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Abstract
Synaptic function depends on interactions among sets of proteins that assemble into complex
supramolecular machines. Molecular biology, electrophysiology, and live-cell imaging studies
have provided tantalizing glimpses into the inner workings of the synapse, but fundamental
questions remain regarding the functional organization of these “nano-machines.” Electron
tomography reveals the internal structure of synapses in three dimensions with exceptional spatial
resolution. Here we report results from an electron tomographic study of axospinous synapses in
neocortex and hippocampus of the adult rat, based on aldehyde-fixed material stabilized with
tannic acid in lieu of postfixation with osmium tetroxide. Our results provide a new window into
the structural basis of excitatory synaptic processing in the mammalian brain.

INDEXING TERMS
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Structure provides the basis for physiological function; this fact motivates continuing study
of synaptic morphology. Excitatory synapses in the mammalian forebrain terminate mainly
onto dendritic spines. Although the functional significance of their characteristic fine
structure remains obscure, available evidence suggests that these synapses are highly
specialized to support the short- and long-term plasticity crucial for flexible processing of
information. Modern tools of cell and molecular biology have advanced our understanding
of synaptic organization, but even in the current era of super-resolution light microscopy, the
small size of the synapse and the dense packing of supramolecular complexes within it
present a formidable challenge.

Our knowledge of the 3D organization of subcellular domains within the synapse lags far
behind the rapidly accumulating data on its biochemical composition and the structure of its
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constituent proteins. Computational modeling studies suggest that submicroscopic functional
assemblies may play a crucial role in synaptic function (Collins and Grant, 2007), but the
supramolecular organization of the synapse remains largely uncharted. Transmission
electron microscopy (TEM) has provided a crucial tool for the elucidation of fine structure.
TEM is physically capable of sub-nanometer resolution, but practical constraints make it
unfeasible to prepare and examine tissue sections thinner than ~40 nm, much larger than
most proteins. By generating virtual ultrathin sections, electron tomography can greatly
reduce the image degradation arising from finite section thickness (Frey et al., 2006; Chen et
al., 2008b; Leis et al., 2009).

TEM involves exposure of thin sections to an intense electron beam under conditions of
high vacuum, requiring specialized procedures of sample preparation. Physical cryo-
fixation, which can stabilize cells within milliseconds, provides a gold standard for the study
of biological ultra-structure (Van Harreveld et al., 1974; Leis et al., 2009, Hurbain and
Sachse, 2011), but cryo-electron microscopy is inherently low-contrast, and vulnerability to
beam damage severely limits sample exposure. In recognition of these problems, a number
of laboratories have used high-pressure freezing followed by freeze-substitution to
dehydrate material and infiltrate it with plastic resin, allowing electron tomographic analysis
of neuronal structure; however, technical constraints presented by the mammalian brain
have limited these studies to small invertebrates, peripheral tissues, and culture systems.
Electron tomographic analysis of brain continues to rely on chemical fixation with mixed
aldehydes (Sosinsky et al., 2008).

Ultrastructural studies routinely use OsO4 to stabilize and contrast lipid-rich membranes.
However, intense staining of the lipid bilayer can hide subtle details of membrane
substructure while obscuring weakly osmiophilic transmembrane proteins. Moreover, OsO4
postfixation can lead to loss and denaturation of protein from tissue (Amsterdam and
Schramm, 1966; McMillan and Luftig, 1973). For analysis of protein-rich compartments
like the postsynaptic density (PSD), techniques that better preserve protein may provide a
useful new perspective. We employ here an osmium-free protocol that provides excellent
preservation and yields high-resolution images, while emphasizing proteins over lipids,
yielding a new “proteocentric” view of synaptic structure.

MATERIALS AND METHODS
Tissue preparation

All animal procedures were strictly in accord with NIH and IACUC rules. Eight adult male
Sprague-Dawley rats (2–4 months old, 250–500 g, from Charles River) were deeply
anesthetized with pentobarbital (60 mg/kg, i.p.) and sacrificed by intra-aortic perfusion with
mixed aldehydes (2% glutaraldehyde and 2% freshly depolymerized paraformaldehyde) in
0.1 M phosphate buffer (PB; pH 7.4), after a brief flush with heparinized saline; the interval
between opening the chest and flow of fixative into the aorta was kept to no more than 60
seconds.

All illustrations except Figure 1A are from R2869, a 350-g rat perfused for 1 hour with
mixed aldehydes; this material was selected for particularly favorable surgical technique and
histological excellence. Figure 1A (which illustrates material postfixed with osmium
tetroxide) is from R3825, a 360-g rat fixed in the same manner, selected to provide
comparable material.

