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Abstract

The p110δ subunit of class IA phosphoinositide 3-kinase modulates signaling in innate immune

cells. We previously demonstrated that mice harboring a kinase-dead p110δ subunit (p110δKD)

develop spontaneous colitis. Macrophages contributed to the Th1/Th17 cytokine bias in p110δKD

mice through increased IL-12 and IL-23 expression. Here, we show that the enteric microbiota is

required for colitis development in germ free p110δKD mice. Colonic tissue and macrophages

from p110δKD mice produce significantly less IL-10 compared to wild type (WT) mice. p110δKD

APC co-cultured with naïve CD4+ antigen-specific T cells also produce significantly less IL-10,

and induce more IFN-γ- and IL-17A-producing CD4+ T cells compared to WT APC. Illustrating

the importance of APC – T cell interactions in colitis pathogenesis in vivo, Rag1-/-/p110δKD mice

develop mild colonic inflammation and produced more colonic IL-12p40 compared to Rag1-/-

mice. However, CD4+CD45RBhigh/low T cell Rag1-/-/p110δKD recipient mice develop severe

colitis with increased percentages of IFN-γ- and IL-17A-producing lamina propria CD3+CD4+ T

cells compared to Rag1-/- recipient mice. Intestinal tissue samples from patients with Crohn’s

disease reveal significantly lower expression of PIK3CD compared to intestinal samples from

non-IBD control subjects (p<0.05). PIK3CD expression inversely correlated with the ratio of

IL12B:IL10 expression. In conclusion, the PI3K subunit p110δ controls homeostatic APC – T cell

interactions by altering the balance between IL-10 and IL-12/23. Defects in p110δ expression
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and/or function may underlie the pathogenesis of human IBD and lead to new therapeutic

strategies.
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INTRODUCTION

Genetic variants that confer susceptibility to the human inflammatory bowel diseases

Crohn’s disease (CD) and ulcerative colitis highlight the importance of innate immune

interactions with the enteric microbiota in both initiating and controlling inflammation (1).

Commensal and pathogenic microorganisms are recognized through conserved molecular

microbial patterns by pattern-recognition receptors, of which toll-like receptors (TLRs) form

integral components (2). Although mechanisms by which the host distinguishes commensal

from pathogenic bacteria are not well defined, under normal conditions TLR signaling

initiated by the enteric microbiota is protective (3). Phosphoinositide 3-kinases (PI3Ks) have

emerged as important regulators of TLR signaling (4, 5). Class IA PI3Ks have five different

regulatory subunits and three p110 catalytic subunits: p110α and p110β are expressed

ubiquitously in many tissues whereas p110δ is enriched in leukocytes (6). Agents that

activate macrophages to produce IL-12p40, the common subunit of the proximal

inflammatory cytokines IL-12 and IL-23, also activate Class IA PI3K (7). Activation of

PI3K in turn blocks the expression of IL-12p40 mRNA (Il12b) (7). Although inflammatory

responses are essential for eradicating pathogenic microbes, excessive/prolonged activation

of innate immunity is harmful to the host. PI3K-mediated negative feedback of IL-12p40 is

important to prevent excessive innate immune responses.

The clearest role of PI3K in chronic inflammation is described in a mouse harboring a

kinase-dead p110δ catalytic subunit of PI3K (p110δD910A/D910A kinase-dead; here on

referred to as “p110δKD”) (8). These mice demonstrate B and T cell defects including

defective antigen receptor signaling and impaired humoral responses. Notably, the

occurrence of spontaneous colitis was demonstrated in PI3K p110δKD mice (9). Expression

of IL-12p40, Th1 and Th17 cytokines was described in the intestinal and systemic immune

compartments. Consistent with a homeostatic role for p110δ in the intestine, wild type (WT)

mice raised in a germ free (GF) environment markedly upregulated colonic p110δ (Pik3cd)

expression when the enteric microbiota were introduced, but colitis-prone Il10-/- mice did

not (9).

Given the role of the PI3K p110δ subunit in innate immune processes fundamental to the

pathogenesis of IBD, host-enteric microbiota and APC – T cell interactions in p110δKD

mice were further characterized. We describe a requirement for the enteric microbiota to

drive intestinal inflammation in p110δKD mice. Microbial-innate immune interactions,

through p110δ, maintain homeostasis through regulation of both protective (IL-10) and

inflammatory (IL-12p40) cytokines. Furthermore, p110δ orchestrates innate regulation of

adaptive immune responses. Importantly, in human CD, decreased intestinal PIK3CD gene
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expression is demonstrated which inversely correlates with intestinal IL12B:IL10 ratios.

Thus, p110δ appears to be a central homeostatic switch in the intestine, governing the

critical balance between microbiota-induced IL-12/23 and IL-10, shaping the subsequent T

cell response. Counter to prevailing paradigms where p110δ inhibition is a strategy in

inflammatory diseases (10, 11), induction of p110δ could be a potential therapeutic

approach in human IBD.

MATERIALS AND METHODS

Mice

All mice were maintained on a C57BL/6 background in conventional or GF housing. PI3K

p110δD910A/D910A (p110δKD) mice were previously obtained from Dr. Bart Vanhaesebroeck

(Queen Mary University of London, London, England). GF p110δKD mice were Caesarian

derived as previously described (12) and were maintained according to standard techniques

in the University of North Carolina National Gnotobiotic Resource Center. OT-II (C57BL/6-

Tg(TcraTcrb)425Cbn/J) male mice were provided by JPY Ting (UNC, Chapel Hill). All

animal experiments were in compliance with protocols approved by the International

Animal Care and Use Committee of the University of North Carolina at Chapel Hill.

Reagents

LPS from Escherichia coli was purchased from Invivogen (San Diego, CA). Zymosan A

from Saccharomyces cerevisiae was purchased from Sigma (St. Louis, MO). Inhibitors

IC87114, Rapamycin, and SB-216763 were purchased from Selleck Chemicals (Houston,

TX). Cecal bacterial lysates (CBL) C57BL/6 mice were prepared as described previously

(13). The peptide corresponding to residues 323-339 of ovalbumin (OVA) was purchased

from AnaSpec (Fremont, CA).

Colonic Tissue Explant Culture

Colonic tissue explant cultures were performed as described previously (14).

