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Abstract

By substituting the H chain C region of IgM with that of IgG, IgA, or IgE, class switching enables 

Abs to acquire new effector functions that are crucial for the neutralization of invading pathogens. 

Class switching occurs through class switch DNA recombination (CSR) and usually requires 

engagement of CD40 on B cells by CD40 ligand on Ag-activated CD4+ T cells. CSR must be 

tightly regulated because abnormal IgG and IgA production favors the onset of autoimmunity, 

whereas increased switching to IgE leads to atopy. These inflammatory disorders can be triggered 

or exacerbated by EBV infection. In this study, we show that EBV induces CD40-independent 

CSR from Cµ to multiple downstream Cγ, Cα, and C∊ genes through latent membrane protein 1 

(LMP1), a CD40-like viral protein that signals in a ligand-independent fashion. LMP1-induced 

CSR is associated with transcriptional activation of germline Cγ, Cα, and C∊ genes and triggers the 

up-regulation of activation-induced cytidine deaminase, a crucial component of the CSR 

machinery. In addition, LMP1 induces B cells to express B cell-activating factor of the TNF 

family and a proliferation-inducing ligand, two molecules that mediate B cell survival and T cell-

independent Ab production. B cell-activating factor of the TNF family and a proliferation-

inducing ligand cooperate with LMP1 to induce Ig class switching because their neutralization by 

appropriate soluble decoy receptors attenuates CSR in LMP1-expressing B cells. By showing that 

LMP1 triggers T cell-independent CSR, our findings suggest that EBV could play an important 

role in the pathogenesis of disorders with aberrant IgG, IgA, and/or IgE production.

Immunoglobulin H chain class switching diversifies the Ab effector functions by 

substituting the H chain C region (CH) of IgM with that of IgG, IgA, or IgE (1). B cells 

undergo IgH chain class switching through class switch DNA recombination (CSR),3 an 

intriguing process that involves the recombination of the switch µ (Sµ) region 5′ of the Cµ 
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gene with an analogous Sγ , Sα, or S∊ region 5′ of Cγ , Cα, and C∊, respectively (2). Most 

Ags, including complex viral and bacterial proteins, induce CSR by up-regulating CD40 

ligand (CD40L) on CD4+ T cells (3). Engagement of CD40 on IgD+ naive B cells by 

CD40L triggers NF-κB-dependent transcriptional activation of IH gene promoters that are 

located 5′ of each S region and encompass a noncoding IH exon (2). The resulting germline 

IH-CH transcription increases the accessibility of the targeted S region to the CSR 

machinery. This enzymatic complex includes activation-induced cytidine deaminase (AID), 

a B cell-specific and CD40-inducible enzyme that induces CSR through an as-yet-elusive 

mechanism (2, 4).

T cell-dependent (TD) Ags trigger CD40-dependent CSR in B cells located within the 

germinal center (GC) of secondary lymphoid follicles (5, 6). These GC B cells subsequently 

differentiate to long-lived IgD− memory B cells or Ab-secreting plasma cells (7, 8). T cell-

independent (TI) Ags, such as viral glycoproteins and bacterial polysaccharides, elicit 

CD40-independent CSR and Ab production in extrafollicular marginal zone and intestinal B 

cells (9–11). This process requires B cell-activating factor of the TNF family (BAFF; also 

known as B lymphocyte stimulator) and a proliferation-inducing ligand (APRIL) (12–16), 

two CD40L-related molecules produced by myeloid cells (17–19). BAFF binds to three 

receptors specifically expressed on B cells, including transmembrane activator and calcium 

modulator and cyclophylin ligand interactor (TACI), B cell maturation Ag (BCMA), and 

BAFF-R (also known as BR3) (20–22). In addition to favoring Ab production, BAFF-R 

delivers survival signals that are crucial for the conservation of the peripheral B cell 

repertoire (23,24). Unlike BAFF, APRIL binds to TACI and BCMA, but not BAFF-R (25, 

26). Similarly to CD40 (3), TACI, BCMA, and BAFF-R signal by recruiting TNFR-

associated factors (TRAFs) to their cytoplasmic tails (24). By activating IκB kinase, TRAFs 

induce phosphorylation-dependent degradation of IκB, a cytoplasmic inhibitor of NF-κB 

(27, 28). The subsequent nuclear translocation of NF-κB transcriptionally activates genes 

involved in B cell proliferation, differentiation, and survival (29).

Dysregulated switching to IgG and IgA is central to the pathogenesis of autoimmune 

disorders such as systemic lupus erythematosus (SLE) (30), whereas aberrant switching to 

IgE underlies the pathogenesis of atopic disorders such as allergic asthma and atopic 

dermatitis (31). Both autoimmunity and atopy can be triggered or exacerbated by viral 

infections, including EBV infection (32–34). EBV is a B lymphotropic herpes virus that 

infects >90% of the human population during the first years of life (35). EBV infection is 

usually asymptomatic, because most EBV-containing B cells are eliminated by CD8+ CTLs 

(36). However, a few latently infected B cells persist for the lifetime (36). In some 

predisposed subjects, latent EBV infection would favor production of IgG and IgA 

autoantibodies (37, 38). Abnormal switching to IgG, IgA, and IgE can be also observed in 

adolescents with infectious mononucleosis, a self-limiting lymphoproliferative disorder 

3Abbreviations used in this paper: CSR, class switch DNA recombination; S, IgH switch region; CD40L, CD40 ligand; AID, 
activation-induced cytidine deaminase; TD, T cell dependent; TI, T cell independent; GC, germinal center; BAFF, B cell-activating 
factor of the TNF family; APRIL, a proliferation-inducing ligand; TACI, transmembrane activator and calcium modulator and 
cyclophylin ligand interactor; BCMA, B cell maturation Ag; TRAF, TNFR-associated factor; SLE, systemic lupus erythematosus; 
LMP, latent membrane protein; EBNA, EBV-encoded nuclear Ag; mBAFF, mouse BAFF; SC, switch circle; LUC, luciferase reporter 
plasmid; wt, wild type; CT, circle transcript; PB, peripheral blood; LCL, lymphoblastoid B cell line; BL, Burkitt’s lymphoma; tet, 
tetracycline; CTAR, C-terminal activation region; BCR, B cell Ag receptor.
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secondary to acute EBV infection (34), as well as in immunocompromised subjects with 

EBV-associated B cell lymphoproliferative disorders (39–41). It is unclear how EBV 

dysregulates the Ab response.

