar results were observed with human C. trachomatis serovar D, and C. 
trachomatis L2 (Fig 3A). Cells transfected with ISD, where induction of IFNβ was 

significantly compromised in STING and cGAS knock down cells, served as positive 
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controls for functional siRNA knockdown, showing >95% decrease (P<0.001) in IFNβ 

expression relative to NT controls (Fig 3B and Fig 3K). To demonstrate the specificity of 

the siRNAs used, cells were transfected with poly I:C in parallel. cGAS and STING siRNA 

did not decrease IFNβ induction in poly IC transfected cells suggesting that RNA-sensing 

pathways or downstream effectors for IFNβ expression were not targeted (Fig 3C and 3K), 

although some increase in IFNβ expression was observed in cells transfected with one of the 

2 cGAS siRNA tested (P=0.024). cGAS and STING siRNA significantly reduced the 

expression of another IRF3-dependent gene IFNλ during infection and ISD transfection (Fig 

3D–F), but did not reduce the expression of IL-8, an IRF3-independent (Fig 3G), 

demonstrating a specific effect on IRF3 pathway. Chlamydial replication remained unaltered 

in response to cGAS or STING knockdown as evidenced by 16S rRNA levels (Fig 3H). 

IFNβ protein was not detectable in supernatants because it is likely rapidly endocytosed by 

its receptor IFNAR. Therefore, protein levels of an interferon response gene, CXCL10, 

which serves as a functional surrogate for biologically active IFNβ, was measured in the 

culture supernatants by ELISA and was found to correspond to IFNβ mRNA levels in the 

cells (Fig 3I). siRNA knock down of STING and cGAS resulted in undetectable or low 

levels of the respective proteins in cell lysates detected by western blot (Fig 3J). Further, 

cGAS knock down did not alter STING levels and vice versa (Fig 3J), confirming the effect 

of cGAS on IFNβ expression was independent of STING protein levels.

The role of cGAS and STING was further assessed in mouse and human oviduct epithelial 

cells infected with C. muridarum or C. trachomatis, respectively (Fig 4). About 50% and 

90% reduction in IFNβ expression was observed in mouse oviduct epithelial cells (BM1.11) 

with cGAS and STING knock down, respectively during C. muridarum infection (Fig 4A 

and 4D). These results paralleled a 50% and 80% decrease of cGAS and STING expression, 

respectively (Fig 4B and 4C) while chlamydial growth remained unaffected by cGAS and 

STING knock down (data not shown). IFNβ expression during ISD transfection in BM1.11 

cells was also significantly reduced in cells transfected with cGAS and STING siRNA 

relative to NT siRNA (Fig 4A and 4D). In OE-E6/E7 cells (27), a transformed human 

oviduct cell line, a similar effect of cGAS and STING knock down was observed (Fig 4E 

and 4H), although these cells only induced low levels of IFNβ during C.trachomatis 
infection. The reduction in IFNβ expression paralleled about 50% knock down achieved for 

both cGAS and STING expression in these cells (Fig 4F and 4G). cGAS was also found to 

be essential for IFNβ expression during chlamydial infection in the mouse macrophage line 

J774 (data not shown), which supports the growth of C. muridarum. These data indicate that 

DNA sensing by cGAS during chlamydial infection occurs in multiple cells types and with 

both mouse and human C. trachomatis strains.

cGAS is recruited to the inclusion membrane during chlamydial infection

We have previously shown that STING and the ER protein Sec16α localized in close 

proximity to the chlamydial inclusion (25). cGAS has been shown to colocalize with 

transfected DNA in the host cytosol (20). To determine the intracellular niche(s) where 

cGAS recognizes DNA during chlamydial infection, immunostaining of endogenous cGAS 

and STING was performed in infected cells. Antibody specificity was confirmed by 

transfecting cGAS or STING into HEK293T cells (data not shown), which do not express 
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either protein at high levels (20). Endogenous cGAS was found to localize in close 

proximity to chlamydial inclusion membrane during both C. muridarum (Fig 5A) and C. 
trachomatis (Fig 5B) infection. In uninfected cells, cGAS was found distributed in the 

cytosol (Fig 5C), while in infected cells cGAS was found enriched at certain points around 

the chlamydial inclusion membrane (Fig 5D). Co-localization of STING and cGAS was 

observed at several contact points around the inclusion (Fig 5D), but no co-localization of 

STING or cGAS was observed with the Golgi marker GM130 (data not shown). To confirm 

the data obtained by endogenous staining of cGAS, we examined trafficking and localization 

of cGAS in HeLa cells transfected with FLAG-cGAS. A distinct enrichment of FLAG-

cGAS was observed as punctate staining around the inclusion in infected cells (Fig 5E). 

These data are reminiscent of what was previously observed with STING (25). cGAS is a 

cytosolic protein and not associated with the membrane component of the cells. Therefore, 

these data suggest that cGAS is trafficked to the inclusion membrane during chlamydial 

infection.