Histology

Slides were prepared for H&E staining and a pathologist (L.B.B.) blinded to the study

groups performed histological analysis using established criteria for p110δKD mice (9). In T

cell adoptive transfer studies, the following scoring system was utilized: Tissue changes

were categorized into inflammatory and epithelial changes and graded for severity (0=

normal, 1= mild, 2= moderate, 3= marked and 4= severe); the sum of the two grades

comprises the histopathology score. For inflammation, a score of 0 (normal) signified rare

small lymphoplasmacytic aggregates confined to the lamina propria; scores of 1 (mild) and 2

(moderate) represented increasing numbers of multifocal inflammatory aggregates which

were predominantly confined to the lamina propria, with occasional submucosal infiltration;

a score of 3 (marked) was assigned if inflammatory infiltrates frequently extended into the

submucosa and muscular layers; a score of 4 (severe) was designated if transmural

inflammation was common. Epithelial changes, characterized by hypertrophy, were scored

(0-4) with increasing severity and prevalence of the observed change.
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Cell Isolation

Bone marrow-derived macrophages (BMDMs) were cultured as described previously (15).

Splenocytes were isolated as described (16) and further separated into CD11c+ and CD11c-/

Cd11b+ cells by MACS with anti-CD11c and anti-CD11b microbeads (Miltenyi Biotec,

Auburn, CA). Lamina propria mononuclear cells (LPMCs) were isolated from mouse colons

as described previously (17). LPMCs were further separated into CD11b+ and CD11b- cells

by MACS with anti-CD11b microbeads (Miltenyi Biotec, Auburn, CA).

Cell culture experiments

BMDMs or splenocytes were cultured at 1×106/ml in the presence of LPS (1 ng/ml),

Zymosan A (10 μg/ml), or PBS, and supernatants were harvested after 4 hours or 24 hours

(BMDMs or splenocytes, respectively). Inhibitors IC87114 (0.1 or 1 μM), Rapamycin (1 or

10 μM), SB-216763 (1 or 10 μM), or DMSO were added 1 hour prior to stimulation with

LPS or Zymosan A. CD11b+ LPMCs were treated with IC87114 (10 μM) for 30 minutes

prior to exposure to heat killed E. coli (HKEC, MOI=100) for 3 hours. Total RNA was

assessed for Il12b and Il10 expression by quantitative PCR.

Western blot analysis

BMDMs were cultured at 1×106/ml with LPS (1 μg/ml) or cecal tissue from GF to CNV

mice was collected. Cell or tissue lysates were collected in RIPA buffer with protease and

phosphatase inhibitors. Equal amounts of protein were loaded and run on a 10% SDS-PAGE

gel. Blots were probed for phosphorylated GSK-3β (Ser9) and total GSK-3β with antibodies

from Cell Signaling Technology (Danvers, MA) and phosphorylated CREB (Ser133) (EMD

Millipore, Billerica, MA) and total CREB (Santa Cruz Biotechnology, Dallas, TX).

Quantitative RT-PCR

Quantitative RT-PCR was performed on total RNA as described (14). Murine primer

sequences will be provided upon request. The following human primer sequences were

used:PIK3CD, forward, 5’-GCGCCGGGACGATAAGGAGTC-3’, reverse, 5’-

GCTGCCCACAGGGGTCTACCT-3’; IL10, forward, 5’-

GCCTAACATGCTTCGAGATC-3’, reverse, 5’-TGATGTGTGGGTCTTGGTTC-3’;

IL12B, forward, 5’-GCTCTTGCCCTGGACCTGAACGC-3’, reverse, 5’-

CGTAGAATTGGATTGGTATCCGG-3’; GAPDH, forward, 5’-

GGTGAAGGTCGGAGTCAACGGA-3’, reverse, 5’-

GAGGGATCTCGCTCCTGGAAGA-3’.

ELISAs

IL-12p40 and IL-10 (BD Biosciences, San Jose, CA) and IFN-β concentrations (R&D

Systems, Minneapolis, MN) were determined by sandwich ELISA according to

manufacturer’s instructions.

APC-CD4+ T cell Co-culture

Splenic APCs from WT or p110δKD mice were isolated by negative selection using CD90.2

microbeads (Miltenyi Biotec, Auburn, CA). Splenic APCs were incubated overnight with
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CBL (50 ng/ml), and, after washing several times to remove extracellular antigen, APC were

co-cultured with negatively-selected CD4+ T cells (CD8α/B220/MHC II microbeads,

Miltenyi Biotec, Auburn, CA) from WT or Il10-/- mice at a 3:2 ratio (APC:T cell) for 72

hours. For antigen specific studies, APCs were incubated overnight with LPS (10 ng/ml) and

OVA peptide (323-339, 5 μM) (13). After washing to remove extracellular antigen, APC

were co-cultured with negatively-selected CD4+ T cells (CD8α/B220/MHC II microbeads,

Miltenyi Biotec, Auburn, CA) from mice expressing a transgenic TCR that recognizes OVA

epitope residues 323-339 (OT-II mice) at a 3:2 ratio (APC:T cell) for 72 hours. CD4+ T cells

were analyzed for intracellular cytokine expression (IFN-γ and IL-17A) by flow cytometry.

Flow Cytometry

CD4+ T cells were stimulated for 4 hours with PMA (100 ng/ml) and ionomycin (1 μg/ml)

in the presence of GolgiStop™ (BD Biosciences, San Jose, CA). Cells were then washed

and stained with APC-conjugated anti-CD3 (Clone 17A2, eBioscience, San Diego, CA).

After fixing and permeabilizing the cells with BD Cytofix/Cytoperm™ (BD Biosciences,

San Jose, CA), staining for intracellular PE-conjugated anti-IFN-γ (Clone XMG1.2,

eBioscience, San Diego, CA) and FITC-conjugated anti-IL-17A (Clone eBio17B7,

eBioscience, San Diego, CA) was performed. Flow cytometry samples were run on a

CyAn™ ADP Analyzer (Beckman Coulter, Brea, CA) and analyzed using Summit v4.3

(Beckman Coulter, Brea, CA).