In the initial phase of the infection, EBV drives tonsillar IgD+ naive B cells to undergo 

extrafollicular activation and proliferation through three latent membrane proteins (LMP1, 

−2A, and −2B) and six EBV-encoded nuclear Ags (EBNA1 to −6) (42, 43). This growth 

program, also known as latency III, allows the expansion of the viral episome in the B cell 

compartment until a strong antiviral T cell response is established (44). Later on, EBV 

induces infected IgD+ blasts to switch to a default program, also known as latency II, which 

entails only EBNA-1, LMP1, and LMP2A, and allows infected B cells to differentiate to 

class-switched IgD− memory B cells (42, 43, 45). By further down-regulating LMP1 and 

LMP2A, memory B cells acquire a latency program, also known as latency I, which includes 

only EBNA1 and allows the persistence of EBV in a transcriptionally quiescent state (43, 

46). Periodic reactivation of LMP1 and LMP2A in the tonsillar microenvironment would 

generate growth and survival signals that enable latently infected memory B cells to persist 

for the lifetime (36). The mechanisms by which EBV-infected IgD+ blasts differentiate to 

class-switched IgD− memory B cells remain elusive.

Among EBV-encoded proteins, LMP1 is essential to induce B cell activation, proliferation, 

survival (35,47), as well as in vitro B cell transformation (48). The LMP1 cytoplasmic tail 

has extensive functional homology with CD40 and, like CD40, induces IκBα degradation 

and NF-κB nuclear translocation by recruiting TRAFs and IκB kinase (49–51). Unlike 

CD40, which delivers transient signals upon engagement by CD40L (3), LMP1 

constitutively signals in a ligand-independent fashion (52). This observation prompted us to 

hypothesize that EBV might dysregulate IgG, IgA, and IgE production by delivering CD40-

like signals to B cells.

In this study, we show that B cell infection by EBV actively induces CSR from Cµ to 

multiple Cγ, Cα, and C∊ genes through LMP1. This viral protein further dysregulates CSR 

by triggering aberrant BAFF and APRIL expression in B cells. Our findings suggest that 

neutralization of BAFF and APRIL by soluble TACI and BCMA decoy receptors may 

attenuate dysregulated IgG, IgA, and IgE production in certain patients with latent or active 

EBV infection.

Materials and Methods

Cells and reagents

IARC, BL16, Bjab, and HL-60 cell lines (from American Type Culture Collection 

(Manassas, VA) and R. Dalla-Favera (Columbia University, New York, NY)) were cultured 

in RPMI 1640 medium (Invitrogen, Carslbad, CA). IgD+ B cells and monocytes were 

obtained from PBMCs as described (53). IgD+ B cells were incubated with EBV (B95-8 

strain) for 2 h at 37°C After virus removal, B cells were incubated for 3 wk at a density of 

106 cells/ml. All cultures were conducted in RPMI 1640 medium supplemented with 10% 

FCS, antibiotics, and glutamine. Ramos subclones expressing EBV proteins (from R. Harris 

and M. Neuberger (Medical Research Council Laboratory of Molecular Biology, 
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Cambridge, U.K.)) were cultured in medium supplemented with 1 µg/ml puromycine 

(Sigma-Aldrich, St. Louis, MO). tet-LMP1 Bjab cells (from N. Lam and B. Sugden 

(University of Wisconsin-Madison, Madison, WI)) were cultured with medium 

supplemented with 1 µg/ml puromycine and 200 µg/ml geneticin (Invitrogen), and with or 

without 1 ng/ml doxycycline (Sigma-Aldrich). Control MOPC-21 (Sigma-Aldrich), TACI-

Ig), BCMA-Ig (Alexis Biochemicals, San Diego, CA), and CD40-Ig (Ancell, Bayport, MN) 

were used at 30 µg/ml.

Flow cytometry

CD3, CD14, CD19, CD23 (BD PharMingen, San Diego, CA), IgM, IgG, and IgA (Southern 

Biotechnologies Associates, Birmingham, AL) were detected with PE- or FITC-conjugated 

Abs. Mouse BAFF (mBAFF) was labeled with a mouse Ab to BAFF (Alexis Biochemicals) 

and a PE-conjugated anti-mouse Ab (BD PharMingen). BAFF-Rs were labeled with a CD8-

BAFF fusion protein (Ancell) and a PE-conjugated Ab to CD8 (BD PharMingen). Cells 

were acquired using a FACSCalibur analyzer (BD Immunocytometry Systems, San Jose, 

CA).

Genomic PCRs and RT-PCRs

DNA and RNA extractions were preceded by removal of dead B cells through Ficoll. 

Genomic DNA was extracted from 10 × 106 viable B cells by using the QIAmp DNA mini 

kit (Qiagen, Valencia, CA). Switch circles (SCs) were amplified from 500 ng of genomic 

DNA (13). Total RNA was extracted from 5 × 106 viable B cells by using the RNeasy total 

RNA kit (Qiagen). cDNA was reverse transcribed from 3 µg of total RNA (13). PCRs were 

made semiquantitative by varying the number of cycles and performing dilutional analysis 

so that there was a linear relationship between the amount of cDNA used and the intensity of 

the PCR product. Germline IH-CH transcripts, mature VDJ-CH transcripts, AID, BAFF, 

APRIL, and β-actin were amplified as described (13). TACI, BCMA, BAFF-R, and LMP1 

were amplified by using the following primer pairs: TACI, forward, 5′-

AAGAAGAGGGGGGATCCCTGC-3′, and reverse, 5′-TTATGCACCTGGGCCCCC-3′; 

BCMA, forward, 5′-CTAAGGAA GATAAACTCTGAACCA-3′, and reverse, 5′-

TTACCTAGCAGAAATT GATTTCTC-3′; BAFF-R, forward, 5′-

GTGAGCTGGAGGCGGCGACAG-3′, and reverse, 5′-

CTATTGTGCTCAGGGCCGGC-3′; and LMP1, forward, 5′-

CTTCAGAAGAGACCTTCTCT-3′, and reverse, 5′-ACAATGCCTGT CCGTGCAAA-3′. 