Blocks of fixed forebrain were sectioned on a Vibratome at 50-μm thickness and stored in
PB at 4°C. Sections containing regions of interest were prepared for electron microscopy
according to the approach described in Phend et al. (1995), incubating floating sections in
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tannic acid and uranyl acetate prior to dehydration. Additional metal salts were tested as
adjuvants in preliminary experiments, including potassium ferrocyanide, chromium
potassium sulfate, osmium trichloride, iridium tetrabromide, and mercuric acetate. The
combination of uranyl acetate with 0.1% PtCl4 provided especially fine grain and excellent
visualization of structure. For that reason, the present manuscript is based primarily on
observations from material prepared with uranyl acetate and PtCl44.

Sections collected in glass vials were incubated on a shaker at 4°C for 40 minutes in 1%
tannic acid (Mallinkrodt, Paris, NY) in 0.1 M maleate buffer, pH 6.0 (MB), then for 20
minutes in 0.1% CaCl2 in MB, and then for 40 minutes in a mixture of 1% uranyl acetate
(Electron Microscopy Sciences, Ft. Washington, PA) and 0.1% PtCl4 (Pfaltz & Bauer,
Waterbury, CT). Sections were then rinsed and dehydrated through ethanol into propylene
oxide; when the concentration of ethanol exceeded 50%, the temperature was lowered by
incubation over salted ice at −15 °C. After dehydration, sections were infiltrated with Epon-
Spurr resin, sandwiched between sheets of Aclar plastic, and heat-polymerized at 60°C.
Chips of S1 cortex and CA1 hippocampus were glued to plastic blocks, and thin sections
were cut on an ultramicrotome with a diamond knife. For routine histology, ~50-nm sections
were collected on 400-mesh copper grids; for electron tomography, thicker (~120 nm)
sections were collected on 100-mesh hexagonal gold grids. Grids were poststained with
uranyl acetate and Sato’s lead (Hanaichi et al., 1986).

Electron tomography
Ten-nanometer colloidal gold particles were deposited on the section to serve as fiducial
marks; grids were then coated with a thin (~10 nm) layer of carbon to improve stability
under the electron beam. A total of 21 tomograms from layer 2/3 of the SI cortex and the
stratum radiatum of the CA1 hippocampus were analyzed, including 10 generated from
single-tilt series (6 from CA1 and 4 from SI cortex) and 11 from double-tilt series (3 from
CA1 and 8 from SI). We focused attention on synapses onto large (>400-nm-diameter),
mushroom-shaped spines (as defined by Peters and Kaiserman-Abramof, 1970).

Single-tilt series were collected by using an FEI (Hillsboro, OR) Tecnai G2 Twin electron
microscope operated at 200 kV. Images were recorded with a 2,048 × 2,048 CCD camera.
The FEI tomography acquisition software package was used to acquire tilt series (from −65°
to +65°, with 2° increments). However, in view of the superior quality provided by double-
tilt series, we do not illustrate any of the single-tilt data.

Double-tilt series were collected with a JEOL 4000EX electron microscope operated at 400
kV. The specimens were irradiated before a tilt series was initiated, to limit anisotropic
specimen thinning during image collection. A computer-controlled goniometer was used to
tilt the stage in 2° increments from −70° to +70° about an axis perpendicular to the optical
axis of the microscope, using in-house software; after acquisition of a complete tilt series,
the goniometer was rotated 90° for acquisition of a second tilt series. For high-resolution
tomograms, tilt series were recorded by using either a slow-scan CCD camera or film at
15,000–20,000× magnification; to provide an overview of synaptic organization, three
tomograms were collected at lower magnifications (3,000–5,000×). The CCD camera was
1,960 × 2,560 pixels, with single-pixel resolution of 1.1 nm. For film tilt series, negatives
were digitized by using scanners with pixel resolutions ranging from 0.7 to 2.2 nm.
Illumination was held to near parallel beam conditions, and optical density was maintained
constant by varying the exposure time.

In initial work, the IMOD software package (http://bio3-d.colorado.edu/imod; Kremer et al.,
1996) was used for the entire procedure of image alignment and reconstruction. In
subsequent work, IMOD was used for rough alignment, and the fine alignment and
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reconstruction were performed with the TxBR software package (Lawrence et al., 2006).
Tomographic reconstructions presented in this paper were deposited in the Cell Centered
Database (http://ccdb.ucsd.edu), where they are available under project P1194 (http://
ccdb.ucsd.edu/sand/main?
stype=lite&keyword=P1194&event=display&Submit=Go&start=1).

We used Corel Draw v.14 (Corel, Ontario, Canada) to adjust brightness and contrast, and
compose final plates. These adjustments were done exclusively to enhance the presentation
quality of figures, without altering the scientific data content of the images.