CD4+CD45RBhigh/low T cell adoptive transfer colitis

T cell mediated colitis was induced in Rag1-/- and Rag1-/-/p110δKD (RKO/δKD) mice at 8

weeks of age as described previously (18). CD4+ T cells were isolated by negative selection

(CD8α/B220/MHC II microbeads, Miltenyi Biotec, Auburn, CA) and stained with FITC-

conjugated anti-CD4 (Clone GK1.5, eBioscience, San Diego, CA) and PE-conjugated anti-

CD45RB (Clone 16A, BD Pharmingen, San Jose, CA). CD4+ T cells were sorted into

CD45RBhigh and CD45RBlow populations using a MoFlo™ XDP Cell Sorter (Beckman

Coulter, Brea, CA). Mice were i.p. injected with 4 × 105 CD4+CD45RBhigh cells admixed

with 2 × 105 CD4+CD45RBlow cells as described (18). Clinical scores were assigned as

described (19).

Human intestinal samples

Intestinal samples were obtained from surgical resections from CD patients and subjects

requiring surgical intervention for non-inflammatory conditions (eg, colon cancer). In CD

patients, when available, paired inflamed and non-inflamed intestinal segments, as

determined by gross appearance by the processing pathologist, were obtained for analysis.

The University of North Carolina Institutional Review Board approved collection of de-

identified samples, and written informed consent was obtained from all patients.

Statistical analysis

Statistical significance for data subsets was assessed by the two-tailed Student’s t test. p

values < 0.05 were considered to be significant. All data are expressed as mean ± standard

error (SEM).
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RESULTS

Presence of the enteric microbiota is necessary for the development of colitis in p110δKD

mice

To determine whether the microbiota is necessary for the development of colitis, p110δKD

mice were derived germ free (GF). GF p110δKD mice up to 30 weeks of age did not develop

histological colitis (Fig. 1A, left, Supplemental Fig. 1A). Interestingly, GF p110δKD mice

produced significantly less colonic IL-10 compared to GF WT mice. GF p110δKD and WT

mice were then transitioned to conventionalized housing (CNV), and colonic inflammation

was assessed at days 7 and 14 after transfer. Compared to GF to CNV WT mice, colons

from GF to CNV p110δKD mice demonstrated increased colitis scores (Fig. 1A, middle and

right, Supplemental Fig. 1A). However, GF to CNV p110δKD mice gained weight similarly

to GF to CNV WT mice (Supplemental Fig. 1B). Furthermore, colonic explants from day 7

and 14 GF to CNV p110δKD mice produced significantly less IL-10 (Fig. 1B, middle and

right) compared to GF to CNV WT mice. At day 14, GF to CNV p110δKD mice produced

significantly elevated IL-12p40 (Fig. 1C, middle and right) compared to WT GF to CNV

mice. IL-10 is important for the maintenance of intestinal homeostasis in part through

inhibition of IL-12p40 (20). The ratio of colonic IL-12p40 to IL-10 protein production

therefore reflects the overall balance of intestinal pro- and anti-inflammatory cytokines.

Indeed, colons from days 7 and 14 GF to CNV p110δKD mice demonstrated significantly

higher ratios of IL-12p40:IL-10 production (Fig. 1D) compared to GF to CNV WT mice.

Given the recent report of co-regulation of IL-10 and IFN-β by p110δ in dendritic cells (21),

we measured IFN-β levels were assessed in colonic explant tissue cultures from GF to CNV

WT and p110δKD mice. Interestingly, IFN-β production was enhanced in colonic explants

from day 7 GF to CNV p110δKD mice compared to WT mice (Fig. 1E), in contrast to

decreased levels of IL-10 production in p110δKD mice. IFN-β production was increased in

LPS stimulated p110δKD compared to WT BMDMs (Fig. 1F). Additionally, LPS stimulated

Il10-/- BMDMs produced more IFN-β compared to WT BMDMs (Fig. 1F, right), consistent

with previously reported regulation of IFN-β by IL-10 (21). To assess the direct contribution

of IFN-β production from colonic macrophages, CD11b+ lamina propria mononuclear cells,

comprising mostly macrophages, were isolated from p110δKD mice and stimulated with

heat-killed E. coli (HKEC). Similar to BMDMs, HKEC stimulated p110δKD CD11b+

LPMCs produced significantly more IFN-β compared to WT CD11b+ LPMCs (Fig. 1G),

suggesting that p110δ differentially regulates IL-10 and IFN-β in macrophages.

PI3K p110δ regulates macrophage production of IL-10 in response to PAMPs

WT and p110δKD BMDMs were exposed to TLR agonists (LPS (TLR4), 5ng/ml;

Pam3CSK4 (TLR2/1), 5 ng/ml; Zymosan A (TLR2/6), 5 μg/ml), and cytokine production

was measured. BMDMs from p110δKD mice produced less IL-10 in response to all TLR

agonists tested compared to WT BMDMs (Fig. 2A). Additionally, p110δKD BMDMs

exposed to TLR agonists produced significantly more IL-12p40 compared to WT BMDMs

(Fig. 2B), in agreement with our previously published data (9). Consequently, the ratio of

IL-12p40:IL-10 production in TLR ligand treated p110δKD BMDMs was consistently

increased compared to WT BMDMs (Fig. 2C). LPS or Zymosan A stimulated CD11b+ and
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CD11c+ splenocytes from p110δKD mice also produced less IL-10 and more IL-12p40 than

WT splenic cells (Supplemental Fig. 2A-D).

To further validate these findings, LPS stimulated WT BMDMs were treated with p110

isoform-specific chemical inhibitors. LPS activated WT BMDMs demonstrated a dose-

dependent decrease in IL-10 production (Fig. 3A, left) and increase in IL-12p40 (Fig. 3B,

left) with specific chemical inhibition of p110δ (IC87114). Interestingly, p110δ inhibition

in WT BMDMs markedly enhanced IL-12p40 production above levels produced by

p110δKD BMDMs. It is possible that there is compensation by other PI3K isoforms in

p110δKD BMDMs but not in chemically inhibited WT BMDMs. Indeed, we have previously

shown that phosphorylation of Akt in LPS stimulated p110δKD BMDMs is not completely

abrogated (9). PI3K p110α- and p110β inhibition (PIK-90 and TGX-221, respectively) did

not alter LPS stimulated IL-10 production (Supplemental Fig. 2E, F, left) or IL-12p40

(Supplemental Fig. 2G, H, left) in WT BMDMs, in agreement with reported results in

dendritic cells (21). As a control, p110δ-specific inhibition of LPS-activated p110δKD

BMDMs did not alter IL-10 or IL-12p40 expression (Fig. 3, right panels). However, in

p110δKD BMDMs, p110β inhibition decreased IL-10 (Supplemental Fig. 2F, right)

production, and p110α- or p110β-specific inhibition modestly enhanced LPS induced

IL-12p40 expression (Supplemental Fig. 2G, H, right) suggesting that in the absence of

p110δ function other isoforms may have modest effects on IL-10/IL-12p40 regulation.