The conditions were as follows: denaturation for 1 min at 94°C, annealing for 1 min at 60°C, 

and extension for 1 min at 72°C.

Southern blots

PCR products were fractionated onto agarose gels, transferred overnight to nylon 

membranes, and hybridized with radiolabeled probes as described (13). SCs were hybridized 

with a probe recognizing the recombined Sµ region; circle transcripts (CTs) and mature 

VDJ-Cµ transcripts were hybridized with a probe encompassing nt 1–250 of the first Cµ 

exon; and mature VDJ-Cγ transcripts were hybridized with a 5′-CAGGGGGAA 

GACCGATGG-3′ oligoprobe recognizing a consensus Cγ sequence.
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Vectors

−449/+265 and −291/+131 genomic DNA fragments encompassing the Iγ3 and I∊ promoters 

were inserted into a promoterless pGL3-Basic vector (Promega, Madison, WI) containing a 

luciferase (LUC) reporter gene (54, 55). Wild-type (wt) LMP1 and mutant LMP1, including 

DEL 187–351 LMP1, 187-STOP LMP1, and 231-STOP LMP1, were cloned into a pcDNA3 

expression vector (Invitrogen) (56). The κB(2X)-LUC reporter vector is driven by an NF-κB-

responsive minimal promoter with two NF-κB-binding κB sites. κB(2X)-LUC and the IκBα-

pcDNA3 expression vector were provided by E. Cesarman (Weill Medical College of 

Cornell University, New York, NY). The −839/+232 genomic DNA segment encompassing 

the BAFF promoter was PCR amplified from placental genomic DNA by using sense 5′-

CACAGGTCCACCAAGTCAACAA CAGA-3′ and antisense 5′-

ATCACTACTTGAACTTTGAAGGTTGG-3′ primers with 5′ overhangs containing KpnI 

(sense) and XhoI (antisense) restriction sites. The resulting DNA segment was sequenced 

and then cloned into the pGL3-Basic reporter vector. The MatInspector software 

(Genomatix Software, Munchen, Germany) was used to identify putative NF-κB-binding κB 

motifs.

Primer extension gene analysis

A Primer Extension System-Avian Myeloblastosis Virus Reverse Transcriptase (Promega) 

was used to identify the BAFF gene transcription initiation site. Briefly, total RNA from 

HL-60 or BL16 cells was reversed transcribed with an avian myeloblastosis virus reverse 

transcriptase and an end-labeled 5′-CAGTAGGTTTGCTGGCATTTACCCTC-3′ antisense 

primer recognizing a sequence immediately upstream of the first BAFF exon. The resulting 

cDNA was analyzed on a denaturing polyacrylamide gel to identify the number of bases 

between the labeled oligonucleotide and the 5′ end of the targeted RNA.

Luciferase reporter assays

Cells (20 × 106/ml) were transfected with 40 µl of plasmid DNA-Tris-EDTA solution 

containing 20 µg of pGL3-Basic vector and 200 ng of pRL-TK control vector (Promega). 

pGL3 or κB(2X)-LUC reporter vectors were cotransfected with 2 µg/ml pcDNA3.1 

expression vectors containing wt or mutated LMP1. Electroporation was performed at 625 

V/cm (HL-60 and BL16) or 525 V/cm (Bjab) and 950 µF using a Gene Pulser II apparatus 

(Bio-Rad Laboratories, Hercules, CA). Transfected cells (1 × 106/ml) were cultured for 48 

h. The luciferase activity was measured with the Dual-Luciferase Assay System (Promega).

Immunoblots

Total proteins were fractionated onto a 10% SDS-PAGE and transferred to polyvinylidene 

difluoride membranes (Bio-Rad). After blocking, membranes were probed with Abs to 

BAFF (Upstate Biotechnology, Lake Placid, NY), APRIL, TACI, BCMA, actin (Santa Cruz 

Biotechnology, Santa Cruz, CA), and LMP1 (DAKO, Carpinteria, CA). Proteins were 

detected with an ECL detection system (Amersham, Little Chalfont, U.K.).
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EMSAs

Cells (5 × 106) were lysed to extract nuclear proteins as reported (54). A double-stranded 

oligonucleotide probe overlapping the κB3 site (residues −236 to −216, 

GTGTCTGGACTCCCCCTCGCC) of the Iγ3 promoter (54) was end labeled with 

[γ-32P]ATP by T4 kinase and used at ∼30,000 cpm in each EMSA reaction. Reaction 

mixtures (20 µl) contained 1 ng of DNA probe, 4 µg of nuclear proteins, 2 µg of poly(dI-dC) 

(Sigma-Aldrich), and 2 µl of binding buffer (12.5 mM HEPES (pH 7.9), 5 mM KCl, 0.1 mM 

EDTA, 1 mM dithiothreitol, and 0.05% Nonidet P-40). Reaction samples were incubated at 

room temperature for 15 min and then electrophoresed through a 6% nondenaturing 

polyacrylamide gel in 0.25 × Tris-borate EDTA buffer at 150 V.

