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Summary 
Interferon y (IFN-'r) is the most potent inducer of class II major histocompatibility complex 
(MHC) genes. This induction is uniquely mediated by three DNA elements in the promoter 
region of class II MHC genes. One of these DNA elements, Y, contains an inverted CCAAT 
box. Previously, we have screened a Xgt11 library for Y-binding proteins and identified the YB-1 
gene. Here we provide evidence that YB-1 can repress the IFN-3~ induction of class II MHC 
promoter as well as the Invariant chain (Ii) gene which also contains a Y element in its promoter. 
This was demonstrated by cotransfecting a YB-1 expression vector with promoter-reporter gene 
constructs. As an alternate approach, an effcient transient transfection system was developed 
which resulted in a )70% transfection efficiency. Transfection of YB-1 by this procedure resulted 
in the near abrogation of IFN-7 induced HLA-DR antigen and mRNA expression. These findings 
show the functional suppression of class II MHC gene induction by the YB-1 protein. 

C lass II MHC gene products play a variety of important 
roles in immune regulation (reviewed in 1-3). These 

molecules control the acquisition of the mature T cell reper- 
toire and serve as restriction elements for CD4 § T cells. 
These functions place the regulation of class II MHC an- 
tigens as an important topic in immune regulation. The ex- 
pression of class II MHC genes is primarily regulated at the 
level of transcription. In the past few years, we and others 
have delineated an array of cis-acting elements important for 
optimal class II gene regulation and have identified proteins 
that bind to these elements. The cis-acting regulatory ele- 
ments of the DRA gene are probably the best analyzed, and 
include three elements (S, X, and Y) that are also found in 
other class II MHC promoters (4-7). The X and Y elements 
constitute the conserved class II box present in the upstream 
region of all class II MHC promoters studied to date (8, 9). 
These two elements are separated by a 19-21-bp spacing that 
is conserved in length but not in sequence. The Y element 
contains an inverted CCAAT element, and the X element 
has been functionally divided into two subregions, X1 and 
X2, based on the separate interactions of these subregions 
with the RF-X and hXBP-1 recombinant DNA-binding pro- 
teins, respectively (10, 11). The S sequence (also known as 
H, or W/Z  which is a larger DNA sequence) is a heptamer 
sequence located upstream of the class II box (12-17). These 

three elements are important for basal gene transcription, and 
thus far, they are inseparable from elements required for the 
IFN- T induction of class II MHC genes (12-19). 

The YB-1 DNA-binding protein was initially identified 
by using radiolabeled Y element sequence to screen a ~,gt11 
expression cDNA library (20). The recombinant YB-1 pro- 
tein exhibits specificity for the Y element because mutations 
of an inverted CCAAT sequence in the Y element can abro- 
gate its ability to interact with YB-1. An intriguing feature 
is the inverse relationship between levels of YB-1 and DRA 
in IFN-3,-activated cell lines. Consequently, we suggested 
a model wherein YB-1 negatively regulates class II MHC 
gene expression (20). The findings reported here provide strong 
evidence to support this model. 

Materials and Methods 
Plasmids. pSFFV-YB-1 and the control pSFFV-neo expression 

plasmids (19) are depicted in Fig. 1 A. DgA-chloramphenicol acetyl 
transferase (CAT) 1 constructs and the control plasmid (CAT-SK+) 
that lacks DRA sequence have been described in detail previously 

1 Abbreviations used in this paper: CAT, chloramphenicol acetyl transferase; 
Ii, invafiant chain gene; fl-gal, fl-galactosidase; SFFV, spleen focus forming 
virus. 
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(19). 5'A-152 contains 152 bp of DRA promoter linked to the CAT 
reporter gene. DQB2500CAT (12) contains 2400 bp of the DQB 
promoter linked to the CAT gene and is a kind gift from Dr. Jeremy 
Boss (Emory University, Atlanta, GA). 790-InCAT contains 790 
bp of the invariant chain (Ii) promoter linked to the CAT gene 
(21). HTK-CAT (kindly provided by Dr. Judy Fridovich-Keil, Emory 
University) and 77HSP70CAT (provided by Dr. Albert Baldwin, 
University of North Carolina, Chapel Hill, NC) contain the 
promoters of human thymidine kinase and the heat shock protein 
70, respectively, linked to the CAT gene. 

Transfection of U373-MG for CAT Assays. The transfection of 
constructs containing the CAT reporter gene into U373-MG cells 
was performed as described previously using a gene-pulser elec- 
troporation device (Bio-Rad Laboratories, Richmond, CA). CAT 
analysis has been described previously (19). 

High Effciency Transfection ofU937. High efficiency electropo- 
ration of U937 was performed as follows. U937 cells were grown 
in tLPMI 1640 (CELL GRO) in 10% FCS to 4 x 10 s cells and 
transferred to fresh media 18 h before transfection. 107 cells in 400 
#1RPMI 1640 were mixed with 100/~1 containing 125/zg of salmon 
sperm DNA and 20 #g of plasmids, 10 mM Tris, 0.1 mM EDTA, 
isotonic HeBS (20 mM Hepes, 137 mM NaC1, 5 mM KC1, 0.7 
mM Na2HPO4, and 6 mM dextrose), and transfected in 2-mM 
gap cuvettes at 150 V and 600/zFd with an electroporator (Model 
300; BTX Inc., San Diego, CA). 5 min after transfection, cells 
were spun down and resuspended in 10 ml of RPMI 1640, 10% 
FCS, and placed in an incubator. Cells were treated with 500 U/ml 
recombinant human IFN-"/(Sigma Chemical Co., St. Louis, MO) 
1-2 h post-transfection. Cells were harvested 15-18 h after treat- 
ment and analyzed by Northern hybridization and FACS | (Becton 
Dickinson & Co., Mountain View, CA). 

/3.Galactosiclase (~-gal) Assay. Cells transfected with pSV-/3Gal 
(Pharmacia LKB, Piscataway, NJ) were assayed for/3-gal activity 
as follows (22). 24 h post-transfection, cells were incubated in 300 
#M chloroquine for 30 min. 1.5 ml of cells were spun down and 
resuspended in 50/zl RPMI 1640, 10% FCS, and 600 #M chloro- 
quine. Cells were warmed to 37~ and an equal volume of 2 mM 
fluorescein di-3-galactopyranoside (Sigma Chemical Co.) in 1% 
dimethyl sulfoxide, 1% ethanol was added and incubated at 37~ 
for a minute, followed by the addition of I ml ice cold PBS. Cells 
were incubated on ice in the dark for 10 min and analyzed by FACS | 

Northern Blot and FACS | Assays. Cells transfected with spleen 
focus forming virus p(SFFV)-neo and pSFFV-YB-1 were assayed 
for DRB mRNA expression by Northern blot analysis and 
HLA-DR surface antigen expression by staining with anti-class II 
DR monoclonat antibody, L243, and quantitated by FACS | 

Results 
YB-I Suppresses Class II MHC Promoter Activity. The effect 

of YB-1 protein on IFN-q,-activated DRA promoter func- 
tion was assayed by introducing an expression vector con- 
taining the YB-1 cDNA into an IFN-3,-responsive, human 
glioblastoma line U373-MG. This line was chosen because 
our previous analysis and delineation of the class II MHC 
promoter were performed with this line. In addition, IFN- 
y-induced class II MHC gene expression in this line is high 
(23), better permitting the detection of any suppressive effects 
of YB-1. 

The YB-1 cDNA was subcloned into an expression vector 
driven by the SFFV long terminal repeat (24). The resulting 
plasmid is shown in Fig. 1 A. SFFV-YB-1 was cotransfected 

Figure 1. YB-1 protein suppresses IFN-3' induction of a DRA-CAT 
reporter construct. (A) The construction of pSFFV-YB-1 was achieved by 
cloning YB-1 in an expression vector pSFFV-neo (9). (B) A depiction of 
the reporter construct 5'A-152 DR.A-CAT (20). (C) The tram-activation 
of 5'A-152 by pSFFV-YB-I: YB-1 expression vector (designated Y) or con- 
trol vector pSFFV-neo (designated C) was cotransfected with 5'A-152, 
Y-MUT1 (a mutant of 5'-152 with a mutated Y box, [19]), or CAT-SK+ 
(the parent plasmid without the DRA sequence, [19]). Transfection was 
performed as described previously in the presence (+) or absence (-) of 
400 U/ml IFN-'y (19). 

with a DRA-CAT construct, 5'A-152, (Fig. 1 B) (20). As 
a negative control, 5'A-152 was also cotransfected with pSFFV- 
neo which lacks the YB-1 sequence. 5'A-152 was inducible 
by IFN-'y as shown previously (Fig. 1 C, lanes 1 and 2). The 
effect of IFN-3' is mediated through the DRA promoter se- 
quence because removal or mutation of these sequences in 
the control plasmid CAT-SK + abrogated IFN-3, induction 
(Fig. 1 C, lanes 5, 6, 9, and I0). Cotransfection of the con- 
trol vector, pSFFV-neo, had little effect on either the basal 
expression or IFN-3,-induced expression of 5'A-152 DRA- 
CAT. In striking contrast, the cotransfection of pSFFV-YB-1 
with 5'A-152 resulted in a substantial decrease of IFN-3,-in- 
duced CAT expression, although there was only a small effect 
on basal expression (Fig. 1 C, lanes 3 and 4). In the experi- 
ment shown, pSFFV-YB-1 reduced IFN-q,-induced CAT 
reporter gene expression from 21.0 to 6.8 x. The average sup- 
pressive effect from four separate experiments ranges from 
56 to 85% (Table 1). These experiments show that YB-1 can 
suppress the IFN-q,-induced activation of the DRA promoter. 
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Table 1. YB-1 Protein Suppresses the IFN-y Induction of DRA, DQB and Ii Promoters 

Experiment Reporter trans-acting Percent acetylation Fold induction 
no. Promoter construct construct _+ interferon by interferont 

Percent inhibition 
by YB-1 

1 DRA 5'A-152 pSFFV-YB-1 5.88/0.33 
pSFFV-neo 36.30/0.55 

2 pSFFV-YB-1 2.03/0.30 
pSFFV-neo 7.03/0.35 

3 pSFFV-YB-1 3.74/0.25 
pSFFV-neo 13.00/0.38 

4 pSFFV-YB-1 1.75/0.25 
pSFFV-neo 25.00/0.52 

1 DQB DQB2500CAT pSFFV-YB-1 4.47/0.80 
pSFFV-neo 19.00/1.00 

2 pSFFV-YB-1 17.00/1.00 
pSFFV-neo 41.00/1.00 

1 Ii 790-In CAT pSFFV-YB-1  39.00/2.00 
pSFFV-neo 62.00/2.00 

2 pSFFV-YB-1 12.00/2.00 
pSFFV-neo 29.00/2.00 

1 HSP70 - 77HSP70CAT pSFFV-YB-1 1.07/1.14 
pSFFV-neo 1.11/1.00 

2 pSFFV-YB-1 1.07/0.62 
pSFFV-neo 0.98/1.00 

1 HTK HTK-CAT pSFFV-YB-1 0.84/0.87 
pSFFV-neo 0.61/1.00 

2 pSFFV-YB-1 1.82/1.44 
pSFFV-neo 0.85/1.00 

16.9X 
66.0X 

6.8X 
20.1X 

15.0X 
34.2X 

7.0X 
48.1X 

5.6X 
19.0X 

17.0X 
41.0X 

19.5X 
31.0X 

6.0X 
14.5X 

0.9X 
1.1X 

1.7X 
1.0X 

1.0X 
0.6X 

1.3X 
0.9X 

74 

66 

56 

85 

70 

59 

37 

59 

18 

NI* 

NI 

NI 

The experiments were performed as described in the legend to Fig. 1. 
" No inhibition. 
Percent CAT-mediated acetylation in the presence of IFN-y/Percent acetylation with IFN-% 

To determine if YB-1 could suppress other class II MHC 
promoters, the effect of YB-1 on IFN-3,-induced DQB pro- 
moter activity was similarly tested by cotransfecting pSFFV- 
YB-1 with DQB2500CAT (12). DQB2500CAT promoter 
contains the S, X, and Y elements that are necessary for IFN-y 
induction. As shown in Table 1, pSFFV-YB-1 suppressed the 
IFN-'y induction of DQB2500CAT by an average of 65% 
in two experiments, but had little effect on the basal expres- 
sion of this plasmid. Furthermore, the effect of YB-1 on the 
Ii chain promoter was also tested. The Ii chain plays an im- 
portant role in the presentation of specific antigens due to 
its ability to target class II MHC antigens to appropriate cel- 
lular compartments (25-27). The expression of Ii is coregu- 
lated with the class II MHC genes (28, 29). Interestingly, 
the Ii promoter contains S, X, and Y homologues that mediate 
both basal and IFN-~/inducibility (21, 30-32). pSFFV-YB-1 
also suppressed the IFN-3, inducibility of a construct (790- 
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InCAT) that contains the Ii chain promoter linked to a CAT 
reporter gene. 

To ascertain if the suppressive effects of YB-1 are specific 
to these promoters, and not due to a general downregulation 
of transcription, the effects of pSFFV-YB-1 on two other 
unrelated promoters were tested (Table 1). This was tested 
as described above by cotransfecting pSFFV-YB-1 with a 
promoter-driven CAT construct. As shown in Table 1, nei- 
ther pSFFV-neo nor pSFFV-YB-1 effected CAT expression 
of HTK-CAT or the -77HSP70CAT. This was true regard- 
less of the presence of IFN-% 

Development of a High Efficiency Transfection System. To ad- 
dress the possibility that the usage of a reporter gene system 
may not reflect the state of the endogenous gene, the sup- 
pressive effect of YB-1 on endogenous dass II MHC gene 
expression was assessed. These experiments were made pos- 
sible by the development of a high efficiency transfection 
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Figure 2. Transfection of U937 results in high-ei~ciency ~-gal gene ex- 
pression. U937 cells were transfected with pSV ~-gal as described in Materials 
and Methods. The expression of ~-gal was assayed by the conversion of 
fluorescein di-~-gahctopyranoside to a fluorescent enzymatic product which 
was measured by FACS | (Dotted line) mock transfected cells. (Solid line) 
cells transfected with 20/~g pSV B-gal. 

system. The efficiency of this system was revealed by the per- 
centage of cells that express the/3-gal enzyme after transfec- 
tion with a pSV~-Gal construct. /3-gal positive cells were 
scored by the conversion of a nonfluorescent substrate to a 
fluorescent enzyme product that was quantitated by FACS | 
As shown in Fig. 2, transfection of U937 with 20/~g ofpSV 
/3-gal resulted in a complete shift of the curve, and >70% 
of the cells expressed ~-gal at a level significantly above back- 
ground. 

YB-1 Suppresses IFN-T-induced MHC Class II mRNA and 
Protein Expression. Using this protocol, the effect of YB-1 
on DRB was assessed. In these experiments, pSFFV-YB-1 
was transiently transfected into U937 (20), an IFN-q,-respon- 
sive human macrophage cell line. These cells were incubated 
in the absence of IFN-'y, and the RNA was isolated and as- 
sayed for DRB transcript expression by Northern hybridiza- 
tion analysis. In addition, surface HLA-DR antigen expres- 
sion on cells from the same experiment was assayed by FACS | 
As shown in Fig. 3 A, Northern hybridization shows that 
IFN-3, enhanced DRB-specific mRNA in U937 as expected. 
In contrast, the transfection ofpSFFV-YB-1 into U937 greatly 
diminished the level of DRB mRNA that was induced by 
IFN-T, although the negative control plasmid pSFFV-neo 
did not produce such an effect. The difference in DRB mRNA 
levels is not due to variations in the quantity of RNA in these 
samples, because the hybridization signals produced by an 
actin cDNA probe are similar among these samples (Fig. 3 
B). Parallel FACS | analysis revealed that the transfection of 
pSFFV-YB-1 into U937 also greatly reduced IFN-3,-induced 
HLA-DR surface antigen expression. Transfection with the 
negative control pSFFV-neo had little effect (Fig. 4). Like- 
wise, YB-1 did not affect the staining pattern with a nega- 
tive control antibody (ASA11) significantly. These results have 
been reproduced 19 times out of 23. Taken together, these 
results show that YB-1 can suppress IFN-y-induced endog- 
enous class II gene expression. 

Figure 3. YB-1 protein suppresses the levels of IFN-'y induced DRB 
transcript. (A) U937 cells were mock-transfected (lanes 1 and 2), trans: 
fected with pSFFV-YB-1 (lanes 3 and 4) or with pSFFV-neo (lanes 5 and 
6). Lane 7 is RNA from Swei, a B lymphoblastoid cell line. 2 h after trans- 
fection, some of the samples were treated with 500 U of IFN-y (+ vIFN). 
All the samples were harvested 24 h later, RNA isolated and analyzed 
by Northern hybridization with a DRB probe. (B) Identical samples from 
(A) were hybridized with a 3,-actin probe (kindly supplied by Dr. Peter 
Gunning, Stanford University, Stanford, CA). 

Discussion 

The ability of YB-1 to suppress IFN-q,-induced class II 
MHC and Ii chain gene expression has broad implications 
in immune regulation. IFN-T represents a potentiator of the 
immune response via its ability to upregulate a number of 
genes important in immune reactivity, most notably the class 
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Figure 4. YB-1 suppresses IFN-~'-induced DR surface antigen expres- 
sion. Mock-transfected (designated U937), pSFFV-YB-l-transfected (YB- 
1), and pSFFV-neo-transfected (SFFV) cells from the experiment described 
in Fig. 3 were analyzed for surface DR antigen expression by im- 
munocytofluorometry, L243 is a monomorphic anti-DR monoclonal an- 
tibody, ASAll is an isotype-matched negative control monoclonal anti- 
body. FL1 represents fluorescence intensity expressed as an arbitrary unit. 

I and class II MHC genes (33). IFN-"(-induced li gene tran- 
scription is immunologically important in light of the role 
Ii plays in targeting class II antigens to the appropriate en- 
dosomaI compartment during antigen processing (25-27). 

The demonstration that YB-1 suppresses class II MHC 
gene activation by IFN-'y treatment is reminiscent of the 
findings with IRF-2, although several differences are also evi- 
dent (34). IRF-2 is a nuclear protein with specificity for the 
Interferon Response Sequence (IRS also known as ICS for 
Interferon Consensus Sequence; reference 35, 36) present in 
the promoter region of class I MHC, type I IFN-ot//3 genes, 
and a number of IFN-a/~q,-inducible genes. The transfec- 
tion of cDNA-directed IRF-2 can reverse the effect of a posi- 
tive transcriptional regulator, IRF-1 (34). Both IRF-1 and 
IRF-2 bind to an identical DNA sequence, thus it has been 
suggested that this sequence can serve as either a positive or 
a negative IFN-responsive cis-acting element depending on 
which nuclear factor is interacting with it. Similarly, YB-1 
was identified by its ability to recognize a known positive 
regulatory DNA sequence, the inverted CCAAT box in the 
Y element of the DRA promoter (20). Homologues of YB-1 
have been identified in rat, mouse, cow, and frog by using 
a CCAAT box-containing DNA probe (37-40). The con- 

tention that YB-1 binds to the CCAAT element is further 
supported by footprinting and gel-shift analyses (39, 41). Func- 
tional analysis of a Y element binding protein NF-Y/YEBP 
by in vitro transcription has shown that this protein posi- 
tively regulates DRA transcription via binding to the CCAAT 
element of the promoter (42, 43). Thus, it is possible that 
NF-Y/YEBP (or potentially other Y-box binding proteins) 
and YB-1 represent a pair of positive/negative regulators of 
IFN-y-regulated class II MHC gene expression. 

Despite the similarities discussed above, the regulation of 
class II MHC by IFN-'y is distinct from either IFN-cff/~ regu- 
lated gene expression or IFN-'y regulated class I MHC gene 
expression. For example, IFN-3,-regulated class II MHC gene 
expression requires three separate elements (S, X, and Y) 
(12-19) with stereospecific and distance constraints (44), 
whereas IFN-od/~-regulated gene expression as well as IFN- 
y-regulated class I MHC gene expression are primarily medi- 
ated by a singular IRS. In addition, proteins that interact 
with the S, X, and Y elements do not cross-react with pro- 
teins that bind to the IRS. Regulatory mutant cell lines that 
are defective in IFN-3~ responsiveness also confirm these 
previous findings (45, 46). Finally, preliminary findings in 
our laboratory show that YB-1 does not suppress the IFN-3' 
induction of a class I MHC gene, supporting the contention 
that the induction of class I and class II MHC genes by IFN-3' 
occurs by distinct pathways. 

In addition to the CCAAT element, YB-1 also binds to 
several unrelated sequences as well as single-strand DNA and 
mRNA (47-53). There are many precedents for the ability 
of a DNA-binding protein to recognize unrelated sequences 
(54-56). A possible scenario is that the regulatory effects of 
YB-1 may vary with the target sequence and YB-1 could 
serve as either a positive or a negative regulator of gene ex- 
pression depending on the target sequence (57). In addition, 
the function of YB-1 may not be limited to transcription, 
as suggested by others (49, 50) and as suggested by the study 
of other DNA-binding proteins. 

In conclusion, the findings reported here demonstrate for 
the first time that the YB-1 DNA-binding protein can sup- 
press IFN-3'-inducible class II MHC gene expression. The 
suppressive effect of YB-1 on class II MHC genes is broad 
in that different class II MHC promoters as well as the coor- 
dinately regulated Ii chain promoter are all affected. Con- 
sidering that IFN-y represents a potent immune modulator 
via its ability to upregulate class II MHC antigens, the ability 
of YB-1 to effectively reverse this effect places YB-1 as an 
important component in the circuit of immune regulation. 
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