Chemical inhibition of p110δ in Il10-/- BMDMs led to a dose-dependent increase in

IL-12p40 production (Fig. 3C, right), suggesting that p110δ-mediated decreases in IL-12p40

are in part independent of the inhibitory actions of IL-10. Relevant to mucosal innate

inflammatory responses, WT CD11b+ colonic lamina propria mononuclear cells (LPMC)

treated with heat killed E. coli (HKEC) demonstrated diminished Il10 (Fig. 3D) and

enhanced Il12b (Fig. 3E) expression in the presence of the p110δ-specific inhibitor. As a

control, expression of neither cytokine was altered in CD11b+ colonic LPMC from p110δKD

mice treated with the p110δ-specific inhibitor.

mTOR and GSK-3β act downstream of p110δ in macrophages to regulate cytokine
production

PI3Ks modulate multiple downstream signaling pathways, of which mammalian target of

rapamycin (mTOR) and glycogen synthase kinase-3β (GSK-3β) have been previously

shown to regulate cytokine secretion in macrophages (22). PI3K p110δKD BMDMs treated

with LPS demonstrated impaired phosphorylation of GSK-3β and CREB (Fig. 4A and B,

respectively), but not p70 S6 kinase (downstream of mTOR, data not shown). Furthermore,

colonic expression of p-GSK-3β and was attenuated in GF to CNV p110δKD mice compared

to GF to CNV WT mice (Fig. 4C). BMDMs from WT and p110δKD mice were exposed to

mTOR or GSK-3β inhibitors (rapamycin or SB-216763, respectively) prior to LPS

stimulation. Rapamycin decreased IL-10 (Fig. 5A, C) and increased IL-12p40 (Fig. 5B, D)

protein and mRNA expression in WT and p110δKD TLR stimulated BMDMs. These same

trends were observed in WT and p110δKD CD11b+ and CD11c+ splenocytes (Supplemental

Fig. 3A-D). Inhibition of GSK-3β in p110δKD BMDMs and splenocytes increased IL-10

protein (Fig. 5E, Supplemental Fig. 3E, F) and mRNA expression (Fig. 5G), while p110δKD
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BMDMs and splenocytes decreased IL-12p40 protein (Fig. 5F, Supplemental Fig. 3G) and

mRNA (Fig. 5H) expression. Hence, mTOR and GSK-3β are downstream of p110δ and are

relevant for regulation of IL-10 and Il-12p40.

Antigen presenting cell (APC) p110δ regulates T cell cytokine production

To begin to determine whether resident APCs regulate intestinal T cell phenotype and

function, T cell cytokines and lineage markers were measured in p110δKD colons. Colonic

Tbx21 and Rorc transcripts (Fig. 6A, B, middle and right), the hallmark transcription factors

of Th1 (23) and Th17 cells (24), respectively, were increased in GF to CNV p110δKD mice

at days 7 and 14 post-transition compared to matched GF to CNV WT mice. Likewise,

increased Ifng and Il17a transcripts (Fig. 6C, D, middle and right) were detected in cecal

tissue from days 7 and 14 GF to CNV p110δKD compared to matched GF to CNV WT mice.

Consequently, we next investigated whether T cell dependent IL-12p40 and IL-10

expression was altered in p110δKD APCs. Splenic CD4+ T cells from WT mice were

cultured with either WT or p110δKD splenic APCs pulsed with cecal bacterial lysate (CBL).

CBL pulsed p110δKD APCs cultured with naïve WT CD4+ T cells produced decreased

levels of IL-10 (Fig. 6E, middle) and increased levels of IL-12p40 (Fig. 6F, middle)

compared to WT APCs. WT and p110δKD APCs cultured with Il10-/- CD4+ T cells

demonstrate that IL-10 expression is largely derived from APCs (Fig. 6E, right). As

expected, CBL pulsed p110δKD APCs also produced significantly less IL-10 (Fig. 6E, left)

and more IL-12p40 (Fig. 6F, left) compared to WT APCs in the absence of CD4+ T cells.

Next, to study antigen-specific APC-T cell interactions, splenic CD4+ T cells from OVA

specific transgenic T cell receptor mice (OT-II mice) were co-cultured with OVA pulsed and

LPS activated WT and p110δKD APCs. OVA-loaded p110δKD APCs induced significantly

more IFN-γ- (Fig. 6H, I) and IL-17A-producing (Fig. 6H, J) CD4+ T cells compared to

OVA-loaded WT APCs (Fig. 6G, I, J). However, T cell proliferation was induced to a

similar extent by both WT and p110δKD APCs (Supplemental Fig. 4A-C). These data

suggest that cytokine production by p110δKD APCs directs differentiation of antigen

specific Th1 and Th17 CD4+ T cells.

These results suggest a model where defective p110δ, through regulation of IL-10 and

IL-12p40, leads to inflammatory effector T cell development. To test this model in vivo, we

generated Rag1-/-/p110δKD mice (RKO/δKD). Interestingly, colitis is present but attenuated

in the absence of an adaptive immune system (Fig. 7A, B). Colonic explant cultures from

RKO/δKD mice produced significantly decreased IL-10 (Fig. 7C) and increased IL-12p40

(Fig. 7D) compared to colonic tissue explant cultures from Rag1-/- mice.