Results

B cells up-regulate AID and undergo CSR from Cµ to Cγ Cα, and C∊ upon infection by EBV

CSR from Cµ to a downstream Cγ3, Cγ1, Cα1, Cγ2, Cγ4, Cα2, or C∊ gene is preceded by the 

transcription of that gene in the form of a noncoding germline IH-CH transcript that includes 

the IH exon 5′ of the targeted S region and CH (1). CSR also requires the up-regulation of 

the B cell-specific enzyme AID (2). By inducing looping-out deletion of the IgH DNA 

between Sµ and the targeted downstream S region, CSR generates a single-copy 

extrachromosomal reciprocal DNA recombination product, also known as SC (57). Because 

CSR does not target a consensus sequence within the S region (58), actively class-switching 

B cells generate multiple SCs with different sizes. After excision from the IgH locus, SCs 

transcribe short-lived chimeric I-Cµ CTs that include the promoter upstream of the targeted 

IH exon, the IH exon, and Cµ (58). These CTs often undergo posttranscriptional remodeling, 

thereby generating more than one band after PCR amplification (58). Together with AID 

and germline IH-CH transcripts, SCs and CTs constitute specific markers of ongoing CSR 

and, in healthy individuals, are usually detected only in IgD− GC B cells (59). Ongoing CSR 

was analyzed in noninfected (EBV−) normal peripheral blood (PB) IgD+ naive B cells, 

which display S regions in an unrearranged configuration (13, 59) as well as in monoclonal 

IARC549 and IARC100 lymphoblastoid cell lines (LCLs) obtained by transforming normal 

polyclonal PB B cells with EBV in vitro. CSR was also studied in monoclonal BL16 cells, a 

neoplastic Burkitt’s lymphoma (BL) B cell line that, like IARC549 and IARC100, expresses 

surface IgD on most of its elements and harbors a type-III EBV gene latency program.

Noninfected IgD+ B cells from healthy subjects lacked total Sγ-Sµ and Sα-Sµ SCs (Fig. 1A), 

expressed no or low germline Iγ1-Cγ1, Iγ3-Cγ3, and Iα1-Cα1 transcripts, and lacked Iγ1/2-

Cµ, Iγ3-Cµ and Iα1/2-Cµ CTs as well as AID transcripts (B). In contrast, lymphoblastoid and 

EBV+ BL16 B cells contained total Sγ-Sµ and Sα-Sµ SCs, expressed large amounts of 

germline Iγ1-Cγ1, Iγ3-Cγ3, and Iα1-Cα1 transcripts, and contained Iγ1/2-Cµ, Iγ3-Cµ, and 

Iα1/2-Cµ CTs, and AID transcripts. In both lymphoblastoid and EBV+ BL16 cells, 5–15% of 

the clonal elements expressed surface IgG or IgA, but not surface IgD and IgM (not shown), 

further suggesting ongoing CSR. Additional experiments were performed to verify whether 

infection of normal IgD+ B cells by EBV induces CSR. Compared with noninfected IgD+ B 

cells (Fig. 1A), EBV-infected IgD+ B cells up-regulated AID transcripts and contained 

extrachromosomal Sγ1/2-Sµ, Sγ 3-Sµ, Sγ4-Sµ, Sα1/ 2-Sµ and S∊-Sµ SCs (C), which reflect 
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ongoing CSR from Cµ to Cγ1/Cγ2, Cγ3, Cγ4, Cα1/Cα2, and C∊ respectively. These findings 

indicate that B cells undergo CD40-independent CSR from Cµ to multiple downstream Cγ, 

Cα, and C∊ genes upon infection by EBV.

EBV up-regulates germline IH-CH transcription, AID expression, and CSR through LMP1

To evaluate the mechanism by which EBV induces CSR, we took advantage of IgM+ 

subclones established from the EBV− BL cell line Ramos and stably expressing LMP1, 

LMP2A, EBNA1, EBNA2, or EBNA-LP expression vectors. Compared with control 

subclones transfected with empty expression vectors, B cell sub-clones expressing LMP1 

contained Iγ1/2-Cµ and Iγ3-Cµ CTs as well as mature VHDJH-Cγ1 and VHDJH-Cγ3 

transcripts (Fig. 2), the end product of CSR from Cµ to Cγ1 and Cγ3. B cell subclones 

expressing LMP2A contained lower amounts of Iγ3-Cµ CTs and VHDJH-Cγ3 transcripts, but 

lacked Iγ1/2-Cµ and VHDJH-Cγ1 transcripts. In contrast, B cell subclones expressing 

EBNA1, EBNA2, or EBNA-LP lacked Iγ1/2-Cµ and Iγ3-Cµ CTs as well as mature VHDJH-

Cγ1 and VHDJH-Cγ3 transcripts. Finally, all B cell sub-clones expressed β-actin transcripts 

as well as mature VHDJH-Cµ transcripts. These findings suggest that LMP1 and, to a lesser 

extent, LMP2A trigger CD40-independent CSR.

The CSR-inducing activity of LMP1 was further evaluated in an EBV− BL cell line, Bjab, 

stably expressing a tetracycline (tet)-inducible LMP1 expression vector. Like Ramos B cells, 

Bjab B cells express IgM but not IgG, IgA, or IgE on the surface. Bjab-tet-LMP1 B cells up-

regulated LMP1 (shown below) and activated luciferase reporter vectors containing the Iγ3 

gene promoter (Iγ3-LUC), the I∊ gene promoter (I∊-LUC), or κB(2X)-LUC upon incubation 

with doxycycline for 2 days (Fig. 3A). Overexpression of the NF-κB inhibitor IκBα 

inhibited doxycycline-induced activation of Iγ3-LUC, I∊-LUC, and κB(2X)-LUC. In addition 

to activating the Iγ3 and I∊ promoters, doxycycline up-regulated the expression of germline 

Iγ1-Cγ1,Iγ3-Cγ3, Iα1-Cα1, and I∊-C∊ transcripts (Fig. 3B). Furthermore, Bjab-tet-LMP1 B 

cells exposed to doxycycline for 4 days up-regulated AID transcripts and induced Iγ1/ 2-Cµ 

Iγ3-Cµ Iα1/2-Cµ and I∊-Cµ CTs (Fig. 3C), which reflect ongoing CSR from Cµ to Cγ1/Cγ2, 

Cγ3, Cα1/Cα2, and C∊, respectively. The induction of CSR by doxycycline was associated 

with up-regulation of surface IgG and IgA and down-regulation of surface IgM (Fig. 3D). 

These findings indicate that B cells undergo NF-κB-dependent germline IH-CH transcription 

and CSR upon activation by LMP1.

LMP1 induces BAFF and APRIL expression in B cells

We have recently found that dendritic cells up-regulate BAFF and APRIL, two inducers of 

TI CSR, upon engagement of CD40 by CD40L (13). Given its ability to mimic CD40 

signaling, LMP1 might up-regulate BAFF and APRIL in B cells as CD40 does in dendritic 

cells. Compared with control subclones, Ramos B cell subclones expressing LMP1 or, to a 

lesser extent, LMP2A contained more BAFF and APRIL transcripts and proteins (Fig. 4A). 

