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Abstract

Interleukin-2 (IL-2), a cytokine with pleiotropic effects, is critical for immune cell activation and

peripheral tolerance. Although the therapeutic potential of IL-2 has been previously suggested in

autoimmune diseases, the mechanisms whereby IL-2 mitigates autoimmunity and prevents organ

damage remains unclear. Using an inducible recombinant adeno-associated virus (rAAV) vector

we investigated the effect of low systemic levels of IL-2 in lupus-prone MRL/Faslpr/lpr (MRL/lpr)

mice. Treatment of mice after the onset of disease with IL-2-rAAV resulted in reduced

mononuclear cell infiltration and pathology of various tissues including skin, lungs and kidneys. In

parallel, we noted a significant decrease of IL-17-producing CD3+CD4−CD8− double-negative T

cells and an increase in CD4+CD25+Foxp3+ immunoregulatory T cells (Treg) in the periphery.

We also show that IL-2 can drive DN T cell death through an indirect mechanism. Notably,

targeted delivery of IL-2 to CD122+ cytotoxic lymphocytes effectively reduced the number of DN

T cells and lymphadenopathy whereas selective expansion of Treg by IL-2 had no effect on DN T

cells. Collectively, our data suggest that administration of IL-2 to lupus-prone mice protects

against end-organ damage and suppresses inflammation by dually limiting IL-17-producing DN T

cells and expanding Treg.

Introduction

Systemic lupus erythematosus is a complex autoimmune disease characterized by

autoantibody production and tissue inflammation (1). Kidney damage through glomerular
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inflammation in response to immune complexes and mononuclear cell infiltration of the

interstitial and perivascular areas is associated with significant morbidity (2–4). Similarly,

MRL/MpJ-Faslpr/lpr (MRL/lpr) female mice, a model for SLE, develop systemic

autoimmunity 10 to 12 weeks after birth characterized by autoantibody production, and T

cell driven lymphadenopathy. Severe lymphadenopathy is largely attributed to an expanded

pool of CD3+CD4−CD8− double negative T cells (5–7). In addition to kidney disease

MRL/lpr mice display skin and lung injury characterized by infiltrating proinflammatory

cells (8, 9).

IL-2 is produced by activated T cells and dendritic cells, and exhibits potent pleotropic

effects. For instance, IL-2 is canonical growth factor for conventional CD4+ and CD8+ T

cells, but also promotes activation and/or expansion of various immune effectors such as

natural killer cells (10). Notably, IL-2 is critical for the survival, expansion, and function of

Foxp3-expressing immunoregulatory T cells (Treg) (11). In addition, IL-2 plays an

important role in activation-induced cell death (AICD), a process that regulates T cell

expansion (12). Furthermore, IL-2-mediated signals block the differentiation of IL-17-

producing CD4+T helper cells (TH17) (10, 13) and inhibit the generation of follicular helper

T cells (Tfh)(14). Moreover, IL-2-deficient mice develop severe autoimmunity marked by

reduced Treg numbers and systemic expansion of pathogenic T effectors (15) (10),

indicating that IL-2 is crucial for the maintenance of T cell-mediated self-tolerance.

T cells from SLE patients and various lupus-prone mice, such as NZB x NZW F1 and

MRL/lpr mice exhibit impaired IL-2 production (1, 16–19), which in turn correlates with

reduced Treg and an increase in IL-17-producing cells (20, 21). Furthermore, we have

shown that CD3+CD4−CD8− DN T cells are a major source of IL-17 in both human and

murine lupus (22, 23). Importantly, DN T cells are found infiltrating the kidneys of SLE

patients (22) and in aged MRL/lpr mice, and account for the severe lymphadenopathy and

splenomegaly in murine models (24).

IL-2 immunotherapy has been applied in several murine tumor and infection models,

resulting in reduced tumor size and elimination of the infectious pathogens, respectively.

Mechanistically, this was shown to be the result of cytotoxic T cell and natural killer cell

expansion and activation (25). Although high dose recombinant IL-2 has been used

clinically for the treatment of renal carcinoma and melanoma, efficacy is limited due to

severe toxicity, including the development of vascular, capillary leak syndrome (VLS)

and/or a secondary inflammatory cytokine storm (26). On the other hand, low dose IL-2

therapy has recently been shown to be effective in the clinic for the treatment of systemic

pathologies such as chronic graft-versus-host disease (GVHD) (27, 28) and chronic hepatitis

C-mediated vasculitis (29) (30) by promoting Treg expansion. IL-2 administration also

prolongs survival in MRL/lpr and NZB x NZW F1 mice (18, 31, 32). In the present study

we investigated the effect of IL-2 on disease development in MRL/lpr mice using

tetracycline-inducible recombinant adeno-associated virus (rAAV) vector encoding IL-2

(33). Induction of expression results in low, continuous serum IL-2 levels, which

significantly reduce inflammatory cell infiltration of the kidney, lung and skin in MRL/lpr

mice. Furthermore, suppression of pathology corresponds with reduced IL-17-producing DN

cells and increased Treg. We show that IL-2 selectively reduced DN T cell population by
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inducing cell death, but the effect of IL-2 could be elicited only when splenocytes besides

DN T cells were present. Importantly, delivery of an IL-2/anti-IL-2 antibody complex and

selective targeting of IL-2 to cytotoxic lymphocytes resulted in reduction of DN T cells and

lymphadenopathy whereas targeting to Treg cells had no effect on DN T cells. We propose

that proper administration of IL-2 limits organ inflammation by altering the distribution of T

cell subsets and should be considered for clinical trials in patients with SLE.