It was previously reported that p110δKD CD4+ T cells adoptively transferred into Rag1-/-

recipients induce colitis owing to impaired T regulatory cell function (25). To study how

p110δ inactivation in non-lymphocyte populations affects T cell differentiation, admixed

WT CD4+CD45RBhigh and CD4+CD45RBlow T cells were adoptively transferred into

Rag1-/- and RKO/δKD mice (CD45RB recipient mice) and monitored for colitis

development. Adoptive transfer of T cells demonstrated reconstitution, with localization of

CD3+ cells to the colons of recipient mice (Supplemental Fig. 4D). Total body weight of
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recipient mice was recorded until the experiment was terminated at day 24 due to severe

clinical manifestations in the CD45RB recipient RKO/δKD mice. There was no difference in

weight loss between CD45RB recipient Rag1-/- or RKO/δKD mice (data not shown). Clinical

colitis activity scores (Fig. 8A) and quantitative colonic histologic analysis (Fig. 8B, C)

from CD45RB recipient RKO/δKD mice were increased compared to the respective recipient

Rag1-/- mice. Colonic IL-10 production was significantly lower (Fig. 8D) and IL-12p40

production higher (Fig. 8E) in CD45RB recipient RKO/δKD mice compared to CD45RB

recipient Rag1-/- mice. Consequently, ratios of colonic IL-12p40:IL-10 production from

CD45RB recipient RKO/δKD mice were significantly higher (Fig. 8F) than ratios from

recipient Rag1-/- mice. Furthermore, more IFN- γ-producing (Fig. 8G), but not IL-17A-

producing (Fig. 8H), CD4+ T cells were isolated from mesenteric lymph nodes (MLNs) of

CD45RB recipient RKO/δKD mice compared to recipient Rag1-/- mice. Finally, a greater

percentage of lamina propria CD3+CD4+ T cells from recipient RKO/δKD mice produced

IFN- γ (Fig. 8I) and IL-17A (Fig. 8J, each data point represents 3 pooled samples),

compared to recipient Rag1-/- mice.

Intestinal PIK3CD expression correlates with IL12B:IL10 ratios from patients with CD

Expression of p110δ (PIK3CD), IL-12p40 (IL12B) and IL-10 (IL10) mRNA was

determined in human intestinal tissue from control subjects without intestinal inflammation

and patients with CD. Significantly higher levels of PIK3CD mRNA were detected in non-

inflamed intestinal samples from control subjects compared to tissue from patients with CD

(Fig. 9A). Paired macroscopically inflamed and non-inflamed intestinal resections from the

same subject were obtained from 14 CD patients. There was lower expression of PIK3CD in

inflamed intestinal tissues compared to non-inflamed tissues obtained from the same patient

(Fig. 9B). Furthermore, ratios of IL12B:IL10 expression from individual CD patients

demonstrated a strong and statistically significant inverse correlation with PIK3CD

expression (Fig. 9C).

DISCUSSION

We previously described the development of spontaneously occurring Th1 and Th17

mediated colitis in p110δ KD (9). In the present series of experiments, we further elucidate

intestinal host-microbial and APC-T cell interactions mediated by p110δ. Colitis in

p110δKD mice is dependent on host responses to the enteric microbiota, as has been

described in other murine colitis models (26). In the absence of the enteric microbiota,

p110δKD mice did not develop intestinal inflammation, whereas after reconstitution with

commensal enteric microbiota, colons from p110δKD mice demonstrated histological

inflammation, impaired IL-10 and increased IL-12p40 production (Fig. 1). Consequently,

altered IL-10 and IL-12p40 production by p110δKD APCs in response to microbial products

and cognate interactions with T cells orchestrate pathogenic adaptive immune responses

contributing to intestinal inflammation.

Class IA PI3Ks regulate macrophage and dendritic cell responses to bacteria (5). Taken

together, our results and those of others (21) elucidate a model where p110δ is an

intracellular integrator of environmental signals that is involved in the restoration of
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inflammatory responses to homeostasis, mediated in part by IL-10. Regulation of IL-10

expression involves both PI3K-dependent and independent pathways. Moreover, IL-10

signaling in macrophages has been shown to activate the PI3K pathway (27). Indeed, we

have shown that colonic p110δ expression is attenuated in colitis-prone Il10-/- mice,

suggesting that IL-10 regulation of IL-12p40 occurs in part via induction of p110δ (9). Our

current and previous findings (9) demonstrate that bacterial products and IL-10 induce

p110δ gene expression in macrophages, and suggest that transcription regulation of p110δ
can determine functional immunologic consequences. Most studies have focused on post-

translational regulation of p110δ (21, 28, 29) as the sole biologic determinant of function.

Thus, transcriptional regulation of p110δ expression in macrophages may have unexpected

biological significance and needs to be further explored.

Aksoy et al. recently demonstrated that p110δ signaling in dendritic cells dampens

responses to LPS by sequestering TLR4 signaling components and facilitating the switch

from toll-interleukin 1 receptor (TIR) domain containing adaptor protein (TIRAP)/MyD88

dependent inflammatory cytokine production (IL-12, IL-6, TNF-α) to TIR domain

containing adaptor inducing interferon-β (TRIF)-related adaptor molecule (TRAM)/TRIF

dependent anti-inflammatory cytokine production (IFN-β, IL-10) (21). It is possible that

LPS induced p110δ signaling in macrophages also facilitates the switch to TRAM-TRIF

signaling, leading to the enhanced production of IL-10 and IFN-β. Indeed, this agrees with

our finding that p110δKD macrophages produce less LPS induced IL-10. However, we have

previously shown that CD11b+ LPMCs from Trif-/- mice produce higher levels of basal and

bacterially stimulated IL-10 compared to WT mice (30, 31). Conversely, BMDMs from

Trif-/- mice produce less LPS-induced IL-10 compared to WT mice (32). These findings

suggest that the TRIF pathway negatively regulates IL-10 production uniquely in intestinal

macrophages. Furthermore, CD11b+ LPMCs produce high levels of IL-10 in GF conditions

(30), suggesting that microbial signals are not necessary for driving constitutive expression

of IL-10. However, TLR signaling, perhaps through the recognition of endogenous ligands,

remains vital for IL-10 production in intestinal macrophages, as HKEC stimulated MyD88-/-

CD11b+ LPMCs do not produce detectable levels of IL-10 (30). Additionally, our data

suggest that IFN-β and IL-10 demonstrate differential regulation in CD11b+ LPMCs, in

contrast to the recent study demonstrating convergent regulation in LPS stimulated BMDCs

(21). Indeed, Kaiser et al. demonstrated cell type-specific differences in IL-10 and IFN-β
production in response to LPS: BMDMs and splenic macrophages did not make detectable

amounts of IFN-β but made significant amounts of IL-10 in response to LPS, whereas

BMDCs produced both IFN-β and IL-10 (33), suggesting that macrophages utilize distinct

pathways to regulate IFN-β and IL-10. Thus, further studies are necessary to elucidate

specific intestinal macrophage signaling pathways required for IL-10 production.

In macrophages, mTOR and GSK-3β are central regulators of IL-12p40 and IL-10

downstream of PI3K. Bacterial products induce MyD88 dependent PI3K activation, leading

to phosphorylation of its downstream effector molecule Akt. Akt inactivates tuberous

sclerosis complex (TSC), a negative regulator of mTOR (34). Both Akt and PI3K dependent

mTOR activation modulate IL-12p40 and IL-10 production by suppressing GSK-3β activity

(22, 35). GSK-3β constitutively represses IL-10 by blocking cAMP response element-
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binding (CREB) binding to and activation of the Il10 promoter (36). PI3K- and mTOR-

mediated inhibition of GSK-3β thus releases IL-10 from suppression by GSK-3β (36).

Interestingly, mTOR activation targets were not altered in LPS stimulated p110δKD BMDCs

compared to WT BMDCs, suggesting that compensatory activation pathways sustain mTOR

signaling in p110δKD BMDCs (21). Indeed, mTOR is activated through many pathways,

including cellular energy sensing and Wnt signaling (37). Additionally, the balance of IL-10

and IL-12p40 production, as well as other cytokines, is regulated by MAPK signaling

downstream of TLR signaling (38). We previously reported that TLR-activated p110δKD

macrophages demonstrate impaired Akt phosphorylation and enhanced phosphorylation of

p38 and JNK MAPK, but not ERK1/2, compared to WT macrophages (9). Here we show

impaired phosphorylation of the downstream mediators GSK-3β and CREB in TLR-

stimulated p110δKD macrophages and in colons from GF to CNV p110δKD mice.

Furthermore, other cytokines such as TNF-α are affected by p110δ, which regulates tubule

fusion in TNF-α containing vesicles bound for secretion (39). Indeed, we have previously

shown dysregulation of IL-12p70, IL-23, and NO in TLR-activated p110δKD macrophages

(9). Thus, p110δ may regulate cytokine secretion in multiple ways. Here we showed that

inhibition of GSK-3β rescues LPS induced IL-10 production in p110δKD BMDMs (Fig. 5).

Our results therefore suggest that GSK-3β activity may be a therapeutic target in IBDs to

induce IL-10 production. Indeed, GSK-3β inhibition has previously been shown to

ameliorate colitis in mice (40).

PI3K p110δKD B and T lymphocytes demonstrate impaired proliferative signaling through

the B cell and T cell receptors (8). PI3K p110δKD mice demonstrate impaired intrinsic T

regulatory cell function, and p110δKD CD4+CD45RBlow cells co-transferred with

colitogenic WT CD4+CD45RBhigh cells did not protect Rag1-/- mice from T cell-mediated

colitis (25). To determine how APC p110δ influences T cell subset differentiation and colitis

development, APC-CD4+ T cell co-culture experiments (Fig. 6) were performed. CD4+ T

cells induced greater production of IL-12p40 by APCs, while APCs from p110δKD mice

induced more antigen-specific IFN-γ- and IL-17A-producing T cells. Because only WT

CD4+ T cells were used in co-culture with APCs from both WT and p110δKD mice, T cell

phenotype can be attributed to the defect in p110δKD APCs. As an in vivo correlate, Rag1-/-

and RKO/δKD mice were reconstituted with admixed WT CD4+CD45RBhigh and

CD45RBlow T cells (Fig. 8). Compared to respective recipient Rag1-/- mice, RKO/δKD

recipient mice demonstrated significantly increased clinical and histology scores. More IFN-

γ-producing T cells were isolated from mesenteric lymph nodes and colonic lamina propria

of RKO/δKD recipient mice compared to recipient Rag1-/- mice. IL-17 producing CD4+ T

cells are rarely found in MLN and other secondary lymphoid tissues but are found in

abundant quantities at mucosal surfaces (41). Indeed, RKO/δKD recipient mice contained

significantly higher percentages of IL-17A-producing T cells in the colonic lamina propria

compared to the respective Rag1-/- recipient mice. We previously showed that bacterially

stimulated p110δKD macrophages produce significantly more IL-23, a cytokine necessary

for the differentiation and maintenance of Th17 cells (9).

While the development of pathogenic CD4+ T cells in CD45RB recipient mice was

explored, we did not study Treg cell differentiation and function. During GF to CNV
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transition, colons from p110δKD mice demonstrated significantly increased transcription of

Foxp3, correlating with increased inflammation, compared to colons from WT mice (data

not shown). However, this finding does not rule out functional defects in p110δKD Treg

cells. It is entirely possible, and in fact likely, akin to human IBD pathogenesis, that innate

and adaptive immune defects interact to drive colitis.

Interestingly, in the absence of T cells, RKO/δKD mice developed mild histopathologic

colonic inflammation. The development of mild colonic inflammation in RKO/δKD mice

could be explained by the presence non-hepaticus Helicobacter species in our mouse colony

(data not shown). The ability of H. hepaticus to induce innate immune driven colonic

inflammation in the absence of adaptive immune cells has been well described (42, 43).

Recently, p110δ inhibition has been targeted for the treatment of chronic rejection of tissue

transplants, systemic lupus erythematosus, and certain lymphoid cell malignancies (10, 11,

44). While preliminary clinical results are promising, this study highlights a potentially

untoward consequence of p110δ inhibition – enhanced intestinal and innate inflammatory

processes initiated by APCs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

BMDMs bone marrow-derived macrophages

CBL cecal bacterial lysate

CD Crohn’s disease

CNV conventionalized

GF germ free

GSK-3β glycogen synthase kinase 3β

HKEC heat killed Escherichia coli

LPMCs lamina propria mononuclear cells

MLN mesenteric lymph nodes

mTOR mammalian target of rapamycin

p110δKD mice with a knock-in kinase-dead p110δ subunit

RKO/δKD Rag1-deficient/p110δKD mutant mice

TIRAP toll-interleukin 1 receptor domain containing adaptor protein

TRAM TRIF-related adaptor molecule

TRIF toll-interleukin 1 receptor domain containing adaptor inducing interferon-β

WT wild type

Steinbach et al. Page 15

J Immunol. Author manuscript; available in PMC 2015 April 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. The enteric microbiota are required for the development of colitis in p110δKD mice
Germ-free (GF) p110δKD (n = 10) and age-matched WT (n = 12) mice were monitored for

colitis up to 30 weeks of age. Additionally, GF WT and p110δKD mice were transferred to

CNV housing and monitored for colitis at days 7 (n = 5 and 7, respectively) and 14 (n = 6

and 12, respectively) after transfer. (A) H&E slides of colonic tissue were scored for colitis

severity using criteria described in the methods by a pathologist (L.B.B.) blinded to the

experimental groups. Error bars represent mean ± SEM (NS, not significant; **, p<0.005).