In contrast, Ramos B cell subclones expressing EBNA1, EBNA2, or EBNA-LP contained 

BAFF and APRIL transcripts and proteins in amounts comparable with those detected in 

control subclones. Additional experiments evaluated the expression of BAFF and APRIL in 

Bjab-tet-LMP1 B cells. When exposed to tet, Bjab-tet-LMP1 B cells up-regulated LMP1 as 

well as BAFF and APRIL transcripts and proteins (Fig. 4B). tet also up-regulated surface 

He et al. Page 7

J Immunol. Author manuscript; available in PMC 2015 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CD23, a canonical LMP1-inducible B cell-activation protein, BAFF, as well as the total 

BAFF-binding activity (Fig. 4C), which reflects the surface density of TACI, BCMA, and 

BAFF-R receptors. In contrast, tet did not up-regulate CD3, a T cell-restricted component of 

the TCR complex, or CD19, a component of the B cell receptor complex expressed by all 

mature B cells. These findings indicate that LMP1 up-regulates BAFF and APRIL in B 

cells.

LMP1 activates the BAFF gene promoter through NF-κB

NF-κB is crucial for the activation of B cells by LMP1 (35, 51). We took advantage of Bjab-

tet-LMP1 B cells to verify whether LMP1 up-regulates BAFF through NF-κB. DNA 

sequence analysis showed that the BAFF gene promoter contains at least six NF-κB-binding 

κB sites (Fig. 5A). Bjab-tet-LMP1 B cells activated a luciferase reporter vector carrying the 

BAFF gene promoter (BAFF-LUC) as well as κB(2X)-LUC upon incubation with 

doxycycline for 2 days. Overexpression of IκBα inhibited the induction of BAFF-LUC and 

κB(2X)-LUC by doxycycline (Fig. 5B), suggesting that NF-κB is critical to up-regulate 

BAFF. Because LMP1 recruits TRAFs and activates NF-κB through C-terminal activation 

region (CTAR)-1 and CTAR-2 (49, 56), we verified whether disruption of one or both 

CTARs affects the up-regulation of BAFF by LMP1. wt Bjab B cells activated BAFF-LUC 

as well as κB(2X)-LUC upon transfection with wt LMP1, which contains both CTAR-1 and 

CTAR-2. In contrast, 187-STOP LMP1, which lacks both CTAR-1 and CTAR-2, failed to 

activate BAFF-LUC as well as control κB(2X)-LUC. Furthermore, both BAFF-LUC and 

κB(2X)-LUC were activated by DEL 187–351 LMP1, which lacks only CTAR-1, or 231-

STOP LMP1, which lacks only CTAR-2. These findings suggest that the up-regulation of 

BAFF by LMP1 requires the integrity of at least one CTAR domain. Finally, transfection of 

Bjab B cells with graded amounts of IκBα progressively inhibited the activation of BAFF-

LUC and κB(2X)-LUC by wt LMP1, further indicating that NF-κB is crucial for the up-

regulation of BAFF by LMP1.

B cells express BAFF and APRIL upon infection by EBV

Additional experiments were performed to verify whether purified B cells up-regulate BAFF 

and APRIL upon EBV infection. Purified noninfected IgD+ B cells lacked BAFF and 

APRIL transcripts (Fig. 6A) as well as BAFF and APRIL proteins (B). Similar normal B 

cells expressed CD19, but most of them lacked the EBV (LMP1)-inducible Ag CD23 as 

well as mBAFF and the myeloid Ag CD14 (Fig. 6C). In contrast, purified EBV-infected 

IgD+ B cells contained BAFF and APRIL transcripts and proteins and coexpressed CD19, 

CD23, and mBAFF on the surface. Similar EBV-infected normal B cells lacked CD14, 

indicating a lack of contaminating monocytes and macrophages. The expression of BAFF 

and APRIL was also measured in B cell lines harboring a type-III EBV latency gene 

program. IARC504 lymphoblastoid B cells and neoplastic EBV+ BL16 B cells expressed 

BAFF and APRIL transcripts and proteins in amounts comparable with those expressed in 

myeloid cells, including HL60 AML cells. Moreover, lymphoblastoid and malignant BL16 

B cells, which contain LMP1 (Fig. 6, A and B), expressed more BAFF and APRIL 

transcripts than Akata and Mutu I (not shown), two EBV+ BL B cell lines that, unlike LCLs 

and BL16, express a type-I EBV latency gene program and therefore lack LMP1. Finally, all 

B cell types under study but not HL60 AML cells expressed TACI, BCMA, and BAFF-R 
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transcripts (Fig. 6A) and proteins (B). These findings indicate that B cells express TACI, 

BCMA, and BAFF-R, and aberrantly up-regulate BAFF and APRIL upon infection by EBV.

BAFF and APRIL up-regulate AID and enhance CSR in EBV-infected B cells

The above findings prompted us to hypothesize that engagement of TACI, BCMA, and/or 

BAFF-R by autocrine BAFF and APRIL enhances LMP1-induced CSR in EBV-infected B 

cells. To verify this, we took advantage of soluble TACI-Ig and BCMA-Ig decoy receptors, 

which prevent the binding of BAFF and APRIL to cell-bound TACI, BCMA, and BAFF-R. 

Lymphoblastoid IARC549 B cells down-regulated total Sγ-Sµ and Sα-Sµ SCs (Fig. 7A), 

Iγ1/2-Cµ, Iγ3-Cµ, and Iα1/2-Cµ CTs, as well as AID transcripts upon exposure to soluble 

TACI-Ig and BCMA-Ig decoy receptors for 2 days (B). This down-regulation was specific, 

as similar lymphoblastoid B cells did not attenuate CSR upon exposure to a control Ig or 

CD40-Ig, which blocks CD40L-CD40 interaction. These findings suggest that EBV triggers 

CD40-independent CSR not only through LMP1 but also through endogenous (LMP1-

induced) BAFF and APRIL.

BAFF and APRIL enhance NF-κB activation and germline IH-CH transcription in EBV-
infected B cells

Additional experiments were set up to assess whether BAFF and APRIL released by EBV-

infected LMP1-expressing B cells activate NF-κB. Exposure of lymphoblastoid IARC549 B 

cells to BCMA-Ig but not control Ig or CD40-Ig down-regulated the binding of nuclear NF-

κB to an oligonucleotide encompassing a DNA sequence crucial for the activation of the 

human Iγ3 promoter by CD40 (Fig. 7C). As expected, this effect was associated with down-

regulated expression of germline Iγ3-Cγ3 transcripts (Fig. 7D). In contrast, the expression of 

germline Iγ3-Cγ3 transcripts was not affected by control Ig or CD40-Ig. These results 

indicate that engagement of TACI, BCMA, and/or BAFF-R by autocrine BAFF and APRIL 

activates NF-κB and enhances the expression of germline IH-CH transcripts in EBV-infected 

LMP1-expressing B cells.

Discussion

We have shown that EBV-encoded LMP1 induces CD40-independent CSR from Cµ to 

multiple CγCα, and C∊ genes in B cells. This induction is associated with NF-κB-dependent 

activation of downstream CH gene promoters and up-regulation of germline IH-CH 

transcripts and AID transcripts. LMP1 up-regulates also BAFF and APRIL through an NF-

κB-dependent mechanism that requires at least one CTAR domain. By engaging TACI, 

BCMA, and BAFF-R on B cells, BAFF and APRIL activate NF-κB and further enhance 

CSR. These findings suggest that EBV could play an important role in the pathogenesis of 

disorders associated with aberrant IgG, IgA, and/or IgE production.

EBV is thought to initially infect naive IgD+ B cells in the mantle zone of lymphoid follicles 

located beneath the tonsillar epithelium (44). By expressing a full set of EBNA and LMP 

proteins, EBV induces IgD+ B cells to become blasts, which proliferate outside the GC (43). 

Subsequent down-regulation of most EBV proteins but EBNA1, LMP1, and LMP2A would 

enable infected IgD+ blasts to enter the GC and differentiate to class-switched IgD− memory 
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B cells (43, 45). After further down-regulation of LMP1 and, to a lesser extent, LMP2A, 

latently infected memory B cells would leave the tonsil and enter the circulation (43,46). It 

remains unclear whether IgD+ blasts undergo IgH class switching upon stimulation by viral 

proteins or as a result of CD40-dependent progression through the GC in response to a TD 

Ag. By showing that EBV induces CD40-independent CSR, our data suggest that at least 

some infected IgD+ B cells rapidly undergo TI class switching to IgG, IgA, or IgE outside 

the GC.

Viruses induce CD40-independent IgH class switching through mechanisms that remain 

largely unknown (60–62). Our data indicate that EBV transcriptionally activates 

downstream germline CH gene promoters, including Cγ3 and C∊, through LMP1. This 

CD40-like viral protein would transactivate Cγ3 and C∊ genes through an NF-κB-dependent 

mechanism. Consistent with this, overexpression of the NF-κB inhibitor IκBα or (not 

shown) disruption of both NF-κB-activating CTAR domains within the LMP1 cytoplasmic 

tail impairs the induction of germline IH-CH transcription by LMP1. In LMP1-expressing B 

cells, germline IH-CH transcription is associated with up-regulation of AID transcripts and 

induction of CSR from Cµ to multiple downstream Cγ , Cα, and C∊ genes. These findings 

provide a mechanistic explanation for previous studies showing that enforced LMP1 

expression restores TD IgG, IgA, and IgE production in CD40-deficient mice (63), which 

otherwise show severely impaired TD IgH class switching (64). Whereas CD40 transmits 

transient ligand-dependent signals (3), LMP1 continuously signals in a ligand-independent 

fashion (52). This implies that LMP1-induced CSR is subject to less regulatory constraints 

than CD40-induced CSR. By showing that EBV-infected LMP1-expressing IgD+ B cells 

constitutively express high levels of IH-CH transcripts and AID and continuously undergo 

CSR, our data extend recent findings indicating that artificial Sµ and Sγ3 DNA substrates 

undergo spontaneous recombination in lymphoblastoid B cells (65). By triggering 

unrestrained CSR, LMP1 may play a key role in the pathogenesis of dysregulated IgG, IgA, 

and IgE production occurring in certain EBV-infected individuals, including 

immunocompromised HIV-infected subjects and transplant recipients (39–41).

In normal B cells, switching from IgM to IgG, IgA, or IgE requires two signals, one 

delivered by CD40L and the other delivered by a cytokine (1, 2). Among cytokines, IL-4 

induces switching to IgG and IgE (66–69), IL-10 to IgG and IgA (13, 66, 70, 71), and TGF-

β to IgA (71–73). In EBV-infected LMP1-expressing B cells, CSR to Cγ and Cα occurs in 

the absence of exogenous cytokines. This does not imply that cytokines do not play any role 

in EBV-induced CSR, because EBV induces B cells to produce large amounts of autocrine 

IL-10 through LMP1 (74) as well as small nonpolyadenylated viral RNAs, also referred to 

as EBER1 and EBER2 (75). Consistent with this, neutralization of IL-10 by a specific 

blocking Ab partially inhibits switching to IgG and IgA in LMP1-expressing B cells (not 

shown). In addition to up-regulating endogenous IL-10, EBV produces an IL-10-like protein 

through a viral gene known as BCRF1 (76). Furthermore, EBV-infected B cells produce 

IL-13 (77), which, like IL-4, activates switching from IgM to IgG4 and IgE (78, 79). This 

might explain our finding that EBV-infected LMP1-expressing B cells actively switch to 

Cγ4 and C∊ in the absence of external IL-4.
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Unlike CD40, which mediates CSR in GC B cells (3, 5), LMP1 elicits IgG and IgA 

production outside the GC of secondary lymphoid follicles (63). This extrafollicular pattern 

is also associated with B cell responses to TI Ags with repetitive structure, including 

envelope glycoproteins from viruses and capsular polysaccharides from bacteria (10, 60, 

80). By showing that LMP1 up-regulates BAFF and APRIL, two mediators of TI Ab 

production (13–16), our data suggest that EBV exploits an otherwise physiological TI 

pathway to maximize CSR in infected IgD+ B cells. Engagement of TACI, BCMA, and 

BAFF-R by LMP1-induced BAFF and APRIL would enhance CSR from Cµ to a targeted 

downstream CH gene by activating the germline transcription of that gene through NF-κB. 

Consistent with this, neutralization of autocrine BAFF and APRIL by soluble TACI-Ig and 

BCMA-Ig decoy receptors attenuates NF-κB activation and down-regulates the expression 

of downstream germline IH-CH transcripts in LMP1-expressing B cells. In similar cells, 

TACI-Ig and BCMA-Ig decoy receptors down-regulate AID and impair CSR. Thus, 

autocrine BAFF and APRIL would cooperate with LMP1 to trigger NF-κB-dependent 

germline IH-CH transcription and CSR.

In addition to transactivating downstream CH genes, NF-κB would play an important role in 

the LMP1-mediated up-regulation of BAFF. Consistent with this, overexpression of the NF-

κB inhibitor IκBα interferes with the transcriptional activation of the BAFF gene promoter 

in LMP1-activated B cells. Furthermore, disruption of the two NF-κB-activating CTARs 

within the LMP1 cytoplasmic tail severely impairs the activation of the BAFF gene 

promoter by LMP1. Although playing a key role, NF-κB may not be the only transcription 

factor involved in LMP1-mediated up-regulation of BAFF. Consistent with this, the BAFF 

gene promoter includes several putative STAT-binding γ-IFN-activated sequences (not 

shown), which could be activated by STAT proteins induced by LMP1 (81). STAT proteins 

could be also induced by IL-10 (82), an LMP1-inducible cytokine that up-regulates BAFF in 

myeloid cells (74, 83). Thus, LMP1-induced NF-κB and STAT transcription factors might 

synergistically activate the BAFF gene promoter upon binding to cooperative κB and γ-IFN-

activated sequence sites.

LMP1 is not the only CSR-inducing viral protein, because LMP2A triggers CSR from Cµ to 

Cγ3 and up-regulates BAFF and APRIL, although to a lesser extent than LMP1. Unlike 

LMP1, LMP2A activates B cells by mimicking signaling through the B cell Ag receptor 

(BCR) (36). Consistent with this, the cytoplasmic tail of LMP2A encompasses 

immunoreceptor tyrosine-based activation motifs similar to those found in the Igα and Igβ 

signal-transducing subunits of the BCR complex (36). In addition to modulating B cell 

proliferation and survival (84), signals emanating from BCR modulate IgH class switching. 

For instance, BCR engagement by certain TI Ags induces CD40-independent switching to 

IgG3 both in vivo and in vitro (80, 85). In addition, BCR engagement cooperates with BAFF 

and APRIL to induce CD40-independent IgG production (13,19,25). Thus, it is conceivable 

that LMP2A triggers TI CSR to Cγ3 through a BCR-like pathway. This pathway would 

cooperate with LMP1 as well as endogenous BAFF and APRIL to optimize IgH class 

switching in EBV-infected B cells.

Our findings raise the possibility that IgH class switching confers a specific functional 

advantage to EBV. When engaged by Ag, surface IgM and IgD (i.e., BCR) deliver 
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proliferation and survival signals through the Igα-Igβ heterodimer (84). These signals are 

negatively regulated by CD22, an inhibitory coreceptor that contains typical 

immunoreceptor tyrosine-based inhibitory motifs (86). Recent studies indicate that B cells 

become resistant to CD22-mediated inhibitory signals upon switching from IgM and IgD to 

IgG (87). In this fashion, IgG+ (IgD−) memory B cells become more sensitive to BCR-

driven proliferation and survival signals upon exposure to Ag. It is tempting to speculate that 

EBV triggers TI CSR in extrafollicular IgD+ B cells to rapidly generate a pool of IgD− B 

cells expressing protective BCRs, such as IgG. Due to their lower sensitivity to CD22-

mediated inhibitory signals, these de novo class-switched B cells would facilitate the initial 

expansion of the viral episome.

In addition to inducing TI CSR, LMP1 and LMP2A deliver signals that are essential for the 

survival of infected B cells (36). Our findings imply that these signals might be greatly 

amplified by autocrine BAFF, a powerful inducer of B cell survival (24). BAFF exerts most 

of its prosurvival activity through BAFF-R (21, 23), which is expressed in large amounts by 

both EBV-infected and noninfected B cells. By engaging BAFF-R on bystander self-reactive 

B cells, BAFF expressed on and released by latently infected tonsillar B cells might 

facilitate the onset of autoimmune disorders, including SLE (33, 34, 37). Consistent with 

this, SLE patients display increased levels of circulating soluble BAFF (24), and mice 

overexpressing BAFF develop an SLE-like syndrome with kidney deposition of IgG and 

IgA autoantibodies (22). Finally, BAFF and APRIL might also be implicated in the 

pathogenesis of autoimmune and IgE-mediated atopic disorders arising in certain HIV-

infected subjects and transplant recipients with EBV-associated B cell lymphoproliferative 

disorders (35, 40, 41, 88). In these immune-compromised individuals, neutralization of 

BAFF and APRIL by soluble decoy receptors or blocking Abs might attenuate production of 

self-reactive IgG and IgA, dysregulated switching to IgE, and aberrant B cell accumulation.
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FIGURE 1. 
B cells undergo CSR from Cµ to Cγ,Cα, and C∊ upon infection by EBV. A, Total 

extrachromosomal Sγ-Sµ and Sα-Sµ SCs and genomic β-actin DNA in normal IgD+ B cells, 

IARC549 and IARC100 LCLs, and EBV+ BL16 cells. B, Germline Iγ1-Cγ1, Iγ3-Cγ3, and 

Iα1-Cα1 transcripts, Iγ1/2-Cµ, Iγ3-Cµ, and Iα1/2-Cµ CTs, AID transcripts, and β-actin 

transcripts in normal IgD+ B cells, IARC549 and IARC100 LCLs, and EBV+ BL16 cells. C, 

AID transcripts, β-actin transcripts, genomic β-actin DNA, and extrachromosomal Sγ1/2-Sµ, 

Sγ3-Sµ, Sγ4-Sµ, Sα1/2-Sµ, and S∊-Sµ SCs in EBV-infected IgD+ B cells from three healthy 

subjects. Data depicted in A-C represent one of three similar experiments. IgD+ B cells were 

from three healthy donors.
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FIGURE 2. 
EBV-encoded LMP1 and LMP2A proteins induce CSR in B cells. Iγ1/2-Cµ and Iγ3-Cµ CTs, 

and VDJ-Cγ1, VDJ-Cγ3, and VDJ-Cµ transcripts in Ramos B cell subclones stably 

transfected with pRH132 (control 1), pRH132-pSG5 (control 2), pRH132-LMP1, pRH132-

LMP2A, pRH132-EBNA1, pRH132-EBNA2, or pRH132-pSG5-EBNA-LP expression 

vectors. Data represent one of three similar experiments.
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FIGURE 3. 
LMP1 induces NF-κB-dependent germline IH-CH transcription and CSR in B cells. A, Bjab-

tet-LMP1 B cells transfected with Iγ3-LUC, I∊-LUC, or κB(2X)-LUC were incubated 

without (tet off) or with (tet on) doxycycline. Luciferase activity was measured after 2 days. 

B, Germline Iγ1-Cγ1, Iγ3-Cγ3, Iα1-Cα1, and I∊-C∊ transcripts in Bjab-tet-LMP1 B cells 

incubated without (tet off) or with (tet on) doxycycline for 2 days. C, Iγ1/2-Cµ, Iγ3-Cµ, 

Iα1/2-Cµ, and I∊-Cµ CTs, AID transcripts, and β-actin transcripts in Bjab-tet-LMP1 B cells 

incubated without (tet off) or with (tet on) doxycycline for 4 days. D, Surface IgM, IgG, and 
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IgA on Bjab-tet-LMP1 B cells incubated without (tet off; shaded profiles) or with (tet on; 

solid profiles) doxycycline for 4 days. Numbers indicate percentage of positive cells. Data 

depicted in A–D represent one of three similar experiments, and bars indicate SD.
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FIGURE 4. 
LMP1 up-regulates BAFF and APRIL. A, BAFF, APRIL, LMP1, and actin transcripts and 

proteins in EBV− Ramos B cell subclones stably transfected with pRH132 (control 1), 

pRH132-pSG5 (control 2), pRH132-LMP1, pRH132-LMP2A, pRH132-EBNA1, pRH132-

EBNA2, or pRH132-pSG5-EBNA-LP expression vectors. B, BAFF, APRIL, LMP1, and 

actin transcripts and proteins in Bjab-tet-LMP1 B cells incubated without (d 0) or with (tet 

on) doxycycline. C, CD3, CD23, CD19, mBAFF, and BAFF-binding activity on Bjab-tet-

LMP1 B cells incubated without (tet off) or with (tet on) doxycycline for 2 days. Numbers 

indicate percentage of positive cells. Data depicted in A—C represent one of three similar 

experiments.
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FIGURE 5. 
LMP1 elicits NF-κB-dependent up-regulation of BAFF and APRIL in B cells. A, DNA 

sequence of the BAFF promoter (GenBank accession no. AY129225). +232 indicates the 3′ 

end of the promoter, a turned arrow indicates the major initiation site (+1), and boxes depict 

putative κB motifs. B, Left, Bjab-tet-LMP1 B cells transfected with BAFF-LUC ( ) or 

κB(2X)-LUC (■) in the presence or absence of IκBα-pcDNA3.1 were incubated without (tet 

off) or with (tet on) doxycycline. Right, wt Bjab B cells were cotransfected with BAFF-LUC 

( ) or κB(2)-LUC (■) and wt LMP1, 187-STOP LMP1, 231-STOP LMP1, ΔEL 187–351 
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LMP1, or 20, 10, and 2 µg of IκBα-pcDNA3.1. The luciferase activity was measured after 2 

days. Data represent one of three similar experiments, and bars indicate SD.
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FIGURE 6. 
Normal B cells express BAFF and APRIL upon EBV infection. A, BAFF, APRIL, TACI, 

BCMA, BAFF-R, LMP1, and β-actin transcripts in noninfected or EBV-infected IgD+ B 

cells from the PB of a healthy subject, IARC549 lymphoblastoid B cells, neoplastic EBV+ 

BL16 cells, and neoplastic HL60 AML cells. B, BAFF, APRIL, TACI, BCMA, LMP1, and 

actin proteins in noninfected or EBV-infected IgD+ B cells from the PB of a healthy subject, 

IARC549 lymphoblastoid B cells, neoplastic EBV+ BL16 cells, and neoplastic HL60 AML 

cells. C, mBAFF, CD19, CD23, and CD14 in purified noninfected and EBV-infected IgD+ 

B cells from the PB of a healthy subject. Data depicted in A-C represent one of three similar 

experiments. IgD+ B cells were from three independent healthy donors.

He et al. Page 25

J Immunol. Author manuscript; available in PMC 2015 October 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 7. 
Neutralization of BAFF and APRIL attenuates CSR in EBV+LMP1+ B cells. A, Total Sγ-Sµ 

and Sα-Sµ SCs and genomic β-actin DNA in IARC549 lymphoblastoid B cells incubated for 

3 days with 30 µg/ml control MOPC-21 Ig, CD40-Ig, TACI-Ig, or BCMA-Ig. B, Iγ1/2-Cµ, 

Iγ3-Cµ, and Iα1/2-Cµ CTs, AID transcripts, and β-actin transcripts in IARC549 

lymphoblastoid B cells cultured as above. C, Binding of nuclear NF-κB to a radiolabeled 

DNA sequence encompassing the CD40-responsive element from the Iγ3 gene promoter in 

IARC549 lymphoblastoid B cells incubated for 2 days with control Ig, CD40-Ig, or BCMA-

Ig. The specificity of shifted bands and their identity to NF-κB were established by 

preincubating nuclear proteins with cold probe. D, Germline Iγ3-Cγ3 transcripts and β-actin 

transcripts in IARC549 lymphoblastoid B cells cultured as above. Data depicted in A—D 

represent one of three similar experiments.
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