Atomic docking procedure
To reduce noise, tomographic slices were processed with a non-local means algorithm,
reducing the noise while still preserving fine detail. The pixel values are determined as a
weighted average of all other pixels, where the weights are determined by the similarity of
local neighborhoods (Buades et al., 2005). To reduce computation time, weighted averages
were performed only over a local search area with the estimated pixel contained in the
center. The size of the local neighborhood for determining the weights was set to 9 × 9
pixels, and the size of the search area was set to 65 × 65 pixels.

Regions of interest were selected manually for atomic docking analysis. A 3D watershed
transform (Volkmann, 2002) was used to analyze the subunit composition of the extracted
density. Searches for helical symmetry parameters were performed by optimizing the
correlation between tentative helical subunits within the extracted density, subject to
variations of the helical rise, helical angle, and position of the helical axis. An atomic
filament model was created by using a high-resolution EM-derived model for filamentous
actin monomers (Fujii et al., 2010) and applying symmetry parameters derived from the
data. Correlation-based density fitting algorithms implemented in the CoAn package (http://
coan.burnham.org/; Volkmann and Hanein, 1999, 2003) were then used to fit the actin-
filament model into the densities and to quantify the fitting quality. Fourier-shell correlation
analysis was also performed with the CoAn package. The 0.5 frequency-space cutoff
criterion was used for resolution estimation.

RESULTS
Overview

TEM examination of neuropil in superficial layers of the neocortex and stratum radiatum of
the hippocampus reveals morphology typical of our processing technique, which differs
from that of osmium-treated material. The material is highly contrasted. Membranes are
sharply revealed in negative contrast, giving them an appearance different from that seen
after processing with osmium (Fig. 1). Protein-rich compartments like the PSD and the
presynaptic active zone are far more densely stained than in osmium-processed material, and
cytoskeletal features within the spine are prominent.

Tomographic processing led to dramatic sharpening, reflecting the ability of electron
tomography to provide virtual ultrathin (<5 nm) sections, thus minimizing the image
degradation inherent in TEM of plastic sections. The raw images were fuzzy, reflecting the
relatively thick (~120-nm) sections used for acquisition of tilt series (Fig. 2A). In contrast,
tomographic processing reveals much clearer ultrastructural detail, especially tomograms
from double-tilt series: plasma membranes are sharp, intracellular particles are crisply
defined, and otherwise obscure profiles can be readily identified by following them through
the tomographic stack (Fig. 2B; see also Movies 1 and 2 in the Supplemental Material). The
original data-set is too large to publish, but can be downloaded from the Cell Centered Data
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Base (http://ccdb.ucsd.edu, under project P1194), making it possible to visualize the raw
dataset (see colorized projection in Fig. 2C and Supplementary Fig. 1).

The presynaptic terminal
The presynaptic terminal was bounded by a sharply defined electron-lucent plasma
membrane coated with tiny electron-dense blobs (Fig. 2B, inset), likely corresponding to
integral membrane proteins, including pumps and ion channels. Electron-dense features
were seldom present within the plasma membrane itself; evidently, the uranyl/lead
poststaining reagents were excluded from these lipid-rich zones.

Likewise, the appearance of presynaptic vesicles differs from osmium-treated material, in
which vesicles are typically seen as hollow circles defined by two concentric electron-dense
rings (Fig. 1); in our material, they are instead defined by a single dense ring. Careful
examination reveals that these rings are generated by numerous discrete particles distributed
along the circumference, presumably reflecting proteins that line the exterior surface of the
lipid bilayer of the vesicular membrane; particles also line the interior of the bilayer, but to a
far lesser degree (Fig. 2B).

In general, vesicles were linked to each other and to the plasma membrane. Despite some
degree of biological variability and the lower image quality of single-tilt tomograms, we
found a generally consistent pattern of tethering among presynaptic vesicles. Typically,
vesicles were connected to three to six neighbors, either by direct contact (Fig. 3A, dotted
circles), or bridged by short (~10–20-nm) electron-dense filaments (Fig. 3A, blue arrow).
Vesicles lying at the outer edge of the pool were attached to the plasma membrane with
longer (~20–60-nm) filaments (Fig. 3A, black arrows; Fig. 3B). A 3-dimentional rendering
of the large-scale organization of vesicles in the pre-synaptic terminal is shown in Figure
3C.

The postsynaptic spine
The postsynaptic spine was typically far less packed with organelles than the presynaptic
terminal (Figs. 2B, 4A). Nevertheless, the spine contained more electron-dense material than
seen with OsO4 protocols (Fig. 1), presumably reflecting our sample preparation technique,
which uses tannic acid to help preserve cytoskeletal integrity (LaFountain et al., 1977;
Maupin and Pollard, 1983).

A network of thin filaments could be visualized throughout the spine. Short stretches of
“naked” filament were interspersed with regions where blobs of electron-dense material
coated the filament. Although filaments could run in a straight line for 100 nm or more,
more commonly they were shorter, often following a crooked or tortuous path (perhaps
reflecting dehydration-associated shrinkage). The filaments frