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S u m m a r y  

Antinudear antibodies (ANAs) reactive with a limited spectrum of nuclear antigens are characteristic 
of systemic lupus erythematosus (SLE) and other collagen vascular diseases, and are also associated 
with certain viral infections. The factors that initiate ANA production and determine ANA 
specificity are not well understood. In this study, high titer ANAs specific for the p53 tumor 
suppressor protein were induced in mice immunized with purified complexes of murine p53 
and the Simian virus 40 large T antigen (SVT), but not in mice immunized with either protein 
separately. The autoantibodies to p53 in these mice were primarily of the IgG1 isotype, were 
not cross-reactive with SVT, and were produced at titers up to 1:25,000, without the appearance 
of other autoantibodies. The high levels of autoantibodies to p53 in mice immunized with p53/SVT 
complexes were transient, but low levels of the autoantibodies persisted. The latter may have 
been maintained by self antigen, since the anti-p53, but not the SVT, response in these mice 
could be boosted by immunizing with murine p53. Thus, once autoimmunity to p53 was established 
by immunizing with p53/SVT complexes, it could be maintained without a requirement for 
SVT. These data may be explained in at least two ways. First, altered antigen processing resulting 
from the formation of p53/SVT complexes might activate autoreactive T helper cells specific 
for cryptic epitopes of routine p53, driving anti-p53 autoantibody production. Alternatively, 
SVT-responsive T cells may provide intermolecular-intrastructural help to B cells specific for 
murine p53. In a second stage, these activated B cells might themselves process self p53, generating 
p53-responsive autoreactive T cells. The induction of autoantibodies during the course of an 
immune response directed against this naturally occurring complex of self and nonself antigens 
may be relevant to the generation of specific autoantibodies in viral infections, and may also 
have implications for understanding the pathogenesis of ANAs in SLE. In particular, our results 
imply that autoimmunity can be initiated by a "hit and run" mechanism in which the binding 
of a viral antigen to a self protein triggers an immune response that subsequently can be perpetuated 
by self antigen. 

1 / '~er tain antinudear antibodies (ANAs) are specific mark- 
~ . ~  ers for autoimmune disease subsets such as SLE, sdero- 
derma, or polymyositis (1). Many of the antigenic targets 
of ANAs are multiprotein complexes or complexes of pro- 
teins with nucleic adds, and it has been suggested that the 
particulate nature of these antigens might be important for 
their antigenicity (2). In some respects, the immune responses 
to particulate autoantigens in SLE may be analogous to im- 

1 Abbreviations used in this paper: AcMNPV, Autographa californica nuclear 
polyhedrosis virus; ANA, antinuclear anuqx~dy; MMB, mixed micelle bu f f ;  
Sf-9, Spodoptera frugiperda ovary cell line; SVT, SV40 large T antigen. 

mune responses to viral particles. Viral particles are taken up 
and processed by APCs as a unit, and T cells specific for a 
single polypeptide component of a viral particle may provide 
help to B cell dories specific for several components of the 
same particle (3-9). This has been referred to as "inter- 
molecular-intrastructural help" (10). In the special case of 
a complex consisting of both foreign and self antigens, T 
cells specific for nonself components might drive the produc- 
tion of autoantibodies to the self components (11). 

Another way in which a complex of self and nonsdf an- 
tigens might induce autoimmunity is by altering the pro- 
cessing of a self antigen, with activation ofT ceils responsive 
to minor "cryptic" epitopes to which tolerance is incomplete 
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(12-14). In view of recent evidence that antigen processing 
can be influenced greatly by protein-protein interactions, such 
as dimerization (15, 16), it is conceivable that a nonself an- 
tigen could alter the processing of a bound autoantigen by 
APCs, thereby stimulating T cells specific for cryptic sdfepi- 
topes. In the present studies, we have examined the hypoth- 
esis that comple~,es of self and nonself antigens might trigger 
autoimmunity. We report that autoimmunity to the p53 
tumor suppressor protein can be induced in BALB/c mice 
immunized with complexes of p53 and the SV40 large T an- 
tigen (SVT). Although p53/SVT complexes were essential 
for inducing autoimmunity, p53 alone was sufficient to main- 
rain it, suggesting that the binding of SVT to p53 alters an- 
tigen processing and activates T cells responsive to cryptic 
epitopes of p53 which drive autoantibody production. 

Materiah and Methods 
Cell Lines and Viruses. The Sf-9 ($podoptera frugiperda ovary) 

cell line was obtained from the American Type Culture Collection 
(ATCC, Rockville, MD), and maintained in Grace's insect tissue 
culture medium supplemented with 3.3 g/l TC yeastolate, 3.3 g/liter 
lactalbumin hydrolyzate (from the UNC Linebergor Comprehen- 
five Cancer Center T~ssue Cuhure Facih'ty), 10% fetal bovine serum, 
and penicillin/streptomycin (TNM-FH medium). Wild-type Au- 
tographa californica nuclear polyhedrosis virus (AcMNFV) was ob- 
tained from Dr. Elmer M. Price (University of North Carolina at 
Chapel Hill). The recombinant baculoviruses vEV55SVT (directing 
the expression of full-length SVT) and vEV55p53 (directing the 
expression of full-length wild-type murine p53) were provided by 
Dr. L. K. MiLler (University of Georgia, Athens, CA) (17). 

Monodonal Antibodie~ Hybridoma cells producing mAbs specific 
for SVT (PAb 101, IgG2a of BALB/c origin) (18) and p53 (PAb 
122, IgG2b of BALB/c origin) (19) were obtained from the ATCC. 
The mAbs were partially purified from culture supernatant by am- 
monium sulfate precipitation. For some experiments, mAbs were 
purified from hybridoma culture supernatants onto protein A--Sepha- 
rose beads (Pharmacia, Piscataway, NJ). Isotype control mAbs 162 
(IgG2a anti-Ku) and N3H10 (IgG2b anti-Ku) have been described 
previously (20). 

