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Abstract

The spleen regulatory B cell subset with the functional capacity to express IL-10 (B10 cells)
modulates both immune responses and autoimmune disease severity. However, the peritoneal
cavity also contains relatively high frequencies of functionally-defined I1L-10-competent B10 cells.
In this study, peritoneal cavity B10 cells shared similar cell surface phenotypes with their spleen
counterparts. However, peritoneal cavity B10 cells were 10-fold more frequent among B cells than
occurred within the spleen, intestinal track or mesenteric lymph nodes and were present at higher
proportions among the phenotypically-defined peritoneal B1a>B1b>B2 cell subpopulations. The
development or localization of B10 cells within the peritoneal cavity was not dependent on the
presence of commensal microbiota, T cells, IL-10 or B10 cell IL-10 production, or differences
between their fetal liver or adult bone marrow progenitor cell origins. The BCR repertoire of
peritoneal cavity B10 cells was diverse, as occurs in the spleen, and predominantly included
germline-encoded Vi and V| regions commonly found in either the conventional or B1 B cell
compartments. Thereby, the capacity to produce IL-10 appears to be an intrinsic functional
property acquired by clonally diverse B cells. Importantly, IL-10 production by peritoneal cavity
B cells significantly reduced disease severity in spontaneous and induced models of colitis by
regulating neutrophil infiltration, colitogenic CD4* T cell activation and pro-inflammatory
cytokine production during colitis onset. Thus, the numerically small B10 cell subset within the
peritoneal cavity has regulatory function and is important for maintaining homeostasis within
gastrointestinal tissues and the immune system.

Introduction

Chronic inflammatory disorders of the intestine are collectively referred to as inflammatory
bowel disease (IBD), with ulcerative colitis and Crohn's disease being the most prevalent in
humans (1). Various effector T cell subsets are pathogenic in IBD, with different subsets
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playing different roles in each mouse model. Thl and Th17 cells are major disease
contributors in both the IL-10-deficient (IL-107~) mouse model of spontaneous disease and
the CD4* T cell-induced model of colitis, with IFN-y— and IL-17-competent T cells
detectable at all stages of disease in mice and humans (1-4). Mice deficient in IL-10, a
potent immunoregulatory cytokine with anti-inflammatory properties (5), are highly
susceptible to chronic enterocolitis that is spontaneously triggered by intestinal microbiota
(6, 7). IL-10-deficiency in regulatory Foxp3*CD4* T cells (Tregs) alone can also lead to
colitis (8). Continuous recombinant IL-10 treatment attenuates pathology in the T cell
transfer model of colitis following the adoptive transfer of CD25"CD45RBMNCD4* T cells
into lymphocyte-deficient Rag2~/~ mice (4, 9, 10). Human IBD is also genetically linked
with //Z01ocus polymorphisms or altered serum IL-10 concentrations (11, 12). T cells, B
cells, monocytes, macrophages, mast cells, and eosinophils can all secret IL-10 that
suppresses inflammatory cytokine production, Th1/Th2 polarization, and antigen
presentation (5, 13, 14). Thereby, IL-10 production protects intestinal integrity and controls
gut inflammation.

Mature B cell depletion in humans with ulcerative colitis using CD20 mAb was ineffective
in a placebo-controlled study (15), and has even been suggested to exacerbate colonic
inflammation in some patients (16, 17). B cell deficiency also increases the severity of
chronic autoimmune inflammatory colitis in 7CRa™~ mice (18). Even though 7CRa™~
mice lack most T cell populations and have B cell populations with altered phenotypes, B
cell IL-10 production normally suppresses their inflammatory colitis (19, 20). Spleen B cells
exposed to enterobacterial components can also acquire IL-10-dependent suppressive
functions and inhibit experimental colitis (21). A mouse regulatory B cell subset (B10 cells)
in the spleen can significantly reduce dextran sodium sulfate (DSS)-induced colon
inflammation (22). B10 cells are functionally defined in humans and mice by their ability to
express IL-10 following 5 h of ex vivo phorbol ester and ionomycin stimulation (23-25),
which distinguishes them from regulatory B cells that modulate immune responses through
other mechanisms (26, 27). Human and mouse B10 cell IL-10 production is central to their
ability to negatively regulate innate and Ag-specific adaptive immune responses as well as
inflammation and autoimmune disease (23-25, 28-33). B10 cell effector function during
autoimmunity and infections is regulated through cognate interactions with CD4* T cells
and IL-21 receptor signals that induce B10 cells to become IL-10-secreting B10 effector
cells (32, 33). B10 cells are found at low frequencies (1-5%) among spleen B cells in naive
mice but expand with autoimmunity (28). Spleen B10 cells are predominantly found within
the minor CD1d"CD5* B cell subpopulation along with B10 progenitor (B10pro) cells that
are induced to acquire IL-10-competence during /n vitro culture with agonistic CD40 mAb
or LPS (28, 30, 32). Despite the predominant expression of CD5 by spleen B10 and B10pro
cells, B10 cells generally represent only a fraction of the CD5* B cell pool, and B10 and
CD5™ B cell frequencies are not linearly correlated (28, 34). There are currently no specific
cell surface markers that exclusively distinguish the B10 or B10pro cell subsets as not all
CD5* or CD1d" B cells are B10 or B10pro cells and not all B10 cells express CD5 or are
CD1dN (28, 35). Regardless of their small numbers or phenotype, spleen B10 cells play
important inhibitory roles during T cell-mediated inflammation and autoimmune disease.

In contrast to the spleen, a large fraction of peritoneal cavity B cells are competent to
express 1L-10 (24, 28). Peritoneal B1 B cells that are identified by CD5 expression also
secrete large amounts of 1L-10 (36). Peritoneal B1 cells can also reverse the prolonged
contact hypersensitivity reactions observed in CD22-deficient mice, an effect that is blocked
by anti-I1L-10 receptor antibodies (37). Considering the proximity of peritoneal cavity B10
and B1 cells to the intestinal tract and the regulatory role of IL-10 in autoimmune disease
and inflammation, their abilities to express IL-10 during intestinal inflammation and
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modulate T cell activation was examined during spontaneous colitis in I1L-10~/~ mice and
induced colitis in the T cell transfer model.

Materials and Methods

Mice

Tiger (B6.129S6- //10/1FIV3) (38), C57BL/6, and /107!~ (B6.129P2- //10MC9r13) mice
were from The Jackson Laboratory (Bar Harbor, ME). Rag2/~ and 10BiT reporter mice
were as described (39, 40). All mice were bred in a specific pathogen-free barrier facility
and were used at 8-20 weeks of age unless indicated otherwise. Peritoneal cavity cells were
obtained from 12-14 week-old mice. Gnotobiotic and specific pathogen-free mice (129S6/
SvEvV) were a gift of Dr. R. Balfour Sartor from the National Gnotobiotic Rodent Resource
Center funded by the NCRR resource grant (P40 RR018603) and the University of North
Carolina at Chapel Hill Center for Gastrointestinal Biology and Disease (P30 DK034987).
The Duke University Animal Care and Use Committee approved all studies.