(B, C) Colonic tissue explants were incubated in media for 24 hours. Supernatants were
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collected and assayed for IL-10 (B) and IL-12p40 (C) production by ELISA, and are

expressed as the amount of cytokine (pg/ml) per 50 mg colonic tissue weight. Error bars

represent mean ± SEM (NS, not significant; *, p<0.05; **, p<0.005). (D) IL-12p40 and

IL-10 protein levels from colonic tissue explant cultures in individual mice were used to

determine the ratio of IL-12p40 to IL-10 production. Error bars represent mean ± SEM (NS,

not significant; *, p<0.05). (E) IFN-β protein levels from colonic tissue explant cultures

were measured by ELISA and are expressed as the amount of cytokine (pg/ml) per 50 mg

colonic tissue weight. Error bars represent mean ± SEM (NS, not significant; **, p<0.005).

(F) WT, p110δKD and Il10-/- BMDMs were isolated and treated with LPS (1 μg/ml) as

described in the methods. Supernatants were collected and assayed for IFN-β levels by

ELISA. Error bars represent mean ± SEM from two independent experiments (NS, not

significant; *, p<0.05). (G) WT and p110δKD CD11b+ LPMCs were isolated as described in

the methods and treated with heat-killed E. coli (multiplicity of infection (MOI) = 100) for

24 hours. Supernatants were collected and assayed for IFN-β levels by ELISA. Error bars

represent mean ± SEM from two independent experiments (*, p<0.05).
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Figure 2. Defective p110δ activity alters macrophage production of IL-10 and IL-12p40 in
response to bacterial products
BMDMs were stimulated with LPS (5 ng/ml), sBLP (5 ng/ml) or Zymosan A (5 μg/ml) for 8

hours. Supernatants were collected and assayed for IL-10 (A) and IL-12p40 (B) production

by ELISA. Error bars represent mean ± SEM from three independent experiments (NS, not

significant; *, p<0.05). (C) The ratio of IL-12p40 to IL-10 from individual experiments was

calculated. Error bars represent mean ± SEM from three independent experiments (*,

p<0.05; **, p<0.005).
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Figure 3. A p110δ-specific inhibitor decreases IL-10 and augments Il-12p40 production in WT
macrophages stimulated with bacterial products
WT, p110δKD and Il10-/- BMDMs were cultured with a p110δ-specific inhibitor (IC87114,

0.1, 1 or 10 μM) for 1 hour prior to stimulation with LPS (1 ng/ml, BMDMs). Supernatants

from WT and p110δKD BMDMs were collected after 8 hours of culture and assayed for

IL-10 (A) and IL-12p40 (B) production by ELISA. Error bars represent mean ± SEM from

three independent experiments (NS, not significant; *, p<0.05; **, p<0.005; ***, p<0.0005).

(C) Supernatants from WT and Il10-/- BMDMs were collected after 8 hours of culture and

assayed for IL-12p40. Error bars represent mean ± SEM from three independent
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experiments (*, p<0.05; **, p<0.005; ***, p<0.0005). (D, E) WT and p110δKD CD11b+

LPMCs were incubated with a p110δ-specific inhibitor (IC87114, 10 μM) 1 hour prior to

stimulation with HKEC (MOI=100) for 3 hours. Quantitative RT-PCR was performed in

duplicate for Il10 (D) and Il12b (E) expression levels normalized to β-actin expression and

calculated as fold induction over unstimulated cells. Error bars represent mean ± SEM for

three independent experiments (*, p<0.05).
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Figure 4. Phosphorylation of p110δ targets is altered in macrophages and colons from p110δKD

mice
(A, B) BMDMs from WT and p110δKD mice were treated with LPS (1 μg/ml) and cell

lysates were collected for western blot analysis after the indicated times. (A) Blots were

probed for phosphorylated GSK-3β (Ser9) and total GSK-3β. Figure shows representative

results from 3 independent experiments. Quantitative analysis of p-GSK-3β relative light

units (RLU) normalized to total GSK-3β. Error bars represent mean ± SEM from three

independent experiments (*, p<0.05 compared to WT). (B) Blots were probed for

phosphorylated CREB (Ser133) and total CREB. Representative results from two

independent experiments are displayed. Quantitative analysis of p-CREB relative light units

(RLU) normalized to total CREB. Error bars represent mean ± SEM from three independent

experiments (*, p<0.05 compared to WT). (C) GF WT and p110δKD mice were transferred

to CNV housing and colonized with a commensal enteric microbiota (GF: WT, n = 2;

p110δKD, n = 2; GF to CNV: 7 day WT, n = 1; 7 day p110δKD, n = 3; 14 day WT, n = 2; 14

day p110δKD, n = 4). Mice were sacrificed at the indicated times after colonization, and

cecal tissue was collected and protein extracted. Blots were probed for the indicated

Steinbach et al. Page 21

J Immunol. Author manuscript; available in PMC 2015 April 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



proteins/phospho-proteins. Quantitative analysis of p-GSK-3β RLU normalized to total

GSK-3β and actin. Error bars represent mean ± SEM (NS, not significant; *, p<0.05; **,

p<0.005 compared to WT).
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Figure 5. IL-10 and IL-12 p40 production in macrophages is mTOR- and GSK-3β-dependent
WT and p110δKD BMDMs were cultured with the mTOR inhibitor rapamycin (A-D) or the

GSK-3β inhibitor SB-216763 (E-H) for 1 hour prior to stimulation with LPS (1 ng/ml) for 4

(quantitative PCR) or 8 (ELISA) hours. Supernatants were collected and assayed for IL-10