Evidence for cGAMP generation during chlamydial infection

Recognition of DNA by cGAS results in the generation of the STING ligand, cGAMP (20, 

21). To determine if cGAMP is generated during chlamydial infection, we used an indirect 

approach based on the recent finding that cGAMP can cross gap junctions between epithelial 

cells (30). HeLa cells knocked down for STING expression should retain the capacity to 

generate cGAMP, since they express cGAS, but are incapable of inducing IFNβ expression 

in the absence of STING. Similarly, cells knocked down for cGAS cannot generate cGAMP, 

but retain their ability to activate IFNβ signaling because STING can respond to cGAMP 

provided in trans. Therefore, we hypothesized that IFNβ expression would be rescued if the 

cells knocked down for cGAS or STING were mixed prior to infection (Fig 6A). siRNA 

knock down of these proteins (cGAS or STING) was carried out in HeLa cells as before and 

cells were mixed at varying ratios with equal cell number in all wells. IFNβ expression was 

rescued by >10–20 fold in infected cells that were co-cultured relative to cells with cGAS or 

STING knock downs, respectively (Fig 6B). Chlamydial growth was similar in co-cultured 

cells relative to individually plated cells as evidenced by 16s rRNA levels (data not shown). 

Cells transfected with ISD served as a positive control and showed a similar trend of rescue 

of IFNβ expression resulting from cGAMP transfer (Fig 6C). GAP junction inhibitors such 

as Carbenoxolone, were able to abrogate cGAMP transfer in co-cultured cells transfected 

with ISD (data not shown) as previously reported (30), but could not be used in conjunction 

with infected cells as they also function as Pannexin inhibitor and abrogated chlamydial 

growth (31). Cell-cell contact was essential for IFNβ rescue to occur during co-culture, since 

IFNβ rescue was compromised when the STING KD and cGAS KD cells were cultured 

separately on a transwell (Fig S2). Together, these results provide indirect evidence for 

generation of cGAMP during infection and its transfer from infected cell to adjacent cell 

through gap junctions.

DNA is the predominant ligand inducing IFNβ expression during chlamydial infection

Recently it was reported that chlamydial EBs produce the bacterial second messenger cyclic 

di-AMP, which can directly bind to STING to induce IFNβ expression (24). This was shown 

by infecting HEK293T cells overexpressing STING, and transfected with IFNβ promoter-
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driven luciferase reporter construct. In light of our finding that cGAS is required for 

chlamydia-induced IFNβ, we investigated the contribution of STING in the presence or 

absence of cGAS, to determine the relative contributions of DNA and chlamydial cyclic di-

AMP to IFNβ expression. HEK293 cells (without T antigen) express STING but not cGAS, 

while HEK293T (with T antigen) have undetectable cGAS and STING protein, as reported 

earlier (20) contrasting with HeLa cells, which express high levels of both STING and 

cGAS (Fig 7A). The STING protein in HEK293 cells was fully functional as evidenced by 

high levels of IFNβ expression in response to the commercially available STING ligand 

2’3’cGAMP (Fig 7B), but these cells expressed very low levels of endogenous IFNβ 

expression (2-fold increase) in response to chlamydial infection (Fig 7C). These data 

suggested that STING expression alone was insufficient to drive biologically relevant 

endogenous IFNβ expression. HEK293T cells were then used to examine the independent 

and combined role of cGAS and STING in IFNβ expression during infection. Co-

transfection of cGAS and STING cDNA into HEK293T cells resulted in significant 

background IFNβ expression- a consequence of recognition of transfected DNA by cGAS 

protein in the presence of STING (20). Therefore, the alternative approach of examining the 

contribution of cGAS in trans was employed. HEK293T cells were transfected with STING 

or cGAS, which resulted in equivalent levels of STING or cGAS mRNA (data not shown). 

HEK293T cells transfected with STING were responsive to exogenous cGAMP but did not 

induce IFNβ expression to transfected DNA. Conversely, cGAS transfected cells were 

unresponsive to either cGAMP or ISD transfection in the absence of STING signaling (Fig 

7D). When cGAS-expressing cells were co-cultured with STING-expressing cells, 6 hours 

before infection at a 1:1 ratio, IFNβ expression was rescued 40-fold, relative to infected cells 

expressing STING or cGAS alone (Fig. 7E). Chlamydial growth was similar in co-cultured 

cells to individually plated cells as evidenced by 16s rRNA levels (data not shown). Cells 

transfected with ISD served as positive control (Fig. 7E). These data suggest that cGAMP 

produced in cGAS-expressing cells migrated into STING-expressing cells to induce IFNβ 

expression during infection, and DNA transfection. Together these data demonstrate that 

STING alone is insufficient to rescue significant IFNβ expression in the absence of cGAS, 

and that both cGAS and STING function cooperatively to induce maximal IFNβ expression 

during chlamydial infection.

Discussion

A previous study from our laboratory showed that STING, the central adaptor molecule 

involved in cytosolic DNA recognition, is essential for IFNβ induction during chlamydial 

infection (25). Recent identification of the DNA sensor, cGAS that catalyzes the formation 

of cGAMP, a STING ligand (20), led us to investigate if this was the major pathway leading 

to IFNβ expression during chlamydial infection. Our results show that cGAS is required for 

IFNβ expression during infection with multiple Chlamydia strains in HeLa, epithelial cell 

lines that were derived from human Fallopian tube or mouse oviducts, mouse macrophages 

and HEK293T cells. cGAS meets the requirements for the DNA sensor during chlamydial 

infection, because it is specifically required for IRF3-mediated IFNβ expression and it is 

localized adjacent to inclusion membrane. This is the first report on a role for cGAS during 
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intracellular bacterial infection, although its role as a DNA sensor during viral infection has 

been described (32).

The first evidence that DNA is a potential ligand for IFNβ expression during infection came 

from TREX1 KO cells. TREX1, a member of TREX-family of proteins, is essential for 

degradation of cytosolic DNA (33) and could function to reduce autoimmune response to 

host DNA. During HIV infection, host TREX1 targets HIV DNA to abrogate IFNβ 

expression, a classic example of viral hijacking of host machinery (28). Using siRNA knock 

down of TREX1 in mouse epithelial cells and HeLa cells and TREX1 KO cells, we 

determined that cytosolic DNA is targeted by these nucleases during chlamydial infection. 

Subsequent screening of multiple host DNA sensors did not identify a Chlamydia-specific 

sensor until we tested the role for cGAS in IFNβ expression and correlated its function to its 

cellular localization during chlamydial infection. In addition to demonstrating a role for 

cGAS in chlamydia-induced IFNβ expression, we also provide indirect evidence for 

generation of cGAMP during chlamydial infection and its transfer from infected cell to 

adjacent cells. These experiments were built on the recent finding that cGAMP can cross 

gap-junctions and activate STING in neighboring cells (30). These data suggest that during 

in vivo infection, IFNβ induced in uninfected cells adjacent to infected epithelial cells could 

either make them refractory to infection, as during viral infection or induce cell death 

pathways to affect tissue pathology.

It has been shown that the expression level of cGAS in multiple cell types is correlated to 

IFNβ expression in response to ISD (20). Therefore, the contribution of cGAS to IFNβ 

expression during chlamydial infection, relative to other receptors is likely dependent on 

their expression levels in multiple cell types. We have shown that cGAS is active in multiple 

cell types during chlamydial infection, including those where other candidate receptors e.g. 

TLR3 (34) have been associated with IFNβ expression. Interestingly, cGAS is a bonafide 

IFN-inducible protein (35) and we have observed a significant increase in cGAS expression 

following infection or ISD transfection. Therefore, during in vivo infection, both IFNβ and 

IFNγ can induce cGAS expression in epithelial cells. Analysis of cGAS and STING gene 

knock out mice should provide a more definitive answer on the relative contribution of 

cGAS over other receptors on IFNβ expression in the genital tract during in vivo genital 

infection.

Barker et al recently showed that Chlamydia trachomatis strain L2 generates the bacterial 

second messenger cyclic di-AMP which induced a IFNβ promoter-driven luciferase-reporter 

in HEK293T cells over expressing STING (24). Further the authors concluded that cyclic di-

AMP is the predominant inducer of IFNβ during chlamydial infection using a mouse STING 

mutant (mR231A) defective for cyclic di-AMP binding (22, 36), in STING KO mouse 

fibroblasts. Our findings conflict with the conclusions of Barker et al (24) because our data 

supports a model where DNA sensing via cGAS rather than cyclic di-AMP is the 

predominant pathway of IFNβ induction during chlamydial infection of human epithelial 

cells, but without disregarding the findings that chlamydial EBs generate cyclic di-AMP. 

Our model is supported by the following observations. Firstly, if recognition of cyclic di-

AMP by STING was sufficient to drive IFNβ expression during chlamydial infection, cGAS 

knockdown should not have altered IFNβ expression significantly in multiple cell types that 

Zhang et al. Page 10

J Immunol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



express abundant and functional STING. Secondly, STING expression was insufficient to 

rescue endogenous IFNβ expression during infection in cell lines expressing a functional 

STING but not cGAS, such as HEK293 cells. Finally, HEK293T transfected with cGAS or 

STING did not induce significant endogenous IFNβ expression during chlamydial infection. 

However co-culturing the cells rescued expression, further confirming the requirement of 

cGAS-mediated cGAMP generation and transfer during infection. cGAMP binds to the 

same pocket in STING as cyclic di-AMP/di-GMP, but at much lower concentration with 

higher affinity (21). Indeed, the cGAS product, 2’3’cGAMP, is a much more potent ligand 

of STING than all other bacterial cyclic di-nucleotides described (37). Further, human 

STING is responsive only to cGAMP and unresponsive to the STING ligands CMA (38) 

and cyclic di-AMP/cyc di-GMP (39), unlike mouse STING which is responsive to both 

cyclic dinucleotides and cGAMP (40). These studies combined with our findings would 

significantly shift the importance of cGAMP over bacterial cyclic dinucleotides during 

Chlamydia trachomatis infection in human cells.

An important question that remains unclear at present is what is the source of the cytosolic 

DNA during infection? We speculate that the source of the DNA is chlamydial. 

Mitochondrial damage has not been observed at 24 h p.i (data not shown). Further, addition 

of chloramphenicol to block chlamydial growth after inclusion formation abrogates IFNβ 

expression, confirming the consistent requirement of bacterial growth (41). The localization 

of cGAS in punctate regions around the inclusion is also suggestive of a chlamydial source 

for the DNA. Manzanillo et al. have shown that during Mycobacterium tuberculosis 
infection, phagosomal permeabilization mediated by the bacterial ESX-1 secretion system 

allows cytosolic recognition pathways access to DNA (29). Numerous studies have linked 

IFNβ expression to bacterial secretion systems (42–45) and we have shown that IFNβ 

expression is abrogated in C. muridarum infected cells exposed to drugs that inhibit type III 

secretion system (T3SS) (41), suggesting a similar role for chlamydial T3SS in 

permeabilization of inclusion membrane. Previous studies (46) have shown that chlamydial 

reticulate bodies (RB) make direct contact with the inclusion membrane, likely through 

T3SS. These could be potential permeabilization points where nucleic acids could leak into 

cytosol and made available for host recognition. It is important to note that only viable 

chlamydiae induce IFNβ expression. This would suggest that condensed DNA from UV-

killed chlamydial EBs do not provide an acceptable form of DNA for recognition by cGAS. 

While EB are a known source of cyclic di-AMP (24), when these developmental forms 

transition into RB, and RB replicate, this may initiate and accelerate DNA recognition, 

significantly amplifying IFNβ expression levels. Lateral gene transfer has been shown to 

occur between chlamydial RBs (47), consistent with a model where extra-chlamydial DNA 

is available for sensing and supporting the possibility of DNA transfer into cytosol, although 

DNA could be also released as a passive process resulting from non-viable RBs inside the 

inclusion. It has been shown that Chlamydia hijacks the host ER and several ER proteins 

were found localized on inclusion membrane (48, 49). The localization of the ER protein 

STING (25) and cytosolic cGAS in close proximity to the inclusion membrane suggest that 

STING could serve as a membrane scaffold for the interactions between DNA-cGAS to take 

place. Activation of STING would then result in phosphorylation and nuclear translocation 

of the critical transcription factor IRF3 for IFNβ expression (Fig 8).
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An IFNβ response occurs during a vast number of intracellular infections, arising from 

bacteria that can occupy diverse niches in the cell (cytosolic, lysosomal, or vacuolar). In all 

cases cytosolic DNA could be available for sensing, thus we predict that cGAS may be a 

common recognition mechanism for sensing other intracellular pathogens. Further, the 

intensity of IFNβ expression could be directly correlated with the availability of foreign 

DNA in the cytosol, with cytosolic pathogens inducing a stronger response relative to those 

sequestered in membrane organelles. Collectively, our data demonstrates that cGAS is a 

novel pathogen recognition receptor involved in recognition of chlamydial infection and 

implicate cytosolic DNA-recognition during infection as an inducer of this response. The 

requirement of cGAS for chlamydia-induced IFNβ expression also provides a novel 

therapeutic target to block this response using a cGAMP antagonist in order to protect 

against oviduct disease during genital chlamydial infection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

A significant portion of the work was carried out at Department of Pediatrics, University of Pittsburgh. TREX1 KO 
and WT mouse embryonic fibroblasts were provided by Cancer Research (UK). BM1.11 cells were provided by Dr. 
Raymond Johnson (Indiana University). We thank Dr. Toni Darville and Dr. Catherine O’ Connell (University of 
North Carolina, Chapel Hill) for helpful suggestions, and Theodor Danciu (University of Pittsburgh) for laboratory 
assistance.

References

1. Xia M, Bumgarner RE, Lampe MF, Stamm WE. Chlamydia trachomatis infection alters host cell 
transcription in diverse cellular pathways. J Infect Dis. 2003; 187:424–434. [PubMed: 12552426] 

2. Rasmussen SJ, Eckmann L, Quayle AJ, Shen L, Zhang YX, Anderson DJ, Fierer J, Stephens RS, 
Kagnoff MF. Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia 
infection suggests a central role for epithelial cells in chlamydial pathogenesis. J Clin Invest. 1997; 
99:77–87. [PubMed: 9011579] 

3. Lad SP, Fukuda EY, Li J, de la Maza LM, Li E. Up-regulation of the JAK/STAT1 signal pathway 
during Chlamydia trachomatis infection. J Immunol. 2005; 174:7186–7193. [PubMed: 15905563] 

4. Nagarajan UM, Prantner D, Sikes JD, Andrews CW Jr, Goodwin AM, Nagarajan S, Darville T. 
Type I interferon signaling exacerbates Chlamydia muridarum genital infection in a murine model. 
Infect Immun. 2008; 76:4642–4648. [PubMed: 18663004] 

5. Qiu H, Fan Y, Joyee AG, Wang S, Han X, Bai H, Jiao L, Rooijen NVan, Yang X. Type I IFNs 
enhance susceptibility to Chlamydia muridarum lung infection by enhancing apoptosis of local 
macrophages. J Immunol. 2008; 181:2092–2102. [PubMed: 18641348] 

6. Prantner D, Sikes JD, Hennings L, Savenka AV, Basnakian AG, Nagarajan UM. Interferon 
regulatory transcription factor 3 protects mice from uterine horn pathology during Chlamydia 
muridarum genital infection. Infection and Immunity. 2011; 79:3922–3933. [PubMed: 21788382] 

7. Nagarajan U. Induction and function of IFNbeta during viral and bacterial infection. Crit Rev 
Immunol. 2011; 31:459–474. [PubMed: 22321107] 

8. Stetson DB, Medzhitov R. Type I interferons in host defense. Immunity. 2006; 25:373–381. 
[PubMed: 16979569] 

9. Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. RIG-I-dependent 
sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA 
intermediate. Nat Immunol. 2009; 10:1065–1072. [PubMed: 19609254] 

Zhang et al. Page 12

J Immunol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



10. Chiu YH, Macmillan JB, Chen ZJ. RNA polymerase III detects cytosolic DNA and induces type I 
interferons through the RIG-I pathway. Cell. 2009; 138:576–591. [PubMed: 19631370] 

11. Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial 
antiviral signaling protein that activates NF-kappaB and IRF (3). Cell. 2005; 122:669–682. 
[PubMed: 16125763] 

12. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, Lu Y, Miyagishi M, Kodama T, 
Honda K, Ohba Y, Taniguchi T. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator 
of innate immune response. Nature. 2007; 448:501–505. [PubMed: 17618271] 

13. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, Sirois CM, Jin T, Latz E, 
Xiao TS, Fitzgerald KA, Paludan SR, Bowie AG. IFI16 is an innate immune sensor for 
intracellular DNA. Nat Immunol. 2010; 11:997–1004. [PubMed: 20890285] 

14. Yang P, An H, Liu X, Wen M, Zheng Y, Rui Y, Cao X. The cytosolic nucleic acid sensor 
LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat 
Immunol. 2010; 11:487–494. [PubMed: 20453844] 

15. Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ. The helicase DDX41 senses intracellular DNA 
mediated by the adaptor STING in dendritic cells. Nature immunology. 2011; 12:959–965. 
[PubMed: 21892174] 

16. Kondo T, Kobayashi J, Saitoh T, Maruyama K, Ishii KJ, Barber GN, Komatsu K, Akira S, Kawai 
T. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I 
interferon by regulating STING trafficking. Proceedings of the National Academy of Sciences of 
the United States of America. 2013; 110:2969–2974. [PubMed: 23388631] 

17. Li Y, Chen R, Zhou Q, Xu Z, Li C, Wang S, Mao A, Zhang X, He W, Shu HB. LSm14A is a 
processing body-associated sensor of viral nucleic acids that initiates cellular antiviral response in 
the early phase of viral infection. Proceedings of the National Academy of Sciences of the United 
States of America. 2012; 109:11770–11775. [PubMed: 22745163] 

18. Ferguson BJ, Mansur DS, Peters NE, Ren H, Smith GL. DNA-PK is a DNA sensor for IRF-3-
dependent innate immunity. Elife. 2012; 1:e00047. [PubMed: 23251783] 

19. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune 
signalling. Nature. 2008; 455:674–678. [PubMed: 18724357] 

20. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that 
activates the type I interferon pathway. Science. 2013; 339:786–791. [PubMed: 23258413] 

21. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ. Cyclic GMP-AMP is an endogenous second 
messenger in innate immune signaling by cytosolic DNA. Science. 2013; 339:826–830. [PubMed: 
23258412] 

22. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE. 
STING is a direct innate immune sensor of cyclic di-GMP. Nature. 2011; 478:515–518. [PubMed: 
21947006] 

23. Woodward JJ, Iavarone AT, Portnoy DA. c-di-AMP secreted by intracellular Listeria 
monocytogenes activates a host type I interferon response. Science. 2010; 328:1703–1705. 
[PubMed: 20508090] 

24. Barker JR, Koestler BJ, Carpenter VK, Burdette DL, Waters CM, Vance RE, Valdivia RH. 
STING-Dependent Recognition of Cyclic di-AMP Mediates Type I Interferon Responses during. 
Chlamydia trachomatis Infection. MBio. 2013:4.

25. Prantner D, Darville T, Nagarajan UM. Stimulator of IFN gene is critical for induction of IFN-beta 
during Chlamydia muridarum infection. J Immunol. 2010; 184:2551–2560. [PubMed: 20107183] 

26. Johnson RM. Murine oviduct epithelial cell cytokine responses to Chlamydia muridarum infection 
include interleukin-12-p70 secretion. Infect Immun. 2004; 72:3951–3960. [PubMed: 15213139] 

27. Lee YL, Lee KF, Xu JS, Wang YL, Tsao SW, Yeung WS. Establishment and characterization of 
an immortalized human oviductal cell line. Mol Reprod Dev. 2001; 59:400–409. [PubMed: 
11468776] 

28. Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J. The cytosolic 
exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 
(1). Nature immunology. 2010; 11:1005–1013. [PubMed: 20871604] 

Zhang et al. Page 13

J Immunol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



29. Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS. Mycobacterium Tuberculosis Activates the 
DNA-Dependent Cytosolic Surveillance Pathway within Macrophages. Cell host & microbe. 
2012; 11:469–480. [PubMed: 22607800] 

30. Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T, Latz E, Hornung V. Cell 
intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature. 
2013; 503:530–534. [PubMed: 24077100] 

31. McKuen MJ, Dahl G, Fields KA. Assessing a potential role of host Pannexin 1 during Chlamydia 
trachomatis infection. PLoS One. 2013; 8:e63732. [PubMed: 23700432] 

32. Gao D, Wu J, Wu YT, Du F, Aroh C, Yan N, Sun L, Chen ZJ. Cyclic GMP-AMP synthase is an 
innate immune sensor of HIV and other retroviruses. Science. 2013; 341:903–906. [PubMed: 
23929945] 

33. Chowdhury D, Beresford PJ, Zhu P, Zhang D, Sung JS, Demple B, Perrino FW, Lieberman J. The 
exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA 
during granzyme A-mediated cell death. Molecular cell. 2006; 23:133–142. [PubMed: 16818237] 

34. Derbigny WA, Johnson RM, Toomey KS, Ofner S, Jayarapu K. The Chlamydia muridarum-
induced IFN-beta response is TLR3-dependent in murine oviduct epithelial cells. J Immunol. 
2010; 185:6689–6697. [PubMed: 20974982] 

35. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM. A diverse range 
of gene products are effectors of the type I interferon antiviral response. Nature. 2011; 472:481–
485. [PubMed: 21478870] 

36. Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, Hyodo M, Hayakawa Y, 
Hammond MC, Vance RE. The Innate Immune DNA Sensor cGAS Produces a Noncanonical 
Cyclic Dinucleotide that Activates Human STING. Cell Rep. 2013; 3:1355–1361. [PubMed: 
23707065] 

37. Zhang X, Shi H, Wu J, Sun L, Chen C, Chen ZJ. Cyclic GMP-AMP containing mixed 
phosphodiester linkages is an endogenous high-affinity ligand for STING. Molecular cell. 2013; 
51:226–235. [PubMed: 23747010] 

38. Cavlar T, Deimling T, Ablasser A, Hopfner KP, Hornung V. Species-specific detection of the 
antiviral small-molecule compound CMA by STING. EMBO J. 2013; 32:1440–1450. [PubMed: 
23604073] 

39. Conlon J, Burdette DL, Sharma S, Bhat N, Thompson M, Jiang Z, Rathinam VA, Monks B, Jin T, 
Xiao TS, Vogel SN, Vance RE, Fitzgerald KA. Mouse, but not Human STING, Binds and Signals 
in Response to the Vascular Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid. Journal of 
immunology. 2013; 190:5216–5225.

40. Gao P, Ascano M, Zillinger T, Wang W, Dai P, Serganov AA, Gaffney BL, Shuman S, Jones RA, 
Deng L, Hartmann G, Barchet W, Tuschl T, Patel DJ. Structure-function analysis of STING 
activation by c[G(2',5')pA(3',5')p] and targeting by antiviral DMXAA. Cell. 2013; 154:748–762. 
[PubMed: 23910378] 

41. Prantner D, Nagarajan UM. Role for the chlamydial type III secretion apparatus in host cytokine 
expression. Infect Immun. 2009; 77:76–84. [PubMed: 18852236] 

42. Stetson DB, Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate 
immune response. Immunity. 2006; 24:93–103. [PubMed: 16413926] 

43. Roux CM, Rolan HG, Santos RL, Beremand PD, Thomas TL, Adams LG, Tsolis RM. Brucella 
requires a functional Type IV secretion system to elicit innate immune responses in mice. Cell 
Microbiol. 2007; 9:1851–1869. [PubMed: 17441987] 

44. Stanley SA, Johndrow JE, Manzanillo P, Cox JS. The Type I IFN response to infection with 
Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J 
Immunol. 2007; 178:3143–3152. [PubMed: 17312162] 

45. Crimmins GT, Herskovits AA, Rehder K, Sivick KE, Lauer P, Dubensky TW Jr, Portnoy DA. 
Listeria monocytogenes multidrug resistance transporters activate a cytosolic surveillance pathway 
of innate immunity. Proc Natl Acad Sci U S A. 2008; 105:10191–10196. [PubMed: 18632558] 

46. Wilson DP, Timms P, McElwain DL, Bavoil PM. Type III secretion, contact-dependent model for 
the intracellular development of Chlamydia . Bull Math Biol. 2006; 68:161–178. [PubMed: 
16794925] 

Zhang et al. Page 14

J Immunol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



47. DeMars R, Weinfurter J. Interstrain gene transfer in Chlamydia trachomatis in vitro: mechanism 
and significance. J Bacteriol. 2008; 190:1605–1614. [PubMed: 18083799] 

48. Dumoux M, Clare DK, Saibil HR, Hayward RD. Chlamydiae assemble a pathogen synapse to 
hijack the host endoplasmic reticulum. Traffic. 2012; 13:1612–1627. [PubMed: 22901061] 

49. Giles DK, Wyrick PB. Trafficking of chlamydial antigens to the endoplasmic reticulum of infected 
epithelial cells. Microbes Infect. 2008

Abbreviations used in this paper

cGAS cyclic GMP-AMP synthase

CXCL10 C-X-C-motif chemokine 10

cGAMP cyclic GMP-AMP
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Figure 1. IFNβ expression during chlamydial infection is elevated in TREX1 KO MEFs and 
reduced by TREX-1 over-expression
(A–C) Control MEFs and TREX1 KO MEFs were infected with C. muridarum at 1 MOI or 

transfected with poly dA:dT for 6 h, before harvest. Infected cells were harvested at 24 h p.i. 

TREX1 mRNA (A), IFNβ mRNA (B) and chlamydial 16S rRNA (C) levels were measured 

by qRT-PCR. (D–F) TREX1 KO cells were transfected with human TREX1 or vector 

control. Twenty four hour post transfection, cells were infected with C.muridarum or 

transfected with poly dA:dT. Relative expression levels of TREX1 (D), IFNβ (E) and 

chlamydial 16S rRNA (F) normalized to GAPDH are shown. Panels are representative of 

three independent experiments and error bars represent the range in technical replicates. 

Statistical significance for qPCR data between multiple experiments was determined by 

using paired T tests on percent change in IFNβ levels between WT and TREX1 KO infected 

cells (P=0.01). In experiment involving transfection of TREX KO cells, percent change in 

IFNβ between vector and TREX-1 cDNA from multiple experiments were used to calculate 

significance (Infection; P=0.001, poly dA:dT; P=0.009). UT = Untreated.
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Figure 2. siRNA knockdown of TREX-1 in epithelial cells increases IFNβ expression, during 
chlamydial infection
(A–C) Mouse BM1.11 were transfected with TREX1 siRNA or non-targeting (NT) siRNA 

(A) and infected with C. muridarum at 1 MOI, 72 h post transfection. TREX-1 (A) and IFNβ 

(B) mRNA were measured at 24 h p.i. In parallel, cells were transfected with dsDNA analog 

poly dA:dT, 6 h before harvest. Chlamydial replication was monitored by comparing 16S 

rRNA levels (C) in infected cells between treatments. (D–F) HeLa cells were transfected 

with siRNA for human TREX1 or NT siRNA. Cells were infected with C.muridarum at 1 

MOI for 24 h or transfected 6 h before harvest with ISD or RNA analog poly I:C. TREX1 

(D), IFN beta (E) and chlamydial 16S rRNA levels (F) were measured by qRT-PCR. Panels 

are representative of three independent experiments and error bars represent the mean ± 

error of technical replicates. Statistical significance for qPCR data between multiple 

experiments was determined by using paired T tests on percent change in IFNβ levels 

between TREX1 siRNA relative to NT siRNA in each experiment. For BM1.11 cells, 

infection; P=0.014 and poly dA-dT; P=0.047. For HeLa, infection; P=0.04, ISD; P=0.04, 

poly IC; P=NS. UT=Un-treated.
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Figure 3. cGAS is required for IFNβ expression in HeLa cells infected with C. muridarum or C. 
trachomatis (D and L2)
HeLa cells were transfected with non-targeting siRNA (NT), 2 different siRNA for cGAS 

(cGAS1 and cGAS2), or a siRNA for STING as described in Methods. Significant knock 

down of STING (99%) and cGAS (90%) mRNA was achieved. Cells were infected with 1 

MOI of C. muridarum (C.M) or 5 MOI of C.trachomatis -serovar D (C.T-D) or C. 
trachomatis L2 (C.T-L2). Cells were harvested at 24 h p.i and analyzed for expression of 

IFNβ (A), IFN λ (D), IL-8 (G), and chlamydial 16S rRNA (H). In parallel, cells were 

transfected with ISD (positive control) or poly IC-LyoVec (negative control) and harvested 
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at 6 h post transfection and analyzed for expression of IFNβ (B, C), IFNλ (E, F). Culture 

supernatants from infected or transfected cells were collected at 24 h and CXCL10 protein 

levels assayed by ELISA (I). Mean ± SD of samples from 3 independent experiments are 

shown for ELISA. A representative western blot showing the levels of STING and cGAS 

following siRNA knock down in uninfected HeLa cells (J). A representative of five 

independent experiments is presented in A–H for qRT-PCR data and error bars represent 

range in technical replicates. Statistical significance for qPCR data between multiple 

experiments was determined by one way ANOVA with multiple comparison tests on the 

percent decrease in IFNβ levels for the siRNA used relative to NT siRNA in each 

experiment (K). UT=Un-treated.

Zhang et al. Page 19

J Immunol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. cGAS is required for IFNβ expression during Chlamydia spp. infection of mouse 
oviduct epithelial cells (BM1.11 cells) and human oviduct epithelial cells (OE-E6/E7)
siRNA knock down in mouse BM1.11 cells were carried out using accell™ NT, mouse 

cGAS or STING siRNA pools. Seventy-two hours after transfection, cells were infected 

with C. muridarum or transfected with ISD (DNA) 6 h before harvest, and analyzed 

simultaneously at 24 h p.i for expression of mouse IFNβ (A), cGAS (B) and STING (C). 

Human oviduct epithelial cells (OE-E6/E7) were transfected with non-targeting (NT), 

human cGAS (cGAS siRNA 1 and 2) or human STING siRNA. Seventy-two hours after 

transfection, cells were infected with C. trachomatis (serovar D) at 5 MOI or transfected 
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with ISD (DNA) 6 h before harvest and analyzed concurrently at 24 h p.i for expression of 

human IFNβ (E), cGAS (F) and STING (G). A representative of three experiments for 

BM1.11 cells and OE cells is presented for qRT-PCR data. Statistical significance for qPCR 

data between multiple experiments was determined by one way ANOVA with multiple 

comparison tests on the percent decrease in IFNβ levels for the siRNA used relative to NT 

siRNA in each experiment (D and H).
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Figure 5. cGAS localizes in punctate regions around the chlamydial inclusion membrane
HeLa cells infected with C. muridarum (A) or C. trachomatis, serovar D (B) were fixed and 

stained for endogenous cGAS (red) and Chlamydia (green). Cells were fixed with Prolong 

gold™ with DAPI (blue) and analyzed by confocal microscopy. Uninfected HeLa cells (C) 

and cells infected with C. muridarum (D) for 18 h were fixed and stained for endogenous 

cGAS (red) and STING (green). In an independent experiment HeLa cells were transfected 

with FLAG-cGAS (E) and infected with C. muridarum 24 h later. Infected cells were fixed 
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at 18 h p.i and stained using mouse monoclonal Ab for FLAG. Chlamydial inclusions and 

cell nucleus are marked with an “I” and “N” respectively on the DAPI staining.
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Figure 6. Evidence of cGAMP transfer from infected cells to adjacent cells
Schematic representation of the experimental plan (A). STING−cGAS+ can produce cGAMP 

but cannot induce IFNβ since they lack STING, while STING+cGAS− cells cannot produce 

cGAMP upon infection. Co-culture can rescue IFNβ expression during infection if cGAMP 

from cGAS+ cells can migrate into STING+ cells. HeLa cells knocked down for STING 

(>99% KD) or cGAS (>95% KD) were cultured individually or co-cultured at different 

ratios 18 h before infection in 24 well dishes (2 × 105 cells/well). The mix numbers (1, 2, 

and 3) represent cGAS KD:STING KD cells in the indicated ratios. Cells were infected with 
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C. muridarum at 3 MOI and IFNβ mRNA measured at 24 h post infection (B). A parallel set 

of cells were transfected with ISD as a positive control, 6 h before harvesting all the cells for 

RNA (C). Data is represented as mean of percent decrease relative to NT control from three 

experiments with SD. Significance determined by one way ANOVA with multiple 

comparison tests and indicated. Differences between Mix 1:3 and 1:1 co-culture were not 

significant.
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Figure 7. Both cGAS and STING are required for maximal IFNβ expression during chlamydial 
infection
Protein levels of cGAS and STING in HeLa, HEK293T, and HEK293 cell lysates (A). Actin 

blots were carried out using 1/ 10th of cell lysates used for cGAS and STING western blots. 

HEK293 cells were permeabilized with cGAMP and IFNβ expression measured 6 h post 

treatment (B). HEK293 cells were infected with C. muridarum or transfected with ISD and 

IFNβ expression measured 24 h post infection or 6 h post treatment, respectively (C). 

HEK293T cells were transiently transfected with pcDNA3.1 (vector), STING, or cGAS 

expression constructs. Twenty-four hours post transfection, cells were trypsinized and plated 

individually or mixed at indicated ratio. Six hours after plating, individual cells were 

transfected with ISD or permeabilized with cGAMP (D). Individual or mixed cells were 

transfected with ISD or infected with C. muridarum (E). Expression of IFNβ measured at 24 

h p.i or 6 h after ISD/cGAMP transfection. Data represents average of three experiments and 

error bars indicate SD. Significance was determined by one way ANOVA with multiple 

comparison test. For (D), p=0.004 for STING transfected-untreated (UT) vs cGAMP treated 

cells.
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Figure 8. A schematic model of cGAS recognizing DNA during Chlamydia infection, in human 
epithelial cells
Left panel shows an electron micrograph of an inclusion, where chlamydial RBs are in close 

contact with the inclusion membrane and rough ER (arrows). Right panel shows a 

hypothetical model of DNA recognition by cGAS leading to cGAMP generation, STING 

activation and IRF3 phosphorylation, resulting in IFNβ expression during infection. 

Contribution of TREX-1 in diminishing this response is also shown.
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