Cell preparation and immunofluorescence analysis

Single-cell spleen, inguinal lymph node, and mesenteric lymph node suspensions were
generated by gentle dissection. To isolate peritoneal cavity leukocytes, 5 ml of ice-cold
RPMI 1640 medium (Cellgro, Manassas, VA) containing 5% FBS was injected into the
peritoneal cavity of euthanized mice followed by gentle massage of the abdomen and
recovery of the fluid with a large-gauge needle. Intraepithelial lymphocytes (IELs) were
recovered from PBS-flushed intestinal tissues (small intestine or colon pieces) washed with
PBS for 20 min at 37 °C after surgical removal of Peyer's patches. Lamina propria
lymphocytes (LPLs) were purified from IEL-free intestinal tissue pieces after collagenase D
digestion (Roche, Indianapolis, IN) with subsequent mononuclear cell isolation using a
Ficoll (GE Healthcare Biosciences, Piscataway, NJ) density gradient, as described (40).
Viable cells were counted using a hemocytometer with relative lymphocyte percentages
determined by flow cytometry analysis.

For immunofluorescence analysis, single-cell leukocyte suspensions (1 x 108 cells) were
stained on ice for 20-30 minutes using predetermined optimal concentrations of mAbs as
described (41). Washed cells were resuspended in PBS containing 1.5% paraformaldehyde
and were kept at 4 °C in the dark until final analysis. Cells with light scatter properties of
singlet lymphocytes were analyzed for 4-5 color immunofluorescence staining using a
FACS Canto Il flow cytometer (Becton Dickinson, San Jose, CA). Background staining was
determined using unreactive isotype-matched control mAbs (Caltag Laboratories, San
Francisco, CA).

The mADbs used in this study are as follows: CD21/35 (7G6), CD23 (B3B4), CD24 (M1/69),
CD25 (PC61), CD38 (90/CD38), CD43 (S7), CD44 (IM7), CD138 (281-2), and CD11b
(M1/70) from BD PharMingen (San Diego, CA); IgM (11/41), CD4 (GK1.5), CD8 (53-6.7),
CD19 (6D5), CD1d (1B1), CD62L (MEL-14), CD5 (53-7.3), CD80 (16-10A1), MHC class
Il (I-A, I-E; clone 114.15.2), CD45RB (C363-16A), IL-17 (TC11-18H10.1), and IFN-y
(XNG1.2) from BioLegend (San Diego, CA); CD45.1 (A20), CD90.1 (HIS51), and CD86
(GL1) from eBioscience (San Diego, CA); and anti-IgM and -IgD (11-26) from Southern
Biotechnology Associates (Birmingham, AL).

IL-10 staining was as described (42). Purified mononuclear cells were resuspended (2 x 106
cells/ml) in complete medium [RPMI 1640 media, 10% (v/v) FCS (Sigma-Aldrich, St.
Louis, MO), 200 pg/ml penicillin, 200 U/ml streptomycin, 4 mM L-Glutamine (all Cellgro),
and 55 yM 2-mercaptoethanol (Life Technologies, Grand Island, NY)] containing LPS (10
ug/ml, Escherichia coli serotype 0111: B4, Sigma), phorbol myristate acetate (PMA, 50 ng/
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ml; Sigma), ionomycin (500 ng/ml; Sigma), and monensin (2 uM; eBioscience) for 5 h.
B10pro cells were induced to mature and acquire IL-10 competence /n vitro by culturing the
cells with agonistic CD40 mAb (2 pg/ml, HM40-3, BD Biosciences, San Jose, CA) or LPS
(10 pg/ml) for 48 h at 37 °C in a tissue culture incubator with 5% CO, atmosphere with the
addition of monensin, PMA, and ionomycin for the last 5 h of culture. Before cell surface
staining, Fc receptors were blocked using Fc receptor mAb (2.4G2; BD Biosciences), and
dead cells were labeled using the LIVE/DEAD® Fixable Violet Dead Cell Stain Kit
(Invitrogen-Molecular Probes). Stained cells were fixed and permeabilized using a Cytofix/
Cytoperm kit (BD Biosciences) according to the manufacturer's instructions prior to staining
with anti-1L-10 (JES5-16E3, eBioscience) mAb. Isotype-matched mAb or splenocytes from
IL-10~"~ mice served as negative controls for IL-10 staining to demonstrate specificity and
to establish background IL-10 staining levels.

T cell cytoplasmic cytokine production was measured after culturing the indicated cells in
complete media with anti-CD3e (1 pg/ml; 500A2, BD Pharmingen) and anti-CD28 (5 pg/
ml; 37.51, Biolegend) mAbs in the presence of Brefeldin A (1 pl; Biolegend) for 4 hours
prior to cytoplasmic staining with anti-1IFN-y or anti-IL-17 mAbs. Isotype-matched mAbs or
cells cultured with Brefeldin A served as negative controls.

Cell isolation

B or T cells were enriched by positive selection using CD19 or CD4 mAb-coupled
microbeads (Miltenyi Biotech, Auburn, CA), respectively, according to the manufacturer's
instructions with obtained purities >95%. Where indicated, subsets of CD19* B cells were
further purified following immunofluorescence staining using a FACS Diva flow cytometer
(BD Biosciences) with >98% purities. Spleen B cells were predominantly isolated based on
CD1d and CD5 expression, whereas peritoneal cavity B cells were isolated based on CD11b
and CD5 expression.

In vitro cultures and cell activation

To measure 1L-10 secretion, 2 x 10° CD19* purified B cells were cultured either with LPS
(10 pg/ml), polyclonal goat anti-mouse IgM-specific F(ab’), antibody (5 pg/ml, Jackson
Immunoresearch, West Grove, PA), or CD40 mAb (2 pg/ml) in 0.2 ml complete medium in
a 96-well flat-bottom plate for 48 h. Tissue culture supernatant was then collected to assess
cytokine production and the corresponding cells were recovered for additional in vitro
stimulation, immunofluorescence staining, and flow cytometry analysis.

Adoptive transfer experiments

For syngeneic adoptive transfer experiments, enriched CD19* spleen or peritoneal cavity B
cells were washed with PBS and labeled using the Vybrant CFDA SE Cell Tracer Kit
(Invitrogen) according to the manufacturer's instructions. Briefly, cells were incubated in 0.5
MM CFSE for 20 min at 37 °C. Labeled cells were then washed twice with cold PBS,
counted for viability, and resuspended in cold PBS prior to i.p. injection of 1 x 106 viable
cells into each untreated recipient. Spleens or peritoneal cavity fluids of recipient mice were
harvested for analysis 72 h post-transfer.

Reconstitution experiments

For the reconstitution experiments described in figure 3A, tibia and femur bone marrow
cells from three 8 week-old C57BL/6 CD45.1* mice were isolated by flushing with
complete media, pooled and strained using 70 uM mesh. Liver cells from E14 stage fetuses
of C57BL/6 CD45.1* mice were isolated by gentle mashing, subsequent red blood cell lysis,
and filtration. Single-cell suspensions of viable fetal liver or bone marrow cells were
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resuspended in PBS prior to i.v. injection (4 x 108 cells) into each adult Rag2™/~ recipient
mouse, with spleens or peritoneal cavity fluids harvested from recipient mice six weeks
post-transfer. For the reconstitution experiments described in figure 4C, viable, flow
cytometry-purified CD19*CD11b™* peritoneal cavity B cells or CD19*CD1d"9"CD5* spleen
B cells were isolated, washed and resuspended in cold PBS prior to i.v. injection (1 x 106
cells) into each Rag2~/~ recipient. Spleens or peritoneal cavity fluids of recipient mice were
harvested for analysis 14 days post-transfer.

Cytokine ELISAs

IL-10 concentrations within tissue culture supernatant fluid (diluted 1:2 in PBS) were
quantified in triplicate using an OptEIA Mouse I1L-10 ELISA Set (BD Pharmingen)
according to the manufacturer's instructions.

Ig sequences

In two individual experiments, enriched peritoneal cavity CD19* B cells from three
individual wild type C57BL/6 mice were stimulated with LPS (10 pug/ml), PMA (50 ng/ml),
and ionomycin (1 pg/ml) for 5 h. Individual IL-10* A "CD19" cells were identified using the
Mouse IL-10 Secretion Assay Kit (Miltenyi Biotech) according to the manufacturer's
instructions and sorted into single wells of 96-well PCR plates using a FACSAria Il cell
sorter (BD Biosciences). cDNA was synthesized and Ig heavy (H) and light (L) chain
transcripts were amplified using nested PCR primers as described (43). PCR products were
purified (QIAquick PCR Purification Kit, Qiagen, Valencia, CA) and cloned (StrataClone
PCR Cloning Kit, Agilent Technologies, La Jolla, CA) before sequencing (Duke University
DNA Analysis Facility). Productive Ig rearrangements were compared against germline Ig
sequences according to the Ig Basic Local Alignment Search Tool (IgBLAST) database
(National Center for Biotechnology Information, Bethesda, MD) and analyzed using the
Immunogenetics V-query and Standardization tool (44) to determine V(D)J gene family
usage. Mutation frequencies were determined using germline V, D, and J sequences from
IgBLAST. Vy-D-Jy and V-Jk transcript alignments and phylogenetic trees based on
average percent identity were constructed using ClustalW2 (45). In one case, identical
sequences were obtained from adjacent wells so only one sequence is reported.

Intestinal injury and colitis models and histopathological scoring

Intestinal inflammation was induced in male Tiger mice by the continuous provision of
freshly-prepared 3% DSS (MP Biomedicals, Solon, OH) in autoclaved drinking water on
days 0 and 3 as described (22). Mice were weighed daily and euthanized if they lost >20%
of their initial body weight. Lymphocytes were isolated on days 3 or 7 and assayed for
reporter protein expression as described (46). In the spontaneous model of colitis, enriched
CD19" B cells were pooled from the peritoneal cavities of wild type or IL-107/ littermates
and were adoptively transferred (0.5-1.0 x 108, i.p.) into IL-10~/~ mice. In the induced
model of colitis, single-cell suspensions of purified spleen CD25-CD45RBNCD4* T cells (4
x 10°) were transferred i.p. into 10-12 week-old RagZ~/~ mice along with pooled CD19*-
enriched peritoneal cavity B cells from wild type or IL-107/~ littermates (0.5-1.0 x 106).
Mice were monitored for weight loss, fur appearance, and the severity of diarrhea/wasting.
Mice were euthanized if they lost 220% of their original body weight. Histological colitis
scores from representative mice of each group were obtained 16 weeks after the adoptive
transfers in the spontaneous model of colitis and 7 weeks after transfer in the induced colitis
model.

For histopathological analysis, proximal and distal colon pieces of ~4 mm length were
washed, fixed in 10% formalin in PBS and embedded in paraffin. Hematoxylin-Eosin and
Alcian Blue (to identify goblet cell abundance) staining were performed on 5-pym thick
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slices of contiguous colon. A modified scoring system was used to evaluate histological
changes based on three parameters of disease as described (47). Scores of 0-3 for three
parameters in each sample were determined as follows: goblet cell loss (O - no loss relative
to wild type mice, 1 — focal loss of goblet cells from <5% of the total colonic tissue section
area, 2 - loss of goblet cells from 5-20%, and 3 — diffuse loss of goblet cells from >20%);
mononuclear cell infiltration into the lamina propria (0 - no cellular infiltration, 1 - <5 foci,
2 - 5-10 foci, and 3 - >10 foci in the total colonic tissue section); and epithelial erosion (O -
no epithelial erosions, 1 - epithelial erosion in <10% of the total colonic tissue section area,
2 - epithelial erosion in 10-30%, and 3 - epithelial erosions in >30%). Thereby, each sample
received a cumulative score of 0 to 9.

Statistical analysis

Results

All data are shown as means (zSEM). Significant differences between sample means were
determined using a 2-tailed Student’s ftest for homoscedastic or heteroscedastic paired
sample groups or an unpaired 1-tailed Fisher exact probability test.

IL-10-competent B cells within gut-associated lymphoid tissues

Cytoplasmic IL-10 expression by peritoneal cavity, mesenteric lymph node, colonic lamina
propria, and Peyer's patch B cells was quantified to enumerate B10 cells. Cytoplasmic IL-10
staining reveals the frequency and numbers of B cells that are competent to express IL-10
and the level of IL-10 synthesis once induced as described for spleen B cells (24). Few, if
any, B cells expressed 1L-10 following ex vivo culture with monensin for 5 h when
compared with control cells from 1L-10~/~ mice (data not shown). However, B cells with the
capacity to express 1L-10 (B10 cells) were readily identified following 5 h of in vitro
stimulation with LPS, PMA, ionomycin, and monensin (L+PIM) to induce cytoplasmic
IL-10 accumulation visualized by immunofluorescence staining with flow cytometry
analysis (Fig. 1A), as described (24, 42). LPS was added to the 5 h PIM stimulated cultures
as it marginally enhances B10 cell enumeration (28). B10 cell frequencies were highest
(~40%) within the peritoneal cavity, while mesenteric lymph node, lamina propria, and
Peyer's patch B10 cell frequencies were similar to those in the peripheral lymph nodes and
spleen (24). Rare B10 cells were also found among the lamina propria and intraepithelial
regions of the colon and small intestine (Fig. 1B). Thus, B10 cell frequencies are low except
within the peritoneal cavity.

Peritoneal cavity B10 cells expressed high levels of IgM, CD5, CD19, CD24, CD43 and
MHC class Il relative to non-B10 cells, while their IgD and CD23 levels were low as with
spleen B10 cells (Fig. 1C). Peritoneal cavity and spleen B10 cells also expressed CD80 and
CD86 at higher levels than their IL-10~ counterparts. Peritoneal cavity B10 cells expressed
CD21 at low levels, which is in contrast to their intermediate and high level CD21
expression in the spleen. CD38 levels were variable, but were generally similar between B10
and non-B10 cells. CD1d" or CD21M B cells are not found within the peritoneal cavity (24).
Importantly, IL-10 induction by L+PIM stimulation does not affect ex vivo expression of
these cell surface molecules due to the presence of monensin and the short 5 h stimulation
period (24). Thus, IL-10-competent B10 cells within the peritoneal cavity and spleen shared
similar phenotypes.

Within the peritoneal cavity, IL-10-competent B10 cells identified after L+PIM stimulation
were present among the phenotypically-defined Bla (CD5*CD11b™*, 49.2+2.2%, n=9) and
B1b (CD5-CD11b*, 24+3.4%) cell subsets (Fig. 2A-B) that are functionally distinct (48).
Significantly fewer B cells with a conventional CD5"CD11b~ B2 cell phenotype were
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competent to express 1L-10 (6.9+0.7%). Similar results were obtained using two lines of
IL-10 reporter mice. Tiger mice have an IRES-GFP element inserted following the /10
locus (38). GFP expression mimics IL-10 induction but GFP has a longer half-life in B cells
that have expressed IL-10 (46). By contrast, 10BiT mice have multiple bacterial artificial
chromosome transgene insertions that drive Thy1.1 expression under the control of IL-10
regulatory elements (40). Cell surface Thyl.1 expression is delayed relative to B cell 1L-10
expression, but persists on the cell surface following the termination of IL-10 expression
(46). Following L+P1M stimulation, simultaneous IL-10 and reporter protein expression
were detected in peritoneal B cells from both Tiger and 10BiT mice (Fig. 2C). B cells with a
B1a cell phenotype contained the highest proportion of I1L-10 reporter* cells (16.6+1.9% for
Tiger mice and 18.5+1.9% for 10BiT mice), followed by cells with a B1b phenotype
(7.5£1.7% Tiger, 4.3+0.7% 10BiT), and finally cells with a B2 cell phenotype (3.2+0.4%
Tiger, 2.1+0.6% 10BiT). Wild type B cells cultured with L+P1M served as negative controls
for both GFP and Thy1.1 reporter expression and were essentially identical to B cells from
reporter mice that were cultured with monensin alone. Thereby, peritoneal cavity B cells
were competent to express IL-10 in the following hierarchical phenotype-dependent manner;
Bla>B1b>B2.

B10pro cell development and maturation within the peritoneal cavity

Stimulating spleen B10pro cells through CD40 ligation induces them to acquire IL-10
competence and then express IL-10 following L+PIM stimulation as occurs with B10 cells
(28). Because functionally-matured B10pro cells and ex vivo B10 cells both express IL-10
after these cultures, B10+B10pro cell frequencies are measured (42). Peritoneal cavity B
cells with B1a, B1b, and B2 phenotypes were therefore purified and cultured with agonistic
CD40 mAb or media alone for 48 h, a time point before measurable B cell division occurs
(28). B cells cultured in medium alone were not induced to express IL-10 (Fig. 2D).
However, ~30% of B cells with a Bla phenotype were B10 cells because they were
inherently competent to express IL-10 after L+PIM stimulation without a requirement for
CDA40-induced maturation, while the B cell subsets with B1b and B2 phenotypes contained
significantly fewer B10 cells. B10pro cells were also present within each of the B cell
subsets with Bla, B1b, and B2 phenotypes as CD40 ligation before L+PIM stimulation
induced more B cells to express IL-10 than did L+PIM stimulation alone. For example,
almost half of peritoneal cavity cells with a Bla phenotype were competent to express 1L-10
following /n vitro maturation and stimulation. Thereby, peritoneal cavity B10+B10pro cell
frequencies were highest within the B1la>B1b>B2 cell subsets.

LPS induces spleen B10pro cells to functionally mature into B10 cells and induces B10 cell
IL-10 secretion (28), although spleen B10 cells appear to only secrete IL-10 transiently /in
vivo and following /n vitro stimulation (46). Culturing peritoneal cavity B cells of all
phenotypes with LPS appeared to induce both B10pro cell maturation and B10 cell IL-10
secretion, with most peritoneal cavity B cells having already ceased to express cytoplasmic
IL-10 by the time they were stimulated with PIM at the end of the 48-hour culture period
(Fig. 2D). Consistent with this, LPS induced high levels of IL-10 secretion into the culture
supernatant fluid during the 48-hour cultures (Fig. 2D, bottom right graph). In unstimulated
cultures, purified B cells with a Bla phenotype secreted more IL-10 than did cells with B1b
or B2 phenotypes. CD40 stimulation alone enhanced IL-10 production by cells with Bla and
B1b phenotypes in comparison with media alone (p<0.05). By contrast, potent IgM
crosslinking significantly reduced both B10+B10pro cell development and IL-10 secretion
as occurs with spleen B10+B10pro cells (28). Thus, 30-50% of peritoneal cavity CD5* B
cells could be induced to express IL-10, whereas B cells with B1b and B2 phenotypes were
more similar to spleen B cells in their relative B10pro cell frequencies.
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Precursor B10 cells are found in both fetal liver and adult bone marrow

Whether fetal liver or adult bone marrow precursor cells preferentially give rise to IL-10-
competent B10 cells /n vivo was assessed in adoptive transfer experiments. Precursor cells
from congenic CD45.1* donor mice were used to reconstitute untreated Rag2~/~ mice with
spleen and peritoneal cavity B10 cell development assessed six weeks later. Spleen B cells
from mice that received CD45.1" bone marrow cells contained 10.9+1.6% B10 cells, while
peritoneal cavity B cells contained 14.5+1.6% B10 cells (Fig. 3A). Mice that received fetal
liver cells had significantly different proportions of B10 cells among their spleen (4.9+1.1%)
and peritoneal cavity (17.5+1.0%) B cells, although total B10 cell numbers were similar in
both tissues (Fig. 3A, lower right graph). There were five-times more B cells and B10 cells
generated within the spleens and peritoneal cavities of recipient mice given fetal liver cells
than in those given bone marrow cells (data not shown). Thereby, B10 cells do not have a
strict ontogeny-restricted origin, and both the fetal liver and adult bone marrow
compartments provide a source for IL-10-competent spleen and peritoneal cavity B cells.

Peritoneal cavity B10 cells develop independent of IL-10 expression

A role for IL-10 in peritoneal cavity B cell development was assessed using young (4 week-
old) I1L-107/~ mice before their development of colitis or other autoimmune manifestations.
B cells with Bla, B1b, and B2 phenotypes developed to similar frequencies and numbers in
IL-10~"~ and wild type control littermates (Fig. 3B). Whether autocrine IL-10 influences
peritoneal cavity B10 cell development was assessed using IL-10~/~10BiT mice as described
(46), where Thy1.1 is used as a surrogate marker for IL-10 production because IL-10 is not
produced. Remarkably, Thy1.1" B cells with B1a, B1b, and B2 phenotypes were found at
similar frequencies and numbers in both 10BiT and IL-107~10BiT littermates (Fig. 3C).
Thus, neither IL-10 nor B10 cell IL-10 production appear to be significant factors driving B
cell subset or B10 cell development within the peritoneal cavity.

Peritoneal cavity B10 cell development is independent of commensal microbiota

Whether commensal microbiota sensitize peritoneal cavity B cells towards IL-10 production
was examined using gnotobiotic mice. Peritoneal cavity and spleen IL-10-competent B cell
frequencies were essentially identical in gnotobiotic and specific pathogen-free mice (Fig.
4A). Thereby, gastrointestinal bacteria do not appear to influence the ability of peritoneal
cavity B cells to produce IL-10 under non-pathogenic homeostatic conditions.

B10 cell IL-10 production is independent of anatomic location

Whether the peritoneal microenvironment influences B cell IL-10-competence was
examined by the adoptive transfer of spleen B cells into the peritoneal cavity under
otherwise unaltered physiological conditions. Purified spleen and peritoneal cavity B cells
were CFSE-labeled and independently transferred into the peritoneal cavities of untreated
wild type mice. After 3 days, transferred CFSE*CD19* spleen (2.2+0.1%) and peritoneal
cavity (2.9+0.1%) B cells were present within the peritoneal cavity at similar proportions
(Fig. 4B). However, B10 cell frequencies (32.8+7.2%) among peritoneal cavity donor cells
were ~10-fold greater when compared to transferred spleen B10 cell frequencies
(2.5+0.1%). These I1L-10* B10 cell frequencies closely resemble those of spleen and
peritoneal cavity B cells in untreated mice.

To further determine whether 1L-10 competence is directed by anatomic location, B10 cell-
enriched spleen CD1d"NCD5*CD19* and peritoneal cavity CD11b*CD19* B cell subsets
were CFSE-labeled and transferred i.v. into untreated Rag2~/~ mice. Two weeks later, the
proportion of transferred B10 cells within tissues was quantified. Lymphopenic Rag2™/~
mice that did not receive transferred cells were used as controls (left contour plots, Fig. 4C).
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Remarkably, B10 cell frequencies were equivalent among transferred donor spleen B cells
found within the spleen and peritoneal cavity. Similarly, B10 cell frequencies among
transferred donor peritoneal cavity B cells were similar within the peritoneal cavity and
spleen. As expected, transferred peritoneal cavity B cells and B10 cells had a tendency to
localize within the peritoneal cavity. Regardless, the peritoneal cavity or spleen
microenvironments alone did not regulate IL-10 competence among resident B cells under
these disease-free conditions and T cells were not required for the maintenance of B10 cell
IL-10 competence.

Peritoneal cavity B10 cells express diverse Ag receptors

The BCRs of individual peritoneal cavity IL-10"A"CD19" B cells of wild type mice were
sequenced to obtain an unbiased representation of their IgH and IgL repertoires. Both H and
L chain transcripts from single cells revealed the utilization of diverse V and V family
members (Fig. 5A, Tables I-11). V3 and V{12 were the most frequently observed Vi
families, consistent with the predominance of these families within the B1 cell repertoire
(49, 50). Germline sequences without mutations encoded 76% of 39 representative V-D-Jy
sequences and 84% of 77 representative V-Jk sequences (Fig. 5B). Thereby, peritoneal
cavity B10 cells expressed clonally diverse BCRs that were predominantly germline-
encoded, as has been observed for splenic B10 cells (46).

Peritoneal cavity B10 cells express IL-10 during DSS-induced intestinal inflammation

Given the ability of spleen B10 cells to suppress DSS-induced intestinal injury, the
regulatory capacity of peritoneal cavity B10 cells was investigated in male Tiger mice by the
provision of 3% DSS in drinking water for 3 or 7 days. When visualized directly ex vivo,
peritoneal cavity and spleen IL-10* B10 effector cell frequencies and numbers (monensin
only) increased significantly by day 3 relative to day 0 control littermates (Fig. 6A-B).
Peritoneal cavity B10 effector cell numbers decreased by day 7, while mesenteric lymph
node and spleen B10 effector cell frequencies and numbers remained elevated. Peritoneal
cavity B10 cell frequencies and numbers (L+PIM, 5 h) decreased significantly by day 7
relative to day 0 control littermates, while mesenteric lymph node and spleen B10 cell
frequencies and numbers did not vary significantly over the course of the experiment.
Thereby, DSS-induced gut inflammation induced peritoneal cavity B10 cells to become
IL-10 expressing B10 effector cells, with the decrease in B10 effector cell and B10 cell
numbers likely to result from the fact that some cells from both populations had already
produced IL-10 /n vivoand were no longer measurable /n vitro following PIM stimulation.
Importantly however, peritoneal cavity B10 cells produced I1L-10 during periods of acute
gut-associated inflammation.

Peritoneal cavity B10 cells regulate T cell responses during spontaneous colitis

Considering the proximity of peritoneal cavity B10 cells to the intestinal tract and the
regulatory role of IL-10 in autoimmune disease and inflammation, the ability of peritoneal
cavity B10 cells to modulate T cell activation during spontaneous colitis onset was
examined in IL-107/~ mice. Purified peritoneal cavity CD19" B cells from 1L-10~/~ or wild
type mice were injected i.p. into 10-12 week-old 1L-10~/~ recipient mice (Fig. 7A). Wasting
and weight loss were significantly diminished in IL-107~ mice given IL-10-competent B
cells, although both groups of recipient mice showed signs of colitis during the 4-month
period after transfers (Fig. 7B). Anal prolapse was not observed in mice that received 1L-10-
competent B cells, while 7 of 14 mice that received IL-10-deficient B cells developed anal
prolapse during the 4-month period after transfers (p<0.01). The pathological hallmarks of
colitis were also reduced in mice that received I1L-10-competent B cells (Fig. 7C). IL-10-
competent B cell transfers preserved goblet cell numbers and reduced colonic crypt
distortion (data not shown). IL-10-competent B cell transfers also significantly reduced
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activated (CD62L"CD44%) CD4* T cell numbers by 49% within the peritoneal cavity and
naive and activated CD4* T cell numbers by 71% within the mesenteric lymph nodes of
recipient mice (Fig. 7D). Transferred 1L-10-competent B cells also significantly reduced the
number of peritoneal and lymph node CD4* T cells that expressed IFN-y* after /i vitro
stimulation (Fig. 7E). The capacity of CD4* T cells to produce 1L-17 was also reduced by
>5-fold within the inguinal lymph nodes of mice that received IL-10-competent B cells.
Mice given IL-10-competent B cells also had significantly lower numbers of CD11b*Ly6G*
neutrophils within the peritoneal cavity, mesenteric lymph nodes, and spleen (Fig. 7F). B10
effector cell numbers were not assessed in this model as it was not possible to quantify the
small numbers of adoptively transferred B cells present within the peritoneal cavity or gut-
associated lymphoid tissues of IL-10~~ mice with colitis. Thus, IL-10 production by
adoptively transferred peritoneal cavity B cells significantly reduced colitis onset and
disease severity in IL-107/~ mice.

Peritoneal cavity B10 cells regulate colitis induction

That peritoneal cavity B10 cells can alter the development and severity of colitis was further
verified using the inducible T cell transfer model of colitis (10). Spleen
CD25-CD45RBNCDA4* T cells from wild type mice and peritoneal cavity B cells from
either wild type or IL-10~/~ mice were transferred simultaneously into Rag2”~ mice (Fig.
8A). Mice that received IL-10~/~ B cells developed obvious wasting and weight loss by 3-4
weeks post-transfer as compared with mice that received IL-10-competent B cells (Fig. 8B).
As early as 3 weeks after the adoptive transfer of CD25-CD45RBNCDA4* T cells, the vast
majority of T cells were already CD44NCD62L~ in mice given either /207~ or IL-10
competent wild type B cell transfers, respectively, within the peritoneal cavity (98+1 vs.
94+1 n=4/group), mesenteric lymph node (97£1 vs. 94+1), inguinal lymph node (97+1 vs.
78+1) and spleen (97+1 vs. 93+2). Colitis scores were significantly higher in mice that
received B cells from I1L-107~ mice, mostly due to goblet cell loss and increased numbers of
lymphocytic foci (Fig. 8C-D). There were no significant differences in overall CD4* T cell
numbers between groups of mice, but mice that received 1L-107~ B cells contained
significantly higher frequencies and numbers of peritoneal cavity IFN-y-producing CD4* T
cells by weeks 7-8 than did mice receiving IL-10-competent B cells (Fig. 8E-F). Mesenteric
lymph nodes and spleens from mice that received I1L-107~ B cells also contained
significantly higher numbers of IFN-y- and IL-17A-producing CD4* T cells due to
significant mesenteric lymph node enlargement and moderate spleen enlargement. B10 or
B10 effector cell numbers were not assessed in this model as it was not possible to quantify
the small numbers of adoptively transferred B cells present within the peritoneal cavity or
gut-associated lymphoid tissues of RagZ~~ mice with colitis. These collective results
demonstrate that B10 cells from the peritoneal cavity are able to down-regulate T cell
activation within intestinal tissues and may also inhibit colitogenic T cell recruitment into
the intestinal environment.

Discussion

These studies demonstrate that IL-10-competent peritoneal cavity B cells are regulatory and
functionally comparable to spleen B10 cells. Peritoneal cavity B10 cells were small in total
number, but were 10-fold more frequent among B cells than occurs within the intestinal
track or mesenteric lymph nodes (Fig. 1) or within the spleen or peripheral lymph nodes
(26). Peritoneal cavity B10 cells were present at different proportions among the
phenotypically-defined peritoneal B1a>B1b>B2 B cell subpopulations (Fig. 2). B10 cell
development or localization within the peritoneal cavity was not dependent on their fetal
liver or adult bone marrow progenitor cells of origin (Fig. 3), their production of IL-10 (Fig.
3C) or the presence of T cells (Fig. 4C) or commensal microbiota (Fig. 4A), but appeared to
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be an intrinsic property of individual B cells that was not dictated by anatomic location (Fig.
4B-C). Importantly, gut-associated inflammation induced B10 effector cell IL-10 production
in both the peritoneal cavity and mesenteric lymph nodes (Fig. 6). IL-10 production by
adoptively transferred peritoneal cavity B10 cells contributed to significant reductions in
disease severity in two different models of colitis by regulating colitogenic CD4* T cell
cytokine production (Figs. 7-8). Thereby, the peritoneal cavity B10 cell subset is important
for maintaining homeostasis within gastrointestinal tissues.

B10 cells represent a small and functionally distinct B cell subset that shares some
overlapping phenotypic markers with multiple B cell subpopulations, including spleen B1
cells, marginal zone progenitor cells, marginal zone cells, memory cells and plasmablasts
(23, 24, 46, 51-53). The developmental relationships among all of these B cell
subpopulations are undoubtedly complex, but these results may also reflect functional
heterogeneity within these phenotypically-defined B cell subpopulations. Although most
B10 cells are CD5* (Fig. 2), B10 cells only represent a small subset within the spleen CD5*
B cell subpopulation, and CD5* B cell frequencies do not predict B10 cell frequencies (28).
Moreover, all spleen B cells express CD5 following CD40 ligation /n vitro, while only a
small subset of B cells have the capacity to express IL-10 ex vivo (28, 32). Regardless,
IL-10 production remains the essential core of B10 cell regulatory function and thereby
serves as a useful and exclusive marker for identifying B10 cells. For all of these reasons,
the terms “B10” and “B10pro” cells are used in this manuscript as functional designations
for B cells that are competent to express IL-10 ex vivo, regardless of their cell surface
phenotypes and potential differences in cellular origins. Given this, the isolation of B1la,
B1b, marginal zone progenitor cells, marginal zone cells, memory cells or plasmablasts
based on their current phenotypic categorizations will include varying proportions of
functionally-defined B10 and B10pro cells.

BCR specificity dramatically influences spleen B10 cell development and Ag-specific
regulatory function (24, 28, 32). Receptors or pathways that positively or negatively regulate
BCR signaling such as CD19, CD22 and CD40 can also significantly modulate B10 cell
numbers (28, 54-57). By contrast, potent BCR crosslinking by anti-IgM antibodies
significantly reduced the number of peritoneal B cells that expressed or secreted I1L-10 (Fig.
2D), as also occurs with spleen B cells (28). Appropriate BCR signals are thereby thought to
induce a select subset of B cells to become B10pro and then IL-10-competent B10 cells,
while strong BCR signals may divert B cells into a different functional program (26).
Consistent with their /n vivo Ag stimulation, spleen B10 cells are hyper-responsive to
mitogens (23, 28) and can give rise to Ag-specific, self-reactive or natural antibodies (46).
The BCR repertoire of peritoneal cavity B10 cells was also predominantly germline-encoded
with no somatic mutations in most clones (Fig. 5, Tables I-11). Despite this, the BCR
repertoire of peritoneal cavity B10 cells was remarkably diverse, involving a wide spectrum
of V, D, and Jy elements, normal frequencies of noncoded nucleotide (N) insertions, as
well as considerable CDR3 diversity. Peritoneal cavity B10 cell Vy utilization was thereby
similar to that observed for spleen B10 cells (46) and conventional B cells (49), but also
included sequences commonly associated with peritoneal cavity B1 cells (58, 59). The B10
cell BCR repertoire thus appears to be generated in response to diverse foreign and/or self
Ags, which may explain B10 cell enrichment within the peritoneal cavity relative to other
tissues.

Spontaneous ex vivo secretion of IL-10 by peritoneal cavity B cells has been well described
(36, 60), with Bla, B1b, and B2 cells variably contributing to I1L-10 secretion /n vitro (Fig.
2D). CDA40 stimulation enhanced spontaneous 1L-10 secretion by peritoneal cells with Bla
and B1b phenotypes. However, peritoneal B2 cells were like spleen B10 cells in that CD40
ligation did not induce IL-10 expression or secretion by these cells but did promote
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peritoneal (Fig. 2D) and spleen (28) B10pro cell maturation into I1L-10-competent B10 cells.
Cognate CD40-dependent interactions with CD4* T cells are also required to induce spleen
B10 cell IL-10 production in the mouse model of experimental autoimmune
encephalomyelitis and during L/steria infections (32, 33). Thus, spontaneous ex vivo IL-10
production by peritoneal cavity B10 cells may reflect their prior /n vivo interactions with T
cells, although it remains possible that innate- or pathogen-induced signals may also induce
B10 cell IL-10 production /n vivo (46, 61). LPS induces spleen B10pro cell maturation and
transient B10 cell IL-10 expression and secretion /n vitroand /n vivo (46). Likewise, LPS
stimulation induced peritoneal cavity B10pro cell maturation and transient B10 cell IL-10
secretion /n vitro (Fig. 2D). Thereby, BCR specificity drives B10pro and B10 cell
development (28, 32), but TLRs, other innate immune signals and/or cytokines may also
influence peritoneal B10 effector cell development and IL-10 production.

The cellular origin of B10 cells is unknown, while the origin of CD5" B1 cells has been a
matter of debate for over 30 years (62, 63). Although the fetal liver was once thought to be
the exclusive source of B1 cells, adult bone marrow precursor cells can become fully
functional CD5* cells in adult mice (64). Similarly, both fetal liver and adult bone marrow
contained precursor cells that reconstituted B10 cells in Rag2~/~ mice (Fig. 3A). Adoptively
transferred peritoneal cavity B10 cells preferentially migrated into and localized within the
peritoneal cavity in comparison with transferred spleen B10 cells that migrated into both
compartments at similar frequencies (Fig. 4B-C). However, peritoneal B cells can also
migrate into the periphery under certain conditions or following stimulation, particularly
through TLRs (65). Adoptively transferred peritoneal cavity B10 cells can also regulate skin
inflammation during contact hypersensitivity responses (37), and B10 cell numbers expand
significantly within the central nervous system during experimental autoimmune
encephalomyelitis (29). It is thereby likely that factors other than precursor cell origin result
in the high frequency of B10 cells within the peritoneal cavity of adult mice.

Peritoneal cavity B10 cells expressed I1L-10 and effectively modulated T cell responses
during both spontaneous and induced colitis. DSS-induced intestinal injury in Tiger mice
increased the frequency of peritoneal GFP* B10 effector cells expressing I1L-10 acutely in
parallel with gut inflammation (Fig. 6). The adoptive transfer of spleen B10 cells
dramatically reduces DSS-induced colon inflammation in CD19~/~ mice, which are B10
cell-deficient (22). Similarly, the transfer of peritoneal cavity B cells from wild type but not
IL-10"~ mice significantly delayed colitis development in the IL-10™~ mouse model of
spontaneous colitis, with decreased histological scores, an absence of anal prolapse, and the
prevention of weight loss (Fig. 7A-C). IL-10 production by peritoneal cavity B cells also
significantly delayed weight loss and reduced histological scores in the T cell transfer model
of colitis (Fig. 8). In both mouse models, peritoneal cavity B10 cells were particularly
effective at reducing the numbers of activated and IFN-y producing CD4* T cells in the
peritoneal cavity and mesenteric lymph nodes. Peritoneal cavity B10 cell transfers also
reduced Th17 cell numbers and/or function as well as neutrophil recruitment into the
peritoneal cavity, lymph nodes and spleen. Thereby, the adoptive transfer of peritoneal
cavity B10 cells delayed colitis development and reduced intestinal tissue damage, CD4* T
cell activation and activation of innate immunity through IL-10 production. Thus, B10 cells
isolated from the both the peritoneal cavity and spleen demonstrate IL-10-dependent
regulatory activities.

Mizoguchi and colleagues first demonstrated that B cells from mesenteric lymph nodes of
TCR-a~/~ mice and their antibody products suppress colitis by affecting the clearance of
apoptotic cells (18). Antibody blockade of the CD40 or B7-2 co-stimulatory molecules on
the adoptively transferred B cells eliminated their suppressive effects on pathogenic T cells
(66). They subsequently coined the term “regulatory B cells” when showing that chronic
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intestinal inflammation generates IL-10-producing B cells characterized by CD1d
upregulation within mesenteric lymph nodes of 7CR-a~/~ mice (20). Mizoguchi et al.
recently demonstrated a regulatory role for peritoneal cavity B1 cells from 7CRa™/~ mice
during chronic colitis, possibly through generating natural antibodies in response to
microbial flora (67). In studies by others, mesenteric lymph node B cells in combination
with CD8" T cells protected mice from colitis induced by GaiZ/~ CD4* T cells through the
formation of regulatory T cells (68). Although these diverse regulatory mechanisms have
been proposed for B cell amelioration of colitis, the current studies demonstrate that B10
cell 1L-10 production is likely to also contribute to the regulatory effects observed in the
above studies.

In summary, the current studies demonstrate that peritoneal cavity B10 cells are an
important component of the regulatory network that controls gut homeostasis and
autoimmunity. Moreover, peritoneal and spleen B10 cells appear to be functionally
equivalent, despite their different anatomic locations and the fact that they share cell surface
markers with a variety of phenotypically-defined B cell subsets that are often considered to
be functionally distinct. Given that B cells can migrate between the spleen and peritoneal
cavity (Fig. 3A, ref. 69), B10 cells may be functionally important both centrally within the
spleen and within the peritoneal cavity and gut-associated lymphoid tissues during colitis.
Given that T cells also play critical regulatory roles during IBD development in mice as well
as humans (1, 3), it is likely that B10 and Treg cells share complementary regulatory
functions for IBD as previously shown for experimental autoimmune encephalomyelitis
(29). Although the induction of colitis requires both spontaneous and Ag-specific T cell
proliferation, driven in part by microbiota-derived innate signals (1, 70, 71), the intestinal
microbiota also trigger innate immune responses that can modify the T cell compartment
and prevent IBD (20, 70, 72). B10 cell regulatory function is likely to have contributed to
these regulatory effects. Thereby, B10 cell expansion or future B10 cell-directed therapies
may facilitate the control of IBD.
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Figure 1. Peritoneal B cell IL-10 production
(A) IL-10 expression by CD19* B cells within the peritoneal cavity (PC), mesenteric lymph
nodes (MLN), colonic lamina propria (LP), and Peyer's patches (PP). B cells isolated from
either wild type or IL-10~/~ mice were stimulated ex vivowith LPS, PMA, ionomycin and
monensin (L+PIM) for 5 h before cell surface CD19 and cytoplasmic IL-10
immunofluorescence staining with flow cytometry analysis. Positive IL-10 gating was
established using IL-107/~ or wild type B cells that were incubated with monensin alone
with similar results. Numbers indicate cell frequencies within the indicated gates. Bar graphs
show mean (xSEM) IL-10-competent B cell frequencies (n=4-8 mice per group). (B) The
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lamina propria (LP) and intraepithelial lymphocyte (IEL) subsets include B10 cells.
IL-10*CD19* B cells were identified as in (A) among B cell subsets isolated from the colon
and small intestine. Bar graphs show mean (xSEM) IL-10-competent B cell frequencies
(n=4 mice per group). Differences between tissues were not significant. (C) Peritoneal
cavity and spleen IL-10" B cell phenotypes. IL-10*CD19* B cells identified as in (A) are
shown (thick empty lines) in comparison with IL-10"CD19" B cells (thin shaded
histograms) and background control mAb staining (dotted lines). MHC class 11 (MHCII).
Histograms represent results from =3 mice.
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Figure 2. IL-10 expression by phenotypically-defined peritoneal cavity B cell subsets

(A) Representative gating used for the identification of CD19" B cells with Bla
(CD5*CD11b*), B1b (CD5*CD11b7), or B2 (CD5-CD11b") cell phenotypes during flow
cytometry analysis. Cell frequencies within the indicated gates are shown. Histograms
represent results from =3 mice. (B) IL-10 expression by B cells with Bla, B1b or B2 cell
phenotypes. IL-10-competent B cell frequencies and numbers were determined following L
+PIM stimulation for 5 h, followed by cell surface molecule and cytoplasmic IL-10 staining
before flow cytometry analysis. B cells from IL-10~~ mice or B cells cultured in monensin
alone were used as controls for background IL-10 staining. Bar graphs show mean (xSEM)
frequencies and numbers of IL-10-competent B cells (n=10 mice). (C) Representative I1L-10
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expression by B cells with Bla, B1b or B2 cell phenotypes in IL-10 reporter Tiger (eGFP
reporter) and 10BiT (Thy1.1 reporter) mice in comparison with wild type mice shown as
negative controls for reporter expression. B cells were stained for intracellular IL-10 and
GFP for Tiger mice or Thyl1.1 for 10BiT mice following 5 h of culture with monensin only
or L+PIM. Bar graphs show mean (+SEM) reporter-positive cell numbers (n=8 mice).
Significant differences between sample means are shown; *p <0.05, **p<0.01. (D)
Influence of CD40, TLR, and BCR signaling on I1L-10 expression. Purified B cells with Bla,
B1b or B2 cell phenotypes were cultured in medium alone or containing agonistic CD40
mADb, LPS, or anti-IgM antibody for 43 h. The culture supernatant fluid was harvested for
ELISA and the cells were then cultured with monensin or L+PIM for an additional 5 h.
Representative contour plots for intracellular 1L-10 expression by CD19* B cells are shown.
Bar graphs show IL-10-competent B cell frequencies after monensin or L+PIM stimulation
and IL-10 concentrations in tissue culture supernatant fluid. Data are pooled from two
experiments using three to four mice/group. Differences between values for each group are
significant (p<0.05), except where noted as non-significant (n.s.).
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Figure 3. IL-10 competence is independent of B cell precursor populations and I1L-10