Cell Labeling. Sf-9 cells were infected with baculoviruses at a 
multiplicity of infection of 20 as described (21), incubated for 24 h 
at 27~ and metabolically labded for an additional 18 h at 27~ 
in methionine-deficient TNM-FH medium containing 5% dialyzed 
fetal bovine serum, 3% regular TNM-FH medium (containing me- 
thionine) and 25/zCi/ml [3SS]methionine and [3SS]cystdne (Tram- 
label; ICN, Costa Mesa, CA). The cells were detached by pipet- 
ting gently, collected by centrifugation, washed once with PBS, 
and sonicated at 5 x 10 s ceLls/ml in ice-cold lysis buffer containing 
0.15 M NaC1, 50 mM "Iris, pH 7.5, 2 mM EDTA, 0.3% NP-40, 
0.5 raM PMSF, and aprotinin (0.3 trypsin inhibitor units/m1). The 
cell lysate was cleared by centrifuging twice for 10 rain each at 
11,000 g before immunoprecipitation. 

Immunoprecipitation. PAb 101 or PAb 122 culture supernatant 
100-300/~1 was added to 200/L1 (10 s cell equivalents) of radiola- 
beled Sf-9 cell extract for 1.5 h at 4~ For mouse sera, 10 #1 of 
rabbit anti-mouse IgG antibodies (1 mg/ml, provided by Dr. Robert 
Eisenberg, University of North Carolina, Chapel Hill, NC) plus 
1-5/~1 of mouse serum was added to the same volume of cell ex- 
tract. After centrifuging 15 rain at 11,000 g, protein A-Sepharose 
beads (30/~1 of a 50% slurry in water) were added for an additional 
2 h at 22~ Unless otherwise indicated, the beads were washed 

twice with mixed miceile buffer ([MMB] 150 mM NaC1, 50 mM 
Tris, pH 7.5, 2 mM EDTA, 0.25 M sucrose, 0.5% SDS, 2.5% Triton 
X-100) at 4~ and then with NET buffer (0.15 M NaC1, 2 mM 
EDTA, 50 mM Tris, pH 7.5). In some cases, the immunoprecipi- 
tates were washed twice with 50 raM Tris, pH 7.5, 2 mM EDTA, 
0.3% NP-40 containing NaC1 at 0.15, 0.5, or 1.5 M NaC1, or once 
with the same buffer containing 1.5 M NaC1, then with MMB, 
and then with NET buffer. Immunoprecipitated proteins were ana- 
lyzed on 10% SDS-polyacryhmide gels which were fluorographed, 
dried, and exposed to x-ray film (22). 

In other experiments, human K562 (erythroleukemia) and murine 
SP2/0 (nonsecreting myeloma) cells were labeled with [3SS]me- 
thionine and cysteine exactly as described (20). Extracts of the cells 
were immunopredpitated using preimmune and immune sera from 
the mice immunized with p53/SVT complexes, p53, or SVT. The 
immunoprecipitates were washed with MMB and NET buffers as 
described above, and proteins remaining associated with the pro- 
tein A-Sepharose beads were analyzed by SDS-PAGE and autoradi- 
ography. 

Immunization of Mice. BALB/c mice (6-8-wk old female, four 
per group) were obtained from The Jackson Laboratory (Bar Harbor, 
ME) or Charles River (Wilmington, MA). Protein A-Sepharose 
beads (40/~1 of a 50% slurry in PBS) were incubated for 1.5 h 
with 100/~1 of hybridoma supernatant from PAb 101 or PAb 122, 
and then washed with PBS. The mAb-coated beads were then in- 
cubated for 1.5 h at 4~ with Sf-9 cell lysate (200/~1 = 2 x 106 
cell equivalents) containing the recombinant p53 (cells infected with 
vEV55p53), SVT (cells infected with vEV55SVT), or p53/SVT 
complexes (cells coinfected with both viruses). The beads were 
washed as before, resuspended in 100/~1 of PBS, and emulsified 
with CFA for the initial immunization or IFA for subsequent in- 
jections. Mice were injected with beads every 2 wk. Serum samples 
were obtained at days 0 (preimmune), 14, 28, and 42. The amount 
of antigen attached to the affinity beads was estimated by Western 
blotting using antibodies specific for p53 or SVT as described below, 
and by Coomassie blue staining and comparison with standard 
amounts of BSA. 

In some experiments, mice immunized three times with p53/SVT 
complexes were immunized once, 18 wk after the last p53/SVT 
injection, with murine p53 affinity purified on PAb 122 as described 
above. Serum was obtained 9 d later and tested for anti-p53 and 
anti-SVT antibodies by ELISA (see below). 

Iramunobtotting. Sf-9 cells infected with wild-type AcMNPV, 
vEV55p53, or vEV55SVT were solubilized directly in SDS sample 
buffer, and the lysates were fractionated on 10% SDS-polyacrylamide 
gels and transferred to nitrocdlulose (20). Immunoblot analysis of 
the recombinant proteins was performed using sera collected from 
the mice at 2-wk intervals (1:500 dilution for 1.5 h), or PAb 101 
or PAb 122 culture supernatants at a 1:5 dilution. Second antibodies 
were alkaline phosphatase-conjugated goat anti-mouse IgG (3' chain 
specific) antibodies (IgG plus L chain specific; Tago, Inc., Burlin- 
game, CA) (1:1,000 dilution for 1.5 h). In some experiments, the 
second antibodies were alkaline phosphatase-conjugated goat 
anti-mouse 3" 1, 2a, or 2b H chain-specific antibodies (Fisher Bio- 
tech, Pittsburgh, PA). Blots were developed with nitroblue tetrazo- 
lium/5-bromo-4-chloro-3-indolyl phosphate (Bio-Rad, Richmond, 
CA). 

Afllnity Purification of Antibodies. Antibodies specific for mu- 
rine p53 or SVT were affinity purified from nitrocellulose strips 
cut from Western blots using the procedure of Smith and Fisher 
(23). Briefly, the afanity-purified antibodies were eluted from the 
nitrocellulose strips with 50 mM glycine HC1 buffer (pH 2.5) plus 
0.5 M NaC1, 0.5% (vol/vol) Tween 20, and 100 #g/ml BSA, and 
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neutralized immediately with 0.5 M NazHPO4 buffer. The affin- 
ity-purified antibodies were diluted 1:15 and used to probe fresh 
Western blots of cell extracts derived from vEV55SVT or vEV55p53 
infected Sf-9 ceils. 

ELISA for anti-p53 and anti-SVT. ELISAs for detecting anti- 
bodies to p53 or SVT in routine sera were a modification of the 
antigen capture assays described previously for Ku (24). Briefly, 
microtiter plates (Immunoplate MaxiSorp; Nunc, Inc., Naperville, 
IL) were coated overnight at 4~ with partially purified PAb 122 
(anti-p53 ELISA) or PAb 101 (anti-SVT ELISA) at 10 ~g/ml, washed 
once, and blocked with PBS containing 10% bovine calf serum. 
Cell extract from Sf-9 cells infected with vEV55p53 or VEV55SVT 
was added to the wells for 1.5 h (4 x 10 s cell equivalents/wel). 
The wells were washed and then incubated with murine sera at 
a 1:250 dilution for 1.5 h. After washing again, second antibody 
(alkaline phosphatase-conjugated goat anti-mouse 3' 1 H chain- 
specific antibodies, 1:1,250 dilution) was added for 1.5 h. The wells 
were washed and developed with p-nitrophenylphosphate substrate 
(Sigma Chemical Co., St. Louis, MO), and OD at 405 nra was 
determined as described (22). The serum binding to control wells 
(coated with antibody but no antigen) was determined in paralld, 
and subtracted from the optical density of the corresponding antigen- 
coated wells. 

Results 

Expression of Antigens. Fuil-length recombinant SVT and 
murine p53 were expressed in Sf-9 ceils using recombinant 

baculoviruses vEV55SVT and vEV55p53, respectively (17). 
As shown in Fig. 1 A, Sf-9 eels infected with vEV55SVT 
expressed a 3sS-labeled protein of *97 ED that was immu- 
noprecipitated by PAb 101 (anti-SVT) but not PAb 122 (anti- 
p53) and was absent in extracts of Sf-9 ceils infected with 
vEV55p53 or wild-type AcMNFV. In contrast, Sf-9 eels in- 
fected with vEV55p53 expressed a 3sS-hbded protein of 
'~53 kD that was immunoprecipitated by PAb 122 but not 
PAb 101, and was absent in extracts of ceils infected with 
vEV55SVT or wild-type AcMNtN. 

When Sf-9 ceils were coinfected for 24 h with both 
vEV55SVT and vEV55p53 and labeled with [3SS]methio- 
nine, both p53 and SVT could be immunoprecipitated effi- 
ciently by either PAb 101 or PAb 122, consistent with the 
formation of a complex of the two proteins (Fig. 1 B). Both 
p53 and SVT remained associated with the beads after washing 
with 50 mM Tris, pH 7.5, 2 ram EDTA, 0.3% NP-40 con- 
raining 0.15 M (Fig. 1 B, lane 1), 0.5 M (lane 2), or 1.5 M 
(lane 3) NaC1, or 1.5 M NaC1 buffer followed by MMB (lane 
4), or MMB (lane 5), indicating that the affinity beads could 
be washed under a variety of conditions without dissociating 
the p53/SVT complex. In other experiments, we found that 
this complex also formed readily in vitro (data not shown). 
Consistent with previous observations (17), there was no evi- 
dence that an insect homolog of p53 could be immunopre- 

Figure 1. Immunoprecipitation analysis of protein e~pression in recombinant baculovirus infected insect ceils and p53/SVT complex formation in 
insect ceils. Sf-9 ceils were infected with vEV55SVT (SVT), vEV55p53 (p53), wild-type AeMNPV (wt) (A), or coinfected with vEV55SVT and vEV55p53 
(/3). After 24 h, ceils were hbded with [~sS]methionine and cysteine and extracts were immunoprecipitated with PAb 101 or PAb 122. (A) Single 
infection of Sf-9 ceils. Immunoprecipitates were washed with 50 ram Tris, pH 7.5, 2 mM EDTA, 0.3% NP-40 containing 0.15 M NaC1, eluted by 
boiling in SDS sample buffer, and analyzed by SDS-PAGE and autoradiography. PAb 101 immunopreeipitated a "~97-kD protein only from lysates 
of cells infected with vEV55SVT, whereas PAb 122 immunoprecipitated a '~53-ED protein present only in lysates of calls infected with vEV55p53. 
(B) Coinfected ceils. Immunoprecipitates of coinfected Sf-9 ceils using PAb 101 or PAb 122 were washed with 50 mM Tds, pH 7.5, 2 mM EDTA, 
0.3% NP-40 containing: 0.15 M NaCI (hne/), 0.5 M NaC1 (lane 2), 1.5 M NaC1 (lane 3), 1.5 M NaC1 followed by MMB (lane 4), or MMB (lane 
5). Immunoprecipitated proteins were separated by SDS-PAGE, and the gd was fluorographed, dried, and exposed to XAR-5 film for 2 d. Positions 
of molecular weight standards (in kD) are indicated. (C) Estimation of the quantity of antigens. Antigens were affinity purified on protein A-Sepharose 
beads coated with either PAb 101 (p53/$VT complex and 8VT) or PAb 122 (p53). Proteins were eluted from the beads by boiling in 25/~1SDS sample 
buffer, and 3/~1 of each sample was anaiyzed by SDS-PAGE and transferred to nitrocellulose. Blots were probed with PAb 122 (anti-p53) or PAb 101 
(anti-SVT), followed by alkaline phosphatase-conjugated goat anti-mouse IgG (3' and L chain specific) antibodies. Note that small amounts of H 
and L chains were detectable on the blots, and that mouse 3' H chain displays an electrophoretic mobility similar to that of the p53 protein. 
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cipitated by PAb 122, or coimmunoprecipitated by PAb 101 
due to formation of a complex with SVT (Fig. 1 A). 

The formation of a p53/SVT complex with a prolonged 
intracellular half-life compared with that of free p53 has been 
shown previously, and is thought to be a crucial step in trans- 
formation by SV40 and the related JC and BK viruses (25). 
Despite the short half-life of free p53 in mammalian cells, 
recombinant routine p53, SVT, and p53/SVT complex were 
all expressed at extremdy high levels in Sf-9, making it pos- 
sible to affinity purify large quantities of antigen from in- 
fected cells. The recombinant antigens comigrated on gels 
with the SVT antigen in Cos-1 cells, and the cellular p53 
antigen, respectively (data not shown). 

Induction of Autoantibodies to p53. The potential role of 
p53/SVT complexes in inducing autoantibodies to p53 was 
investigated by immunizing mice with complexes affinity 
purified on protein A-Sepharose beads. Extracts of Sf-9 cells 
infected with vEV55SVT or vEV55p53 alone, or coinfccted 
with both viruses, were incubated with protein A-Sepharose 
beads coated with PAb 101 (vEV55SVT and vEV55SVT plus 
vEV55p53 extracts) or PAb 122 (vEV55p53 extract). Western 
blots indicated that comparable amounts of p53, SVT, and 

p53/SVT complex were injected into the different groups 
of BALB/c mice (Fig. 1 C), and Coomassie blue staining with 
comparison to a standard protein (BSA) showed that ,v 1/~g 
of p53, SVT, or both (in the case of p53/SVT complexes) 
could be purified on 40/~1 of packed protein A-Sepharose 
beads coated with PAb 101 or PAb 122 (data not shown). 

Mice were screened for the production of anti-SVT and 
anti-p53 antibodies by immunoprecipitating 3sS-labeled 
vEV55p53 or vEV55SVT infected Sf-9 cells using preimmune 
and immune sera collected at 2, 4, and 6 wk (Fig. 2). All 
four mice immunized with SVT/p53 complexes affinity 
purified using PAb 101 affinity beads produced antibodies that 
immunoprecipitated both p53 and SVT efficiently starting 
at 4 wk. Immunoprecipitations of p53 and SVT by serial 
sera from a representative mouse immunized with p53/SVT 
complexes are shown in the top and bottom panels, respec- 
tively, of Fig. 2. In contrast, four mice immunized with p53 
did not develop antibodies to either p53 or SVT. All three 
mice immunized with SVT produced anti-SVT antibodies 
beginning 2 wk after immunization and, unexpectedly, two 
of the mice displayed a weak reaction with p53 at 6 wk by 
immunoprecipitation, whereas serum from the third mouse 

Figure 2. Immunoprecipitarion 
analysis of sera from mice immu- 
nized with p53, SVT, or p53/SVT 
complex. BALB/c mice were im- 
munized once with antigen-coated 
affinity beads in CFA, and twice 
more at 2-wk intervals with beads 
in IFA as follows: p53 from 
vEV55p53-infected cells purified 
on pAb 122 beads; SVT from 
vEV55SVT-infected ~ purified on 
PAb 101 beads; and p53/SVT com- 
plex from coinfected cells purified 
on PAb 101 beads. Serum samples 
were collected at 0 wks (preim- 
mune), and at 2, 4, and 6 wk 
after the first immunization. Sera 
were screened for antibodies to p53 
and SVT by immunoprecipitating 
3sS-iabeled vEVSSpS3 (top) or vEV- 
55SVT (bottom) inked Sf-9 ceU ly- 
sates with 5/A of serum collected 
at 0, 2, 4, and 6 wk. (p53) Sera from 
a mouse immunized with affinity 
purified p53; (SVT) sera from a 
mouse immunized with affinity 
purified SV'~ (p53/SVT) sera from 
a mouse immunized with affinity- 
purified p53/SVT compl~s. Con- 
trol immunoprecipitates using pro- 
tein A-Sepharose beads without 
serum are shown for each extract. 
Immunoprecipitation of recom- 
binant p53 and SVT by PAb122 or 
PAbI01, respectively, is shown for 
comparison. Immunoprecipitated 
proteins were analyzed by SDS- 
PAGE, and autoradiographed. Po- 
sitions of molecular weight stan- 
dards (in kD) are indicated. 
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was negative. The induction of autoantibodies to murine p53 
was not dependent on the use of PAb 101 to affinity purify 
the antigen, since autoantibodies to p53 were also produced 
by mice immunized with p53/SVT complexes affinity purified 
on PAb 122 beads (data not shown). 

Analysis of Autoantibodies by Western Blot 
The production of autoantibodies to p53 in mice immunized 

with SVT/p53 complexes was confirmed by Western blot (Fig. 
3 A). Sera from the mice immunized with p53/SVT com- 
plexes, but not those from mice immunized with p53 or SVT 
alone, showed a strong reaction with recombinant murine 
p53 expressed in Sf-9 cells and its proteolytic degradation frag- 
ments. The sera appeared to recognize the degradation frag- 
ments more strongly than intact p53, in contrast to PAb 122, 
which recognized the intact murine p53 protein as well as 
its degradation products (Fig. 3 A, right). Antibodies to SVT 
were, in general, less reactive on immunoblots, but the ex- 
pression of SVT in the baculovirus system was also some- 
what less efficient than that of p53, suggesting that this may 
have been partially related to a lower amount of SVT than 
p53 loaded on the gel. Using subclass-specific second anti- 
bodies in the Western blot assay, the autoantibodies to p53 
as well as the antibodies to SVT were found to be primarily 
of the IgG1 isotype (data not shown). IgG2b and IgG3 anti- 
bodies to p53 and IgG2b antibodies to SVT were also de- 
tected by Western blot in sera of mice immunized with 
p53/SVT complexes, but at considerably lower levels. 

To exclude the possibility that the autoantibodies to rou- 
tine p53 were a population of cross-reactive anti-SVT anti- 
bodies, the specificities of affinity-purified antibodies were 
examined. Antibodies were affinity purified from nitroceLlu- 
lose strips as described (23). To permit affinity purification 
of anti-SVT antibodies from nitrocellulose strips, the amount 
of cell extract from Sf-9 ceLls infected with vEV55SVT was 
increased relative to the amount of cell extract from vEV55p53 
infected cells (Fig. 3 B, left). Using approximately four times 
as much SVT extract, serum from a mouse immunized with 
p53/SVT compkaes could be shown to bind on Western blots 
to SVT as well as p53 (Fig. 3 B, serum). Antibodies from 
that serum were affinity purified on recombinant murine p53 
and were highly specific for p53 when used to probe a second 
immunoblot (p53 aflln), whereas antibodies affinity purified 
on SVT were highly specific for SVT, and displayed no cross- 
reactivity with p53 (SVT aflln). These studies suggested that 
autoantibodies to p53 were a different population than the 
antibodies to SVT in the sera of mice immunized with p53/ 
SVT complexes. 

Analysis of Autoantibod2/ Production ~ ELISA 
Antigen capture ELISAs for IgG1 antibodies to p53 (based 

on the IgG2b mAb PAb 122) and SVT (based on the IgG2a 
mAb PAb 101) were used to examine the titer and time course 
of autoantibody production in this model. The assays were 
similar in design to an anti-Ku ELISA in use in our labora- 
tory (24), but utilized an IgG1 specific second antibody. 

Antibody titers. As shown in Fig. 4 A, a representative 

1247 Dong et al. 

Figure 3. Western blot analysis of antibody production in mice im- 
munized with p53, SVT, and p53/SVT. (A) Western blots using whole 
sera. Pellets of Sf-9 cells infected with vEV55p53 (p53, left lane of each 
panel) or vEV55SVT (SVT, fight lane of each panel) were sohbilized 
in SDS-sample buffer, and subjected to SDS-PAGE and Western blot anal- 
),sis using 1:500 diluted mouse sera collected 6 wk after the first immuni- 
zation followed by alkaline phosphatase-conjugated goat anti-mouse IgG 
antibodies. Sera from mice immunized with p53, SVT, or p53/SVT com- 
plea~s (two mice) were analyzed. Immunoblots with PAb 101 (anti-SVT) 
and PAb 122 (anti-p53) were performed for comparison, Autoantibodies 
reactive by Western blotting with p53 were more readily detectable than 
those to SVT. This is in part due to the smaller amount of recombinant 
SVT than p53 loaded on the gel. However, in other experiments, the level 
of anti-SVT antibodies reactive on Western blot appeared to be lower than 
the level of anti-p53 antibodies (data not shown). (B) Specificity of affinity- 
purified antibodies. Immunoblots were performed using serum ofa BALB/c 
mouse immunized with p53/SVT comple~:es (serum) that contained anti- 
bodies to SVT as well as autoantibodies to p53. Autoantibodies to p53 
were duted from the blot as described in Materials and Methods. The 
affinity-puritled antibodies were neutralized and used to probe a similar 
Western blot (p53 aflin). Likewise, antibodies to SVT were aff~ty purified 
from the serum, and used to probe another blot (SVT aflin). Antibodies 
affinity purified from the p53 band were specific for p53, whereas those 
purified from SVT were specific for SVT. Immunoblots with mAbs PAb 
122 (anti-p53) and PAb 101 (anti-SVT) are shown for comparison. 



mouse serum collected 1 wk after the third immunization 
with p53/SVT complexes displayed strong reactivity with 
SVT in the anti-SVT antigen capture ELISA at a titer of 
,~1:25,000. Weaker reactivity (titer "~1:250) with PAb 101 
alone, which was used to affinity purify the p53/SVT com- 
plexes for immunizing the mice, was also apparent. Binding 
to an irrelevant IgG2a (anti-Ku mAb 162) was comparable, 
suggesting that the weak binding to PAb 101 is attributable 

A anti- SVT 

1.40 

1.20 

1.00 

Lo 0 .80  
0 

0 . 6 0  
o 

0 .40  

0.20 

0 .00  

�9 PAb 101 + SVT 

V PAb 101 

�9 Isotype control 

I 

250 
I I ! I 

2500  2 5 , 0 0 0  2 5 0 , 0 0 0  2 , 5 0 0 , 0 0 0  

t / d i l u t i o n  

B anti-p53 

1.40 

1.20 

1.00 

0.80 

~ 0.60 
0 

0.40 

0.20 

0.00 

�9 PAb 122 + p 5 3  

V PAb 122 
�9 I so type  c o n t r o l  

I I I I " l  

250 2500 25 ,000 250 ,000  2 , 5 0 0 , 0 0 0  

1 / d i l u t i o n  

Figure 4. Antibody titers by ELISA. (.4) Titer oflgG1 anti-SVT anti- 
bodies. Serum from a mouse immunized three times with p53/SVT com- 
plexes was tested for antibodies to SVT by antigen capture ELISA based 
on PAb 101 (lgG2a). Second antibody was 1:1,250 ~lk~line phosphatase-con- 
jugated goat anti-mouse IgG1. (0) Binding to wells coated with PAb 
101 plus recombinant SVT (values were corrected for binding to PAb 101 
alone); (V) binding to PAb 101 alone; (V) binding to anti-Ku mAb 162 
(IgG2a isotype control). (B) Titer of anti-p53 antibodies. Serum from the 
same mouse shown in A was tested for antibodies to p53 by antigen cap- 
ture ELISA based on PAb 122 (IgG2b). Second antibody was 1:1,250 alka- 
line phosphatase-conjugated goat anti-mouse IgG1. (0) Binding to wells 
coated with PAb 122 plus recombinant p53 (values were corrected for 
binding to PAb 122 alone); (V) binding to PAb 122 alone; (V) binding 
to anti-Ku mAb N3H10 (IgG2b isotype control). 
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to rheumatoid factor (anti-Fc) activity. This argues against 
the possibility that the autoantibodies to p53 are internal 
image-type antibodies antiidiotypic to PAb 101. Moreover, 
p53/SVT complexes affinity purified with either PAb 122 
or PAb 101 induced autoantibodies to p53, and PAb 101 was 
found to immunoprecipitate p53/SVT complexes efficiently 
(Fig. 1/3), further supporting the interpretation that the anti- 
p53 autoantibodies were not antiidiotypic (internal image) 
antibodies induced by PAb 101. 

Examination of the binding of serum to p53 in the anti- 
p53 antigen capture ELISA also revealed a high titer humoral 
immune response (titer "~1:25,000) (Fig. 4 B). Weaker 
binding to PAb 122 alone was again detected, and was com- 
parable with the binding to an irrdevant IgG2b isotype con- 
trol (anti-Ku mAb N3H10). Consistent with the ELISA 
results, the titers of antibodies to p53 and SVT as determined 
by Western blot ranged from 1:25,000 to 1:100,000 (data not 
shown). 

Time Course of Antibody Production. A striking increase 
in IgG1 anti-p53 autoantibodies in the sera of the mice im- 
munized with p53/SVT complex was observed from day 14 
to 42 (Fig. 5 A). In contrast, IgG1 autoantibodies to p53 
were undetectable by ELISA in the sera of mice immunized 
with p53. Sera of the mice immunized with SVT alone were 
either negative (Fig. 5 A) or weakly positive (data not shown) 
for autoantibodies to p53. 

To examine whether the production of autoantibodies to 
p53 could be maintained by endogenous murine p53 once 
initiated by immunization with p53/SVT complexes, serum 
samples were obtained from the mice for 18 wk after the 
last immunization with p53/SVT complexes. The levels of 
anti-p53 and anti-SVT antibodies in these sera were deter- 
mined by ELISA. As shown in Fig. 5 B, the level of autoanti- 
bodies to p53 feU significantly and in parallel with the level 
of antibodies to SVT. However, the drop in anti-p53 appeared 
more marked than that of anti-SVT. Approximately 60 d after 
the last p53/SVT injection, the levels of both antibodies 
reached a steady state. However, autoantibodies to p53 never 
reached preimmune levels. 

Immunization with affinity-purified p53 alone at day 156 
(127 d after the last p53/SVT injection) resulted in a dra- 
matic increase in anti-p53 antibodies within 9 d (Fig. 5 B, 
**). The level of anti-p53 on day 165 was comparable with 
that seen on day 42 after three injections of p53/SVT com- 
plexes. In contrast, antibodies to SVT displayed a modest de- 
cline from day 156 to 165, indicating that the anti-p53 re- 
sponse was specific for p53, and not a consequence of polydonal 
activation. Moreover, the levels of anti-Ig antibodies increased 
only slightly (Fig. 5 B). 

Autoantibody Specificity 
The specificities of the autoantibodies to p53 induced in 

mice immunized with p53/SVT complexes were examined 
further by immunoprecipitating lysates of 3mS-labeled K562 
and SP2/0 cells. The murine anti-p53 sera did not immuno- 
precipitate other proteins from extracts of either cell line, sug- 
gesting that the autoimmune response was specific for p53 
(data not shown). 

A u t o i m m u n i t y  to the  p53 T u m o r  Suppressor  Prote in  
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Figure 5. Analysis of anti-p53 autoantibodies in mouse sera by ELISA. (/1) Onset of autoantibody production. Microtiter plates were coated with 
PAb 122 (anti-p53), followed by Sf-9 cell lysate containing recombinant routine p53 or lysis buffer alone, as described in Materials and Methods. Sera 
were tested at 1:250, followed by allr~line phosphatase-conjugated goat anti-mouse IgG1 subclass-specific antibodies at 1:1,250 and p-nitrophenyl phos- 
phate substrate. Binding to the wells coated with antibody alone was subtracted from the binding to wells coated with antigen plus antibody. OD 
(405 nm) is plotted as a function of time (da),s) after the first immunization. (W) Sera from a mouse immunized with p53/SVT complexes; (0) sera 
from a mouse immunized with p53; (V) sera from a mouse immunized with SVT. (B) Immunization of p53/SVT primed mouse with murine p53. 
Levels of IgG1 autoantibodies to routine p53 (0) and antibodies to SVT (V) in serial serum samples of a mouse previously injected three times (day 
0, 14, and 28) with p53/SVT complexes were determined by antigen capture ELISAs as described in Materials and Methods. On day 156 the mouse 
was immunized with affmity-puritied murine p53 (* *) and serum obtained 9 d hter was tested for anti-p53 and anti-SVT antibodies. Binding to 
Ig (PAb 101 and PAb 122, respectively) coated wells was subtracted in each assay. The binding to PAb 101 coated wells in the absence of antigen 
is also shown (W). 

Discussion 

Autoantibodies are detected at increased frequency during 
certain viral infections (26-30) and in some vitally induced 
neoplastic diseases (31). These autoantibodies may sometimes 
be a consequence of nonspecific polyclonal B cell activation, 
whereas in other cases, more specific mechanisms appear to 
be involved. For example, rodents carrying SV40-induced 
tumors develop autoantibodies specific for the p53 tumor sup- 
pressor protein, and it has been proposed that the binding 
of p53 to SVT in these tumors may render p53 immuno- 
genic, as if it were a hapten with SVT as the antigenic carrier 
protein (32, 33). However, autoantibodies to p53 have also 
been reported in human breast cancer and murine sarcomas 
that are not induced by SV 40 (34, 35). Since somatic muta- 
tions in p53 represent one step in the pathogenesis of many 
neoplasms (36), the possibility that a T cell response directed 
at somatically mutated p53 might induce autoantibodies to 
p53 in mice carrying SV40 induced tumors could not be ex- 
cluded. Indeed, there is recent evidence that the development 
of autoantibodies to p53 in human neoplastic disease is de- 
pendent on missense mutations (37, 38). The present studies 
suggest that the binding of SVT to wild-type (i.e. unmu- 
tated) p53 may induce autoimmunity by activating T cells 
spedfic for cryptic epitopes of p53. 

Neoplastic Disease and p53 Mutations Are Not Required to 
Induce Autoantibodies. The development of autoimmunity 
to p53 does not require SV40-transformed tumor cells or so- 
matic mutation of p53, since a strong, specific autoantibody 
response to p53 was induced by immunizing mice with bio- 
chemically purified p53/SVT complexes. Repeated immuni- 
zation with murine p53 alone did not induce autoantibodies 
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to p53, consistent with immune tolerance to this self antigen. 
Moreover, since the present studies employed recombinant 
wild-type murine p53/SVT complexes instead of tumor cells, 
which might undergo somatic mutation, it is likely that neo- 
antigenic determinants resulting from mutation of p53 did 
not trigger autoimmunity in this model. Thus, our data sug- 
gest that the association of certain self proteins with foreign 
antigens may induce autoantibodies specific for the cellular 
components. 

Autoimraunity Is Unlikely to Be Due to Coimmunization with 
Self and Foreign p53. It has been shown recently that au- 
toantibodies to cytochrome c can be induced by coimmunizing 
mice with self and foreign cytochrome c, suggesting that au- 
toreactive B cells activated during an immune response to 
foreign cytochrome c can present self antigen to autoreactive 
T cdls (39, 40). Several lines of evidence argue that the au- 
toantibodies to p53 were not generated by a similar mecha- 
nism. An insect homolog of p53 has not been reported, and 
even if insect p53 exists, there was no evidence that it bound 
to SVT (Fig. 1), in agreement with previous observations 
(17). In addition, a hypothetical insect p53 homolog was not 
immunoprecipitated by PAb 122, even though p53/SVT com- 
plexes affinity purified using PAb 122, like those purified using 
PAb 101, induced autoantibodies to p53. Moreover, mice im- 
munized with p53 expressed in Sf-9 cells did not develop au- 
toanfibodies, suggesting that the complex of routine p53 with 
SVT was required for inducing autoantibodies. The previous 
observations that mice carrying SV40-induced tumor cells 
develop autoantibodies to p53 (32, 33) provide additional in- 
direct evidence that the autoantibodies to p53 were not a con- 



sequence of immunizing with a mixture of foreign and 
self p53. 

Autoantibodies top53 Are Not Cross-reactive with SVT Al- 
though not completely excluded, the autoantibodies to p53 
are also unlikdy to have been a cross-reactive population of 
antibodies directed primarily at SVT. Affinity-purified au- 
toantibodies to p53 from the sera of mice immunized with 
p53/SVT complexes were highly specific for p53, whereas 
atranity-purified antibodies to SVT disphyed no cross-reactivity 
with p53 (Fig. 3 B). Thus, at least the antibodies reactive 
with p53 and SVT on immunoblots were distinct popula- 
r-ions. Moreover, immunization of p53/SVT primed mice with 
p53 alone boosted the anti-p53, but not the anti-SVT, re- 
sponse (Fig. 5 B), providing additional evidence that the an- 
tibodies reactive with p53 and SVT were distinct. 

Despite the fact that the affinity-purified antibodies to p53 
and SVT represented distinct populations, some mice im- 
munized with SVT alone produced low levels of autoanti- 
bodies to p53. Most likely, this was related to the formation 
of p53/SVT complexes in vivo after immunizing the mice. 
The p53 antigen bound readily to SVT in vitro, suggesting 
that cdlular p53 released by necrotic cells could bind to the 
affinity beads carrying SVT. Moreover, injection of 250 ng 
or less of the p53/SVT complexes induced autoantibodies 
to p53, suggesting that even small amounts of the complex 
can trigger autoimmunity (Dong, X., unpublished data). 

p53/SVT Complexes May Induce Autoreactive T Cells Specific 
forp53. Although immunization with p53/SVT complexes 
was necessary to break tolerance to p53, a subsequent injec- 
tion of p53 alone dicited a brisk secondary autoantibody re- 
sponse (Fig. 5 B). This might be explained in several ways. 
The possibility that autoantibodies to p53 were induced in 
response to the mAb used for affinity purifying p53/SVT 
complexes is unlikely, in view of the low level of antibodies 
specific for PAb 101 and the strong secondary response to 
immunization with affinity-purified p53 on PAb 122 beads 
(Fig. 5 B). However, a potential role for autoantigen-mimic- 
king idiotypes (41) in the pathogenesis of autoantibodies to 
p53 in this model cannot be excluded completely. 