(A, E) and IL-12p40 (B, F) production by ELISA. Error bars represent mean ± SEM from

three independent experiments (*, p<0.05; **, p<0.005). Total RNA was assayed for Il10

(C, G) and Il12b (D, H) expression normalized to β-actin expression by quantitative RT-

PCR. Error bars represent mean ± SEM from three independent experiments (*, p<0.05).
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Figure 6. APC p110δ regulates T cell differentiation
(A-D) GF WT and p110δKD mice were transferred to CNV housing. Colonic tissue was

collected from WT and p110δKD mice sacrificed at days 0 (n = 12 and 10, respectively), 7

(n = 5 and 7, respectively) and 14 (n = 6 and 12, respectively) after transfer. Quantitative

RT-PCR was performed in duplicate for Tbx21 (A), Rorc (B), Ifng (C), and Il17a (D)

expression normalized to β-actin expression. Error bars represent mean ± SEM (*, p<0.05).

(E, F) WT and p110δKD APCs were cultured overnight with CBL (50 μg/ml) and then co-

cultured with WT or Il10-/- CD4+ T cells at a ratio of 3:2 for 72 hours. Supernatants were

Steinbach et al. Page 24

J Immunol. Author manuscript; available in PMC 2015 April 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



collected and assayed for IL-10 (E) and IL-12p40 (F) production by ELISA. Error bars

represent mean ± SEM for three independent experiments (*, p<0.05). (G-J) WT and

p110δKD APCs were stimulated with LPS (10 ng/ml) and OVA peptide (5 μM) overnight

and then co-cultured with WT CD4+CD62L+ OT-II T cells at a ratio of 3:2 for 72 hours. T

cells were assayed for IL-17A and IFN-γ production by flow cytometry. CD4+ lymphocytes

were gated using forward and side scatter. Representative flow cytometry plots show IFN-γ-

and IL-17A-producing WT CD4+ OT-II T cells co-cultured with LPS and OVA stimulated

WT (G) and p110δKD (H) APCs. Plots are representative of results from three independent

experiments with similar results. Quantification of the percentage of total CD4+ T cells

producing IFN-γ (I) and IL-17A (J) was determined from the flow cytometry analysis.

Error bars represent mean ± SEM from three independent experiments (*, p<0.05).
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Figure 7. Mild innate mediated colitis develops in Rag1-/-/p110δKD (RKO/δKD) mice
16 week old Rag1-/- (n = 8) and Rag1-/-/p110δKD (RKO/δKD, n = 14) mice were assessed

for colitis severity by histopathology and cytokine production in colonic explant cultures.

(A) (20X, H&E) Colons from Rag1-/- and RKO/δKD were taken for histological evaluation.

Representative sections are shown. (B) H&E slides of colonic tissue were scored for colitis

severity using criteria described in the methods by a pathologist (L.B.B.) blinded to the

experimental groups. Error bars represent mean ± SEM (**, p<0.005). IL-10 (C) and

IL-12p40 (D) production was determined by ELISA and expressed as the amount of
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cytokine (pg/ml) per 50 mg colonic tissue weight. Error bars represent mean ± SEM (**,

p<0.005; ***, p<0.0005).
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Figure 8. Adoptive transfer of CD4+CD45RB T cells into Rag1-/-/p110δKD recipient mice leads
to severe colitis
8 week old Rag1-/- (n = 13) and RKO/δKD (n = 14) recipient mice were given 4×105

CD4+CD45RBhigh T cells admixed with 2×105 CD4+CD45RBlow T cells by i.p. injection to

induce colitis as described in the methods. Mice were assessed for colitis severity at 24 days

after adoptive transfer. (A) Clinical disease activity scores were determined as described in

the methods. Error bars represent mean ± SEM (*, p<0.05). (B) (20X, H&E) Colons from

Rag1-/- and RKO/δKD recipient mice were taken for histological evaluation. Representative

sections are shown. (C) H&E slides of colonic tissue were scored for colitis severity by a
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pathologist (L.B.B.) blinded to the experimental groups as described in the methods. Error

bars represent mean ± SEM (**, p<0.005). (D-F) Supernatants from 24 hour colonic tissue

explants were collected and assayed for IL-10 (D) and IL-12p40 (E) production by ELISA,

and are expressed as the amount of cytokine (pg/ml) per 50 mg colonic tissue weight. Error

bars represent mean ± SEM (*, p<0.05). (F) IL-12p40 and IL-10 protein levels from colonic

tissue explant culture in individual mice were used to determine the ratio of IL-12p40 to

IL-10. Error bars represent mean ± SEM (**, p<0.005). (G, H) Mesenteric lymph nodes

(MLNs) from Rag1-/- and RKO/δKD recipient mice were analyzed by flow cytometry for

intracellular IFN-γ (G) and IL-17A (H) expression in CD3+CD4+ T cells. Each point on the

graphs represents MLN cells from one mouse. Error bars represent mean ± SEM (NS, not

significant; *, p<0.05). (I, J) LPMCs were analyzed by flow cytometry for IFN-γ (I) and

IL-17A (J) expression in CD3+CD4+ T cells. Each point on the graphs represents pooled

LPMCs from three mice. Error bars represent mean ± SEM (*, p<0.05).
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Figure 9. Human intestinal PIK3CD expression is decreased in patients with CD and inversely
correlates with IL12B:IL10 ratios
Macroscopically inflamed and non-inflamed colonic or ileal tissue was obtained from

patients with CD (n = 14) or non-IBD control patients (non-inflamed tissue; n = 20)

undergoing surgical resection. (A) Total RNA from samples was assessed for PIK3CD

expression by quantitative RT-PCR in duplicate normalized to GAPDH expression. Error

bars represent mean ± SEM (*, p<0.05). (B) Intestinal PIK3CD expression normalized to

GAPDH expression from patients with CD was assessed at inflamed sites (n = 14) and

compared to non-inflamed sites (n = 14) from the same patient. Lines connect samples from

individual patients. Data was analyzed using a paired t test. (**, p<0.005). (C) Total RNA

from samples was assessed for IL12B and IL10 expression in duplicate normalized to

GAPDH expression. IL12B:IL10 ratios in patients were correlated with PIK3CD expression

(r2=0.2363; p=0.014).
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