(A) IL-10 competence is independent of precursor B cell origin. Bone marrow and fetal liver
hematopoietic cells from congenic CD45.1 transgenic donor mice were transferred i.v. into
recipient RagZ”'~ mice. Six weeks later, CD45.1*CD19" B10 cells within the peritoneal
cavity and spleen of recipient mice were quantified. Bar graphs show mean (xSEM) B10
cell frequencies and numbers from four recipient Rag2~/~ mice in two experiments.
Significant differences between sample means are indicated: * p<0.05. (B) Peritoneal cavity
B cell subsets develop normally in 1L-10~/~ mice. B cells isolated from 10-12 week-old wild
type or IL-107/ littermates were stimulated with L+PIM for 5 h before immunofluorescence
staining with flow cytometry analysis. Bar graphs indicate mean (xSEM) frequencies or
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numbers of B cells with Bla, B1b or B2 phenotypes (n=8 mice in two experiments). (C)
IL-10 is not required for peritoneal cavity B10 cell development in 10BiT mice. B cells
isolated from 10-12 week-old 10BiT or IL-107~10BiT littermates were stimulated with L
+PIM for 5 h before immunofluorescence staining with flow cytometry analysis. Bar graphs
indicate mean (xSEM) frequencies or numbers of IL-10* cells among B cells with Bla, B1lb
or B2 phenotypes (n=3-4 mice/group).
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Figure 4. B cell IL-10 production is not regulated by microbiota or anatomic location

(A) B10 cell development in gnotobiotic and specific pathogen-free (SPF) mice (6 mo-old,;
129S6/SvEv strain). Representative flow cytometry histograms of peritoneal cavity and
spleen B cells are shown. Bar graphs show mean (zSEM) B10 cell frequencies and numbers
(n=3 mice/group). (B) The peritoneal cavity environment does not induce B10 cell
expansion in C57BL/6 mice. Purified peritoneal cavity and spleen CD19" B cells were
CFSE-labeled and transferred i.p. into untreated recipient mice. After 72 h, peritoneal cavity
B10 cell frequencies among CFSE*CD19* B cells and numbers were quantified.
Representative contour plots and percentages of CFSE* B cells are shown. Bar graphs show
mean (£SEM) B10 cell frequencies and numbers (n=4 mice) from one of two experiments
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with similar results. (C) IL-10-competent B cells reconstitute both the spleen and peritoneal
cavity of Rag2'~ mice given PBS (control), or equal numbers of purified peritoneal cavity
CD11b*CD19" or spleen CD5*CD1dMCD19* B cells i.v. Two weeks later, IL-10-competent
B cell frequencies and numbers among transferred B cells within the peritoneal cavity and
spleen of recipient mice were quantified. Representative contour plots and percentages of
cells within the indicated gates are shown. Bar graphs show mean (+SEM) B10 cell
frequencies and numbers from three recipient Rag2~'~ mice in two experiments. (B-C)
Significant differences between sample means are shown; *p<0.05, **p<0.01.
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Figure 5. Peritoneal cavity B10 cells utilize diverse V genes that are largely unmutated

(A) Vy family gene usage by 36 1L-10* B cells and Vi family gene usage by 81 IL-10* B
cells from two individual mice. (B) Mutation frequencies within the V-D-Jy and Vk-Jk
gene sequences. (C) Phylogenetic trees showing relationships between the Vy-D-Jy (n=36)
or Vk-Jk (n=50) amino acid sequences of individual B cells from individual mice named A
or B with numbers indicating different B cells. Branches indicate the average distance

between two sequences based on percent identity.
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Figure 6. B10 effector cell IL-10 expression during DSS-induced intestinal injury

(A) B cells in Tiger mice express GFP during acute DSS-induced gut inflammation.
Peritoneal cavity, mesenteric lymph node and spleen B cells were isolated from Tiger mice
before (day zero) or three or seven days after DSS treatment and were cultured with either
monensin or L+PIM for 5 h. Cell surface CD19 and cytoplasmic GFP expression were
analyzed by flow cytometry. Mean (+ SEM) GFP* cell frequencies among CD19* B cells
are shown for three mice per group. (B) B10 effector cell frequencies and numbers during
DSS-induced intestinal injury as measured in (A). Significant differences between sample
means are shown; *p<0.05, **p<0.01.
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Figure 7. B10 cells regulate spontaneous colitis onset in IL-107~ mice
(A) Scheme for the transfer of peritoneal cavity CD19* B cells from wild type (WT) or
IL-10~"~ mice into IL-107/~ mice i.p. at 10-12 weeks of age. (B-C) Adoptively transferred
peritoneal cavity B cells from wild type mice prevent weight loss and reduce colitis severity
in 1L-107/~ mice. (B) Weight loss values represent mean (+ SEM) results from 20 recipient
mice/group during weeks 1-6 and 12 recipient mice/group at week 16 after euthanasia of
mice with >20% weight loss. (C) Mean histological scores (+ SEM) were obtained 16 weeks
after adoptive transfers in four to six representative recipient mice/group from four
experiments. (D-E) Adoptively transferred peritoneal cavity B cells from wild type mice
reduce CD4* T cell activation and IFN-y expression in recipient 1L-10~/~ mice. (D)
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Representative peritoneal cavity and inguinal lymph node dot plots and bar graphs show
mean frequencies and numbers (+ SEM) of total, naive (CD44CD62L") and activated
(CD44*CD62L") CD4* T cells eight weeks after adoptive transfers with nine recipient mice/
group from three experiments. (E) Representative CD4* T cell cytoplasmic IFN-y and
IL-17A production measured after CD3g/CD28 mADb stimulation in the presence of
Brefeldin A for 4 h. Bar graphs indicate means (xSEM) of eight recipient mice/group from
three experiments. (F) Transferred peritoneal cavity B cells from wild type mice reduce
neutrophil localization within recipient IL-10~~ mouse tissues. Representative histograms
show tissue CD11b*Ly6G™ neutrophil frequencies 16 weeks after adoptive transfers. All
CD19" and TCRB* lymphocytes were excluded (“gated out™) from the mononuclear cell
preparations for the analysis. Values indicate mean (xSEM) neutrophil frequencies (contour
plots) and numbers from seven recipient mice/group in two experiments. (B-F) Significant
differences between sample means are indicated; *p<0.05, **p<0.01.
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Figure 8. B cell IL-10 regulates T cell-induced colitis in RagZ‘/' mice

(A) Scheme for the i.p. co-transfer of peritoneal cavity CD19* B cells from wild type (WT)
or IL-10~ mice along with spleen CD25-CD45RBMNCDA4* T cells from wild type mice into
RagZ'~ mice. (B-D) Adoptively transferred peritoneal cavity B cells from wild type mice
reduce weight loss and colitis severity. (B) Values represent means (x SEM) of 12 recipient
mice/group from five experiments. (C) Mean histological scores (+x SEM) were obtained
seven to eight weeks after adoptive transfers in four to six representative recipient mice/
group from four experiments. (D) Representative histologies from mice given either wild
type or 1L-107~ B cells as in (C). (E-F) Transferred peritoneal cavity B cells from wild type
mice do not significantly affect peritoneal cavity and mesenteric lymph node CD4* T cell
numbers but reduce CD4* T cell IFN-y and IL-17A expression in recipient Rag2”~ mice. T
cell cytoplasmic cytokine production was measured seven to eight weeks after adoptive
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transfers following CD3g/CD28 mAb stimulation in the presence of Brefeldin A for 4 h.
Representative contour plots are shown. Bar graphs indicate mean (£ SEM) CD4* T cell
numbers of eight recipient mice/group from three experiments. (B-D) Significant differences
between sample means are indicated; *p<0.05, **p<0.01.
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