Another possihle explanation for our data is the initiation 
of autoantibody production by a mechanism involving inter- 
molecular-intrastructural help (11), and its subsequent main- 
tenance by activated p53-specific B cells. Although the produc- 
tion of autoantibodies in response to a complex of self and 
nonself might be expected to depend on continued availability 
of that complex (3), a role for intermolecular-intrastructural 
help in initiating autoimmunity is not excluded by our data 
if a two-step mechanism is invoked. In the first stage, T cells 
specific for SVT may activate B cells specific for murine p53 
as envisioned by the i n t e r m o l e c u l a r - i n t r a s ~  hdp model, 
leading to the expression of costimulatory molecules on their 
surface. In a second stage, these activated autoreactive B cells 
might present murine p53 peptides to autoreactive T cells 
in a manner analogous to that proposed in the cytochrome 
c model (39, 40), thus accounting for the immune response 
to routine p53 alone after priming with p53/SVT complexes. 
However, the simplest explanation for our data is a model 
involving altered antigen processing of self p53. 

The expressed repertoire ofT calls responsive to an exoge- 
nous antigen is focused onto a limited number of major T 
cell-inducing determinants rather than being broadly directed 
against all portions of the antigen (42, 43). This is controlled, 
in part, by MHC-linked genes through a determinant selec- 
tion mechanism in which immunodominant peptides bind 
to MHC molecules that can present the peptide (42, 44). 
Another factor influencing T cell repertoire expression is the 
existence of hindering structures on naturally processed frag- 
ments that differentially affect presentation by different MHC 
molecules (42, 45). These may include structural constraints 
imposed by the tertiary structure of a protein (46) as well 
as intermolecular contacts between subunits of an oligomeric 
antigen (15, 16). 

It has been suggested that T cells responsive to minor an- 
tigenic determinants can evade tolerance because of the rela- 
tively low amounts of peptides suitable for MHC binding 
after in vivo processing of the intact antigen (12). Autoreac- 
tive T cells can be activated under special circumstances, such 
as immunization with artificially processed peptides (13). Al- 
tered antigen processing induced by changing the quaternary 
structure of a complex may represent a second mechanism 
for activating autoreactive T cells. Thus, the binding of SVT 
to p53 might alter processing of p53, resulting in the presen- 
tation of "cryptic" T cell epitopes of self to which tolerance 
is incomplete or nonexistent (12-14, 47). 

A similar mechanism may underlie autoimmunity to p53 
in patients with breast or lung cancer, in whom autoanti- 
bodies are correlated with missense mutations in exons 5 and 
6 (which, perhaps not coincidentally, are located within the 
SVT binding domain of p53) and with binding of the mu- 
tant protein to hsp70 (37, 38, 48). We speculate that altered 
antigen processing, as a consequence of either the missense 
mutations themselves or binding of hsp70 to the mutant pro- 
tein, may trigger autoimmunity to p53. However, a role of 
T cells specific for the mutant p53 protein cannot be ruled 
out at present. 

Antigen processing might also be altered by autoantibodies 
to p53 in a manner analogous to that proposed above for 
SVT. In this scenario, autoantibodies induced by a mecha- 
nism involving intermolecular-intrastructural help might 
themselves facilitate the presentation of cryptic T cell epi- 
topes to p53-responsive autoreactive T cells. There is evidence 
for altered processing of antigens bound to different Igs (49), 
and indirect evidence that the binding of autoantibodies to 
antigens can induce new autoantibodies (50-52). Thus, the 
intermolecular-intrastructural help and altered antigen-pro- 
cessing models may not be mutually exr2usive, and both mech- 
anisms could play a role in perpetuating autoimmunity. 

Relevance to Virall 7 Induced Autoimrnunity. The induction 
of ANAs by immunization with p53/SVT complexes may 
have relevance for the induction of specific autoantibodies in 
viral infections (4) or collagen vascular disease. For example, 
the papovaviruses JC and BK are dosdy related to SV40, pro- 
duce large T antigens analogous to SVT, and are common 
human pathogens (53). It would not be surprising to find 
autoantibodies to p53 in sera of patients infected acutely with 
these viruses, or possibly during reactivation of latent infec- 
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tion, for instance, in progressive multifocal leukoencephalo- 
pathy (54). ANAs specific for histones and DNA, both of 
which may be physically associated with the p53 protein in 
chromatin, have been described previously in papovavirus in- 
fection, although specificity for p53 was not investigated (55). 
It is also of interest that progressive multifocal leukoen- 
cephalopathy may complicate SLE, presenting a clinical pic- 
ture similar to that seen in central nervous system lupus (56). 
It remains to be established, however, whether either disorder 

is associated with autoantibodies to p53. In view of the wide 
variety of viral antigens known to form comple~es with specific 
cellular proteins, and previous data suggesting that reovirus- 
induced autoantibody production is specific for viraUy infected 
cell types or tissues (28), it is tempting to speculate that other 
complexes of self and nonself might trigger autoantibody 
production in certain patients with acute or chronic viral in- 
fections or systemic autoimmune diseases. 
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