Materials and Methods

Mice

Female MRL/MpJ (stock no 000486), MRL/MpJ-Tnfrsf6lpr (MRL/lpr, stock no 000485)

mice were purchased from the Jackson Laboratories. MRL/lpr-Foxp3gfp mice were

generated by backcrossing the Foxp3gfp reporter transgene cassette (C57BL/6) onto the

MRL/lpr genetic background for more than 10 generations. Mice were maintained in the

specific pyrogen free animal facility of Beth Israel Deaconess Medical Center. All animal

procedures in the study were approved by the Institutional Animal Care and Use Committee

(IACUC) of Beth Israel Deaconess Medical Center.

Recombinant-AAV vaccination

Full-length cDNA encoding murine IL-2 subcloned into an AAV-Tet-on vector plasmid as

previously described(33). Briefly, The AAV-Tet-on vector contains a bidirectional promoter

with a tetracycline response element flanked by mini-CMV promoters that regulate

expression of IL-2 and reverse transcriptional transactivator gene. MRL/lpr and/or MRL/lpr-

Foxp3gfp mice were vaccinated with 5 × 1010 viral particles (v.p.) of rAAV-Tet-on-IL-2 in

contralateral hind limb muscles using an insulin syringe. Twenty-four hours after rAAV

injection, mice were fed ad libitum chow containing 200 mg/kg doxycycline (BioServ) for

induction of IL-2 or control diet. Blood samples were collected from tails and urine samples

were collected using individual metabolic cages periodically.

Flow Cytometry

Splenocytes were isolated as previously described(23). PBS-perfused kidneys and lungs

were minced and digested with collagenase IV (100 μg/ml) for 30 minutes at 37 °C to

prepare single cells.

Isolated cells were stained with the following antibodies specific for: TCRβ (H57-597,

BioLegend), CD3ε (145-2C11, eBiosciences), CD4(GK1.5, BioLegend), CD8α (53-6.7,

eBiosciences), B220 (RA3-6B2, BioLegend), CD25(PC61, BioLegend), I-A/I-E

(M5/114.15.2, BioLegend), Nkp46 (29A1.4, BioLegend) for 30min at 4 °C. For intracellular

staining, cells were stimulated with 20 ng/ml of phorbol-myristate acetate (PMA, Sigma)

and 1 mg/ml of ionomycin(Sigma) for 4 hours, washed and stained with TCRβ, CD4, CD8,

I-A/I-E. BD cytofix/cytoperm plus with Golgi stop staining kits (BD Biosciences) were used

according to the manufacturer’s protocol. Antibodies of IFN-γ (XMG1.2, BioLegend) and

IL-17A (TC11-18H10.1, BioLegend) were used for detecting intracellular cytokines.
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Histological Analyses and Immunofluorescence

Kidneys, lungs and skin biopsies were fixed in 10% formaldehyde. Tissue sections were

stained with H&E or Periodic acid-Schiff (PAS) and visualized by Nikon. Histological

scores of skins and kidneys were evaluated as described(34, 35). Kidneys and skins were

scored from 6 mice in each group. At least 20 glomeruli and 10 tubular and vessel area in

low power field are scored and calculated an average in each tissue section. Briefly, severity

of glomeluronephritis, interstitial nephritis and perivascular infiltrates were graded in a

semiquantitative (0–3+) manner. For skin, the degree of acanthosis, none (0) to marked

thickened dermis (27); hyperkeratosis, none (0) to markedly increased keratin (2);

inflammation, sparse (0) to heavy lymphocytic infiltrates (27); fibrosis, dermal collagen with

normal (0) to markedly thickened (2); vessels, normal (0) to diffuse dilated (2); ulcer,

absence (0) ore presence (1). For immunofluorescence, frozen kidney sections (5 μm

thickness) were fixed in acetone and blocked with 1% normal goat serum in PBS. Diluted

FITC-anti-mouse IgG (Jackson Immunoresearch) and FITC-anti-mouse C3(36) antibodies

were incubated overnight at 4 °C, and staining visualized with a Nikon C1 confocal

microscope.

Quantitative real-time PCR analysis

Total mRNA was purified from muscle, lung and kidney using TRIZol (Invitrogen).

Messenger RNA from splenocyte was purified using RNeasy Mini Kit (QIAGEN).

Complementary DNA (cDNA) was synthesized using cDNA EcoDry Premix (Clontech) for

PCR amplification. Taqman primers were purchased from Applied Biosystems for Gapdh

(Mm99999915_g1), Il17a (Mm00439619_m1), IFN-γ (Mm01168134_m1), TNFα

(Mm00443260_g1), MCP1 (mm00441242_m1), CCL20 (Mm001268754_m1),

CXCL11(Mm00444662_m1) and IL8(Mm04208136_m1). Gene expression was assessed by

comparative CT method.

T Cell Labeling and Transfer experiment

CD3+ T cells were isolated from spleen and lymph nodes of MRL/lpr mice at 12 weeks of

age using MACS pan T cell isolation kit (Miltenyi Biotec), then labeled with CellTrace

Violet (Life Technologies) or carboxyfluorescein succinimidyl ester (CFSE) according to

the manufacture’s protocol. In brief, cells were washed and resuspended to 107 cells/ml in

pre-warmed PBS containing 5 μM CellTrace Violet or 5μM CFSE and incubated for 20

minutes at 37 °C, then washed three times with RPMI containing 10% FCS and resuspended

with PBS. Aliquots of 1.5 × 108 stained cells were injected i.v. into MRL/MpJ mice at 12

weeks of age or MRL/lpr mice at the age of 14 weeks. For IL-2 treatment, mice were

injected with 4 μg/body of mouse rIL-2 (BioLegend) twice a day for 5 days. Fluorescence-

positive cells in spleens were counted and analyzed by flow cytometry. For in vitro IL-2

treatment, Isolated DN T cells were labeled with 1 μM CFSE and 5 × 106 cells were

incubated with or without 5 × 106 of spleen cells for 5 days in the presence of indicated

concentrations of IL-2.
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Treatment with IL-2/anti-IL-2 monoclonal antibody complex

1.5 μg of mouse rIL-2 and 15 μg of anti-IL-2 monoclonal antibody clone S4B6-1 and the

same amount of IL-2 and JES6-1A12 (BioXcell) were mixed and incubated at room

temperature for 30 minutes, respectively. MRL/lpr mice at the age of 14 weeks were

received i.p. injection of 15 μg of isotype control rat IgG, IL-2/S4B6-1 and IL-2/JES6-1

complexes every other day for 2 weeks.

ELISA

IL-2, IFN-γ and IL-17 were measured in mice sera using Ready-set-go ELISA system

(eBiosciences). Anti-dsDNA antibody was detected using mouse anti-ds DNA IgG ELISA

kit (Alpha Diagnostic International).

Statistical analyses

Unpaired two-tailed Student t test and Mann Whitney tests were used for analyzing the

differences between two groups. For time-series experiments, paired t-test or two-way

ANOVA with Bonferoni’s post-test were used. Differences between three data sets were

analyzed by one-way ANOVA. A p value of < 0.05 was considered significant. Statistical

analyses were performed in GraphPad Prism 5.01 software.

Results

IL-17-producing DN T cells increase with advancing age in MRL/lpr mice

We previously reported that CD3+CD4−CD8− DN T cells from patients with SLE and lupus-

prone mice produce IL-17. Similarly, a significant increase in the percentage of DN versus

CD4+ T cells that have the potential to produce IL-17 (IL-17-DN T cells) was detected in 19

week-old MRL/lpr mice, whereas the frequency of IFN-γ+ DN T cells was reduced relative

to IFN-γ+ CD4+ T cells (CD4 vs DN of IFN-γ-positive cell percentage; 14.8 ± 1.33 vs 1.51

± 0.0338 %, p<0.0001, IL-17; 1.37 ± 0.134 vs 2.85 ± 0.320 %, p= 0.0028, Figure 1A).

Furthermore, the total number of splenic IL-17-DN T cells rather than IL-17-CD4+ T cells

increased markedly in an age-dependent manner (5.34 ± 0.52 × 105 for 15 weeks and 20.1 ±

3.67 × 105 for 19 weeks, p= 0.0434, Figure 1B). Interestingly, the number of IFN-γ-DN T

cells also increased in aged mice (4.86 ± 0.05 × 105 for 15 weeks and 11.6 ± 1.72 × 105 for

19 weeks, p= 0.0455); in contrast the number of IFN-γ-CD4+ T cell remained constant

during disease development. These results indicate that DN T cells represent the preferential

source of IL-17 in aged MRL/lpr mice and could contribute to disease development.

Treatment of MRL/lpr mice with IL-2-rAAV increases Treg and decreases DN T cells but
does not affect autoantibody production

IL-2 has a short half-life in serum, which typically necessitates frequent and/or continuous

injections to mediate a therapeutic effect. On the other hand, long-term administration and

doses of IL-2 too high induce adverse effects including systemic activation of T cells and

other immune effectors, and vascular or capillary leak syndrome (VLS) leading to severe

pulmonary edema and volume depletion. To overcome these obstacles a rAAV vector

encoding inducible IL-2 was employed(33). MRL/lpr mice were injected intramuscularly
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(i.m.) with 5 × 1010 viral particle (v.p.) of rAAV1-Tet-IL-2 and fed doxycycline (Dox)-

containing chow for 4 weeks. The expression of IL-2 mRNA in the muscle and IL-2 protein

in the serum was highest on day 7 after infection and gradually decreased after 14 and 28

days (Figure 2A,B). Notably, IL-2 mRNA was 3-fold higher even on day 28 as compared

with that of anti-CD3/CD28-activated splenocytes and more than 5000-fold higher than

control (day 0), indicating elevated and sustained expression of IL-2 in the muscle. Serum

IL-2 concentration was significantly increased on day 7 (334.4 ± 35.7 pg/ml, p= 0.0119) and

day 14 (66.5 ± 5.39 pg/ml, p= 0.0225) and showed no significance on day 28 (56.5 ± 12.5

pg/ml p= 0.0508) but still tended to be increased, as compared with controls (15.6 ± 9.13

pg/ml) (Figure 2B).

To test whether IL-2-rAAV therapy affected disease development, peripheral lymphocyte

populations and serum autoantibody production were examined in MRL/lpr mice injected

i.m. with IL-2-rAAV at 8 weeks of age and fed Dox. Consistent with a previous report, DN

T cells were significantly decreased in the peripheral blood by IL-2-rAAV (percentages of

DN T cells in total T cells of control vs IL-2: day 14; 26.9 ± 2.948 vs 13.78 ± 0.917. p=

0.0046, day 21; 33.83 ± 7.062 vs 18.40 ± 1.699. p= 0.0463, day 28; 51.83 ± 7.248 vs 26.95

± 3.160. p= 0.0174, Figure 2C). Moreover, an increased percentage of CD4+CD25+Foxp3+

Treg was observed 14 days post infection and sustained through day 21 (percentage of Treg

cells in CD4+ T cells of control vs IL-2: day 7; 4.91± 0.193 vs 6.22± 0.027, day 14; 4.13 ±

0.403 vs 7.89 ± 0.403, p<0.0001, day 21; 4.14 ± 0.517 vs 6.79 ± 0.451, p<0.001, Figure

2D). However, the titer of anti-dsDNA, the representative autoantibody in MRL/lpr mice,

increased gradually with age and was comparable between control- and IL-2-rAAV-treated

mice (Figure 2E). These results clearly demonstrate that IL-2 reduces the DN T cell pool

and expands Treg without affecting autoreactive antibody responses in MRL/lpr mice.

IL-2-rAAV administration into MRL/lpr mice with established disease reduces DN T cells
and cytokine production while expanding Treg

In considering the translational potential of IL-2 therapy, 12 week-old MRL/lpr-Foxp3gfp

mice, a time point at which disease is ongoing were treated with IL-2-rAAV. The Foxp3-

GFP reporter cassette facilitates identification of Treg in the periphery and various organs.

Eight weeks after treatment IL-2-treated mice exhibited reduced spleen weights (control vs

IL-2: 0.9433 ± 0.1094 g vs 0.6117 ± 0.0686 g, p=0.028)(Figure 3A). The percentage of DN

T cells among total T cells and the absolute number in the spleen were significantly reduced

(Figure 3C) (cell number of control vs IL-2: 1.30 ± 0.197 × 108 vs 0.590 ± 0.108 × 108,

p=0.0098). Treg (GFP+) were significantly increased in IL-2-treated mice (control vs IL-2:

2.54 ± 0.144 × 106 vs 4.32 ± 0.566 × 106, p=0.021) (Figure 3D). The fact that CD4+ and

CD8+ T cell numbers were comparable between the control- and IL-2-treated groups

indicated that the splenomegaly in MRL/lpr mice was mainly due to expansion of DN T

cells. We also found that serum concentrations of IFN-γ (control vs IL-2: 976.8 ± 423.6

pg/ml vs 147.2 ± 20.40 pg/ml, p= 0.0359) and IL-17 (control vs IL-2: 3106 ± 418.1 pg/ml vs

1595 ± 423.8 pg/ml, p= 0.0294) were significantly decreased in IL-2-rAAV-treated mice

(Figure 3B). These results suggest that systemic inflammatory responses were reduced by

IL-2-rAAV treatment, at least in part, by the reduction of DN T cells.
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IL-2-rAAV suppresses skin and lung inflammation in MRL/lpr mice

The typical skin lesions of diseased MRL/lpr mice are characterized by dermal hyperplasia

and marked inflammatory cell infiltrate. Alopecia on the back of the neck and partial

shedding and scabbing of the ear which were observed in the control rAAV-treated mice

were diminished significantly in IL-2-rAAV-treated mice (Figure 4A, left). As seen in Fig.

4A IL-2-rAAV significantly decreased skin injury (37) (control vs IL-2: acanthosis; 1.83 ±

0.477 vs 0.667 ± 0.333. p= 0.0364, hyperkeratosis; 1.17 ± 0.307 vs 0.500 ± 0.224. p=

0.0550, inflammation; 1.833 ± 0.477 vs 0.833 ± 0.307. p= 0.0543, fibrosis; 1.17 ± 0.307 vs

0.333 ± 0.211. p= 0.0247, vessel cellular infiltration; 1.00 ± 0.365 vs 0.167 ± 0.167. p=

0.0323, ulcer; 0.333 ± 0.211 vs 0.167 ± 0.167 p= 0.275, n=6, Figure 4A, right).

Lung inflammation is common in MRL/lpr mice and is manifested by peribronchiolar and

perivascular mononuclear cell infiltration. Perivascular infiltration of mononuclear cells was

readily seen in control but not IL-2-rAAV-treated mice (Figure 4B). CD45+ cells infiltrating

the lungs were increased in control mice as compared to IL-2-rAAV treated mice. More than

80% of CD45+ leukocytes were TCRβ+ T cells, which in turn were substantially decreased

in IL-2-rAAV treated mice (control vs IL-2: CD45+ 5.05 ± 0.97 × 105 vs 2.68 ± 0.49 × 105;

p = 0.045, Total T 4.14 ± 0.82 × 105 vs 1.86 ± 0.38 × 105; p= 0.032, CD4+ 8.71 ± 2.76 × 104

vs 3.52 ± 0.25 × 104; p= 0.078, CD8+ 3.90 ± 1.35 × 104 vs 1.60 ± 0.22 × 104; p= 0.094, DN

2.53 ± 0.47 × 105 vs 1.32 ± 0.45 × 105; p= 0.046, Figure 4B, right). Because IL-17 is well-

known inducer of inflammatory cytokines and chemokines in the lungs, expression of

TNFα, MCP-1 and IL-8 in the lung tissues was assessed. Expression of all of these

molecules were upregulated in control mice, but significantly reduced in the lungs of IL-2-

treated animals (TNFα of control vs IL-2: p= 0.0806, MCP1; p= 0.0105, IL-8; p= 0.0434,

Figure 4C), indicating that the inflammatory response in the lung is reduced by ectopic IL-2.

IL-2-rAAV treatment reduces kidney damage by reducing the inflammatory immune
response

Early mortality in MRL/lpr mice is often a result of renal failure due to inflammation. As

expected severe mononuclear cell infiltration into the perivascular, tubulointerstitial and

periglomerular areas of the kidney were observed in control-rAAV-treated mice (Figure

5A). In contrast, cellular infiltration in these areas was significantly reduced in IL-2-rAAV-

treated mice. Notably, hypercellularity and expansion of the mesangial area in the glomeruli

were significantly reduced in IL-2-rAAV-treated mice (glomeruli score of control vs IL-2:

1.47 ± 0.358 vs 0.587 ± 0.0926; p= 0.0092, tubulointerstitum 1.37 ± 0.405 vs 0.531 ± 0.140;

p= 0.0477, perivascular 1.37 ± 0.295 vs 0.565 ± 0.100; p= 0.0172, Supplementary Figure

1A, Figure 5B), while C3 and IgG deposition were observed irrespective of the treatment

group (Supplementary Figure 1A). The decrease of proteinuria in IL-2-rAAV-treated mice

(urine albumin/ creatinine ratio on day 55 of control vs IL-2: 15.1 ± 7.74 × 105 vs 1.44 ±

0.39 × 105 mg/g; p <0.05) clearly reflected the attenuation of glomerulitis, tubulointerstitial

and perivascular inflammation (Figure 5C). CD4+ and DN T cells predominated among

CD45+ cells in the kidneys, and all subsets of T cells including Treg were decreased by IL-2

treatment (CD45+ cells of control vs IL-2: 11.8 ± 1.11 × 105 vs 5.12 ± 0.318 × 105; p=

0.0034, Total T cells 8.87 ± 1.00 × 105 vs 4.27 ± 0.30 × 105; p= 0.0045, CD8 1.47 ± 0.258 ×

105 vs 0.565 ± 0.119 × 105; p= 0.019, CD4 3.53 ± 0.367 × 105 vs 1.72 ± 0.225 × 105; p=
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0.0028, DN 3.85 ± 1.00 × 105 vs 1.84 ± 0.143 × 105, p= 0.0468, Treg 2.74 ± 0.014 × 104 vs

1.39 ± 0.02 × 104; p= 0.0063, Figure 5D). Gene expression levels of IFN-γ, IL-17,

chemokines and chemokine ligands including CXCL9, IL-8, and CCL20 that promote

recruitment of inflammatory cells were also reduced in the whole kidney of IL-2-rAAV-

treated mice (IFN-γ; p= 0.0418, IL-17; p= 0.0366, CXCL9; p= 0.0304, IL-8; p= 0.0157,

CCL20; p=0.0016, Figure 5E). These results demonstrate that IL-2-treatment decreases

kidney injury by reducing the local recruitment of inflammatory cells.

IL-2 selectively decreases the DN T cell population by affecting its viability

The above results prompted us to consider whether IL-2 treatment controled DN T cell

viability or generation in diseased mice. Accordingly, Calcein-violet labeled T cells from

MRL/lpr mice were transferred to MRL/MpJ mice and rIL-2 was administrated for 5 days.

Labeled T cells were not detected in the kidneys or the lungs regardless of IL-2 treatment

(data not shown), indicating that T cell migration was not influenced by IL-2 treatment. Yet,

the number of Calcein -Violet+ DN, but not CD4+ and CD8+ T cells, was found decreased in

the spleens of the recipient mice (Figure 6A). This observation suggests that IL-2 negatively

affects survival of DN T cells.

To address whether IL-2 has an influence on DN T cell viability, we cultured spleen cells for

5 days in the presence of IL-2 and survived CD4+, CD8+ and DN T cells were counted. The

number of survived CD4+ and CD8+ T cells were sustained or slightly increased in high

concentrations of IL-2. However, survived DN T cell number was dramatically decreased in

low concentration (1.25 ng/ml) of IL-2 and IL-2-mediated decrease of DN T cell viability

was concentration-dependent (Figure 6B). Next we examined whether IL-2 directly affects

DN T cell survival, CFSE-labeled DN T cells alone were cultured or co-cultured with

splenocytes in the presence of IL-2. We found that the viability of DN T cells was increased

in the presence of splenocytes as compared with in the absence of them (Figure 6C). When

DN T cells were singly cultured with IL-2, the number of live cells did not change or rather

increased slightly in higher concentrations of IL-2. However, when co-cultured with

splenocytes, IL-2 significantly induced DN T cell death in a dose-dependent manner (Figure

6C). We also co-cultured DN T cells with CD4+ T cells or with CD8+ T cells in the presence

of IL-2 and the viability of DN T cells was decreased when co-cultured with CD8+ T cells

but not with CD4+ T cells (data not shown and supplementary Figure 2B). These results

suggest that IL-2 can act on non-DN T cell that drives DN T cell death. We checked the

expression of IL-2 receptors by each subset of T cells. Neither IL-2 receptor alpha chain

(CD25) nor beta chain (CD122) was detectable on DN T cells, whereas CD122 was highly

expressed on CD8+ T cells. Moreover, phosphorylation of STAT5 by IL-2 was significantly

obsereved in NK cells and CD8+ T cells but not in non-CD8+ T cells (data not shown and

Supplementary Figure 2A). These results indicate that IL-2 indirectly affects DN T cell

viability, possibly through modulating other lymphocyte function.

IL-2 targeting to non-Treg cells decreases the number of DN T cells and leads to reduced
lymphadenopathy

It is well known that administration of IL-2 both in humans and mice results in expansion of

Treg. Treg suppress several functions of conventional T cells directly and/or indirectly.
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Activated T cells can be suppressed by molecules such as IL-10, TGFβ and IL-35, or

CTLA-4, or can be killed directly by perforin-expressing Treg cells (38). IL-2 also

contributes to the generation and proliferation of cytotoxic T lymphocytes (CTLs) and

natural killer (10) cells. Functional impairment of cytotoxic lymphocytes in lupus has been

reported and found to correlate with disease activity both in humans and mice (39, 40).

Therefore, we examined the effect of IL-2/anti-IL-2-complexes that can be used to

selectively target different immune effector subsets. We used IL-2 complexed with two

different clones of anti-IL-2 monoclonal antibodies (mAbs), S4B6 and JES6-1. These two

types of IL-2/mAb complexes have distinct biological activities. IL-2/S4B6-1 complex

preferentially binds to memory CD8+ T cells and NK cells expressing high levels of CD122

and expands these cells in vivo. By contrast, IL-2/JES6-1 complex binds to CD25 and

induces selective expansion of CD4+CD25+ Treg (41). Isolated T cells from MRL/lpr mice

were labeled with CFSE, transferred to recipient MRL/lpr mice, which were then treated

with IL-2/ anti-IL-2 mAb complexes every other day for 7 days. CD8+ T cells and

CD4+Foxp3+ Treg were significantly increased in IL-2/S4B6 and IL-2/JES6-treated mice,

respectively, compared to control rat IgG-treated mice (Figure 7A and Supplementary

Figure 2B). Notably, the frequency (Supplementary Figure 2B) and number (cell number of

rat IgG; 6.08 ± 0.39 × 104, IL-2/JES6 6.32 ± 0.784 × 104, IL-2/S4B6 3.00 ± 0.305 × 104,

p<0.05, Figure 7B) of DN T cells were significantly decreased only in IL-2/S4B6-treated

mice, indicating that IL-2-delivered to cytotoxic lymphocytes affect the DN T cell

population. Consistent with previous reports (25, 42), CFSE-labeled CD8+ T cells and

CD4+Foxp3+ cells underwent significant proliferation upon transfer into IL-2/S4B6-treated

and IL-2/JES6-treated mice, respectively (Supplementary Figure 2C). Notably, the

frequency of proliferating DN T cells was significantly decreased in IL-2/S4B6-treated but

not IL-2/JES6-treated mice (percentage of proliferating cells of rat IgG; 40.77 ± 1.78, IL-2/

JES6 42.03 ± 0.584, IL-2/S4B6 31.4 ± 1.40, p<0.01, Figure 6C). These results suggest that

the direct effects of IL-2 on cytotoxic lymphocytes results in inhibition of DN T cell

expansion.

IL-2 delivery to cytotoxic lymphocytes reduces lymphadenopathy

DN T cells make up ~90% of the cells residing in the massive lymph nodes of diseased

MRL/lpr mice. To determine if IL-2/S4B6 treatment reduced lymphadenopathy, 14 week-

old MRL/lpr mice were treated with control rat-IgG, IL-2/JES6-1 or IL-2/S4B6-1, every

other day for 3 weeks. No difference in the number of splenic DN T cells was seen in IL-2/

JES6-1- and control rat-IgG-treated mice. On the other hand, CD8+ T cells and NK cells in

spleens from IL-2/S4B6-treated mice were significantly increased and DN T cells decreased,

although the total cell number was comparable in all groups (Figure 7C). However, size and

weight of axillary and mesenteric lymph nodes were significantly reduced in IL-2/S4B6-

treated mice as compared with control mice (lymph node weight of control vs IL-2/S4B6:

axillary 0.290 ± 0.015 g vs 0.165 ± 0.035 g, p<0.05, mesenteric 1.003 ± 0.096 g vs 0.523 ±

0.048 g, p<0.05, Figure 7D). These results suggest that activated/expanded cytotoxic

lymphocytes, but not Treg, lead to the reduction of DN T cells resulting in the amelioration

of lymphadenopathy in MRL/lpr mice.
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Discussion

Our results demonstrate that systemic expression of low and continuous levels of IL-2 in

MRL/lpr mice decreased the numbers of DN T cells and effectively suppressed ongoing

inflammation in the kidneys, lungs and the skin. Delivery of IL-2 to lupus-prone mice has

been reported using a vaccinia virus (31, 32). While vaccinia virus can escape early

immunity, the recombinant is eventually neutralized thereby affecting long-term efficacy.

rAAV-mediated gene therapy is clinically feasible for gene supplementation and is widely

used for human gene therapy because AAV infects non-dividing cells, survives in the host

nucleus and is stable for a long period with low immunogenicity. In our study IL-2

expression was detectable for at least for 28 days after a single injection; notably reports

have demonstrated that rAAV-mediated gene expression in muscles can persist for more

than a year (43, 44). Although IL-2 expression in muscle was decreased 2 weeks after

injection possibly due to elimination of viruses to some extent, increased numbers of Treg

were still observed in spleens 8 weeks after IL-2-rAAV injection (Figure 3C), indicating that

IL-2 production in muscles could be persistent at a low levels even after 28 days post

injection.

Consistent with the previous reports, autoantibody production was unchanged by IL-2

therapy (31). Recently, Ballesteros-Tato et al. showed that IL-2 administration impairs

germinal center formation and high affinity IgG production upon influenza virus infection

by restricting follicular helper T cell differentiation (14). In MRL/lpr mice extrafollicular

plasmablasts are the main antibody forming cells whose differentiation is helped by T

extrafollicular helper cells (Tefh) in the spleen (45). No difference, however, was detected in

the number of CD4+B220−PSGL1lowCD62L− Tefh cells and

TCRβ−CD44highB220+CD138+ plasmablasts in control-versus IL-2-rAAV-treated mice

(data not shown), indicating that IL-2 under the conditions being used did not alter

plasmablast cell development and Tefh cell differentiation. Moreover, autoantibody

production and tissue inflammation do not seem to be correlated in lupus nephritis. In mice,

ICOS-deficient MRL/lpr mice showed significant decrease of each isotype of autoantibody

as compared with wild-type mice, but severe renal pathology including glomerulonephritis

and interstitial inflammation was comparable(46). There is also evidence that

tubulointerstitial inflammation aside from glomerulonephritis is an important prognostic

factor for renal outcome(47). Taken together, it is presumable that tissue infiltration and

inflammation mediated by pathogenic lymphocytes rather than deposition of immune

complex in glomeruli is important for disease progression. In this point of view, IL-2-

mediated suppression of aberrant T cell expansion and activation could be beneficial for

protecting from tissue damage.

A novel finding of our study is that IL-2 delivery in an autoimmune setting resulted in

inhibition of IL-17-producing DN T cell and parallel expansion of Treg. The

proinflammatory effects of IL-17 are thought to be in part dependent on the induction of

cytokines and chemokines such as CXCL8 and CCL20 by adjacent cells. In view of work by

our group and others showing that DN T cells are an important source of IL-17 in human

SLE and lupus-prone mice, local release of IL-17 by DN T cells may drive infiltration of

inflammatory cells including neutrophils, monocytes and T cells. Furthermore, a recent
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report showed that IL-17 and IL-17R signaling plays a critical role in the development of

glomerulonephritis in Fc-gamma receptor 2b (Fcγr2b)-deficient lupus-prone mice, and that

infiltration of DN T cells and CD4+ T cells into kidneys is decreased in the absence of IL-17

signaling (48). Therefore, reduction in the number of IL-17 producing DN T cell is expected

to prevent of organ inflammation in MRL/lpr mice. Indeed, IL-2 treatment concomitant with

a diminished pool of DN T cells limited infiltration of the kidneys, lungs and the skin of

MRL/lpr mice. Considering a recent report that IL-2 expands polarized Th1 and Th17 cells

in vitro (49), IL-2 treatment may drive the expansion of pathogenic effector cells under

certain conditions. This scenario, however, was not observed. Although splenic IFN-γ- and

IL-17-producing CD4+ T cells were not affected by IL-2 treatment (data not shown), serum

IFN-γ and IL-17 were both decreased. Here, Treg expanded by IL-2 treatment may block

differentiation and/or function of effector T cells. Furthermore, low levels of IL-2 are

expected to have only a minimal if any effect on conventional CD4+ T cells which in the

spleen of MRL/lpr mice are largely CD25− and CD122−.

Another key finding was that the effects of IL-2 on DN T cells were indirect. DN T cells for

instance expressed low if any CD25 and CD122. Phosphorylation of STAT5 in DN T cells

by stimulation of IL-2 was minimal as compared with that in NK cells and CD8+ T cells.

IL-2 does not seem to have a direct effect on DN T cell, but have a significantly negative

impact on DN T cell viability in the presence of other spleen cells. Furthermore the number

of DN T cells was decreased by injection of the IL-2/S4B6 complex, which selectively

targets IL-2 to CD8+CD122+ and NK cells (50). Direct CD8+ T cell or NK cell-mediated

killing of DN T cells, however, was not detectable (data not shown). Nevertheless a role for

these cytotoxic effectors is suggested by evidence demonstrating that perforin-deficient

MRL/lpr mice show greater accumulation of DN T cells and accelerated mortality with

higher infiltrates in multiple end-organs as compared with perforin-intact MRL/lpr mice

(40). Another possibility is that TNF-related apoptosis inducing ligand (TRAIL) produced

by CTLs in the presence of IL-2 may induce DN T cell apoptosis. Given that CD8+ T cell

function is impaired in both human and lupus-prone mice (51), IL-2 may restore CTL

function that contributes to the elimination of pathogenic lymphocytes including DN T cells

in MRL/lpr mice. Taken together, our results suggest that CTLs treated with IL-2 can affect

the pathogenic DN T cell viability and expansion.

The targeted IL-2-delivery experiments revealed that the selective Treg expansion did not

affect the DN T cell population. It is accepted that IL-2 is necessary for Treg survival,

expansion and function, and leads to the amelioration of several autoimmune diseases(33).

However, unlike type 1 diabetes (52), transfer of Treg in lupus murine models is insufficient

to block disease progression (18). Therefore, IL-2-mediated suppression of DN T cells

represents a critical mechanism to reduce or even reverse end organ damage in SLE.

In conclusion, we show that treatment with rAAV-IL-2 via an indirect mechanism decreases

DN T cell numbers, and limits the infiltration of inflammatory cells into organs thereby

minimizing tissue damage. An expanded Treg pool may also contribute to efficacy by

suppressing the expansion and function of pathogenic effector T cells. Our results strongly

support the therapeutic potential of IL-2 in preventing or even reverting clinical

manifestations in patients with SLE.
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Figure 1. TCRβ+CD4−CD8− DN T cells preferentially produce IL-17 with advancing age
(A) Intracellular staining of IFN-γ and IL-17 in each subset of TCRβ+ T cells from the

spleen of 19 weeks-old MRL/lpr mice (left). Splenocytes were stimulated with phorbol-

myristate acetate (PMA) and ionomycin. Percentages of IFN-γ+ or IL-17A+ cells in each T

cell subsets are shown in scatter plot graph (right, ****p<0.0001, **p<0.01; mean ± SEM;

n=5). (B) Total cell numbers of IFN-γ+ and IL-17+ CD4+ (shaded bars) or DN T cells (black

bars) from the spleens of each indicated age of MRL/lpr mice were counted (*p<0.05; mean

± SEM; n=5).
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Figure 2. The effect of intramuscular injection of IL-2-rAAV on MRL/lpr disease development
(A) IL-2-Tet-on-rAAV was injected intramuscularly to MRL/lpr mice. Messenger RNA was

isolated from the muscles on the indicated period after injection and IL-2 expression was

detected by quantitative-PCR. The expression levels of resting and anti-CD3 and anti-CD28-

activated (act) splenocytes are shown for references. (B) Serum IL-2 concentrations on

indicated time points after IL-2-rAAV injection were detected by ELISA (*p<0.05; mean ±

SEM, n=3). (C, D) The frequency of TCRβ+CD4−CD8− DNT cells in total T cells (C) and

CD4+CD25+Foxp3+ T cells in total CD4+ T cells (D) in the peripheral blood after the

indicated time points of control-(white bars) or IL-2-rAAV (black bars) injection was shown

(*p<0.05, ***p<0.001, ****p<0.0001; mean ± SEM; n=3). (E) Serum anti-dsDNA IgG

were quantified in the sera of MRL/lpr mice treated with control-(white bars) or IL-2-rAAV

(black bars) by ELISA. Data are shown on the indicated days after the injection into 8 weeks

Mizui et al. Page 17

J Immunol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



old MRL/lpr mice (mean ± SEM; n=3). Statistics were determined using paired t-test (B)

and two-way ANOVA with Bonferoni’s post-test (C, D).
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Figure 3. Reduction of DNT cells and cytokine production in IL-2-rAAV-treated mice
(A) Representative images of the spleens and spleen weight from control-rAAV-(circle dots)

and IL-2-rAAV-(square dots) treated mice (*p<0.05, mean ± SEM; n=6). (B) Serum IFN-γ

and IL-17 concentrations measured by ELISA (*p<0.05, mean ± SEM; n=6). (C)

Representative dot plots of splenocytes. TCRβ+MHC class II− cells and TCRβ+ CD4+ cells

(lower) are shown. (D) Absolute numbers of splenic CD4+, CD8+, DN and Treg cells in

control-(white bars) and IL-2-(black bars) treated mice (*p<0.05, **p<0.01; mean ± SEM;

n=6).
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Figure 4. Inflammation of skin and lungs was ameliorated in IL-2-rAAV-treated mice
(A) Representative images of mice and skin lesions (original magnification 20×, left). Ear

and skin lesions were severe in control mice. The semiquantitative assessment of skin injury

score derived from the scores of six different criteria (right, control; white bars, IL-2-treated;

black bars, *p<0.05, mean ± SEM; n=6). (B) Representative images of lung tissue section

(20×, left) and absolute number of each subset of immune cells infiltrating into the lungs

were counted (right, shaded bar, CD45+ cells from MRL/MpJ mice; control; white bars,

IL-2-treated; black bars, *p<0.05, mean ± SEM; n=6). (C) Relative mRNA expression

(normalized by GAPDH) of TNFβ, MCP-1 and IL-8 in lung tissue of MRL/MpJ, control-
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rAAV-treated and IL-2-rAAV-treated MRL/lpr mice (*p<0.05; mean ± SEM; n=6). Data

were shown in control-rAAV-treated mice (white bars) and IL-2-rAAV-treated mice (black

bars). Results are representative of three independent experiments.
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Figure 5. IL-2-rAAV treatment attenuates tissue damage of kidney
(A) PAS staining of renal cortex (10× magnification) Mononuclear cell infiltration into

cortical tubulointerstitial and perivascular areas is observed (arrows). (B) Renal

histopathological assessment was shown in glomelular, tubulointerstitial and perivascular

lesion (*p<0.05; mean ± SEM; n=6). (C) Urine albumin and creatinine concentration were

measured by ELISA. Albumin-creatinine ratio of control-(white bars) and IL-2-(black

bars )-rAAV-treated mice is shown at the indicated days after rAAV injection (two-way

ANOVA, *p<0.05; mean ± SEM; n=6). (D) Absolute number of each fraction of leukocytes

in kidneys was counted. CD45+ cell number from the kidney of MRL/MpJ mice (MpJ

CD45+) is shown as a control (37). (E) Relative mRNA expression of indicated cytokines
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and chemokines in kidneys was detected by quantitative real-time PCR (*p<0.05, **p<0.01;

mean ± SEM; n=6). Data were shown in control-rAAV-treated mice (white bars) and IL-2-

rAAV-treated mice (black bars). Results are representative of three independent

experiments.
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Figure 6. IL-2 indirectly induces a decreased DN T cell pool
(A) Calcein-Violet labeled T cells isolated from MRL/lpr mice were transferred to

MRL/MpJ mice and mice were treated with PBS or recombinant IL-2 for 5 days. Calcein-

Violet-positive each T cell subset in spleens was counted (*p<0.05; mean ± SEM, n=3). (B)

Splee cells were incubated in the presence of various concentrations of IL-2 for 5 days. Live

CD4+ (white circle), CD8+ (white square) and DN (black circle) T cells were counted. (C)

CFSE-labeled DN T cells were cultured with IL-2 in the absence (white cirles) or in the

presence (black circles) of splenocytes. The number of CFSE-positive live DN T cells was

counted.
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Figure 7. In vivo targeted delivery of IL-2 to cytotoxic lymphocytes reduces DN T cells and
lymphadenopathy
(A) CFSE-labeled T cells isolated from diseased MRL/lpr mice were transferred to recipient

MRL/lpr mice, and then mice were treated with rat IgG, IL-2/JES6 or IL-2/S4B6 every other

day for 7 days. Absolute number of CFSE-positive each T cell subset in spleen was counted

(*p<0.05, **p<0.01; mean ± SEM, n=3). (B) CFSE-dilution of DN T cells was detected by

flow cytometry. Percentages of proliferating cells were counted and shown in the graph

(**p<0.01; mean ± SEM, n=3). Results are representative of two independent experiments.

(C) MRL/lpr mice at the age of 14 weeks were treated with rIgG (white bars), IL-2/JES6-1

Mizui et al. Page 25

J Immunol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(shaded bars) and IL-2/S4B6 (black bars) every other day for three weeks. Absolute cell

number of each subset of leukocytes from the spleens was counted (*p<0.05, **p<0.01;

mean ± SEM; n=4). (D) Representative picture of axillary lymph nodes and mesenteric

lymph nodes from rIgG-, IL-2/JES6- or IL-2/S4B6-treated mice. The weight of lymph nodes

was measured (*p<0.05; mean ± SEM, n=4). Results are representative of two independent

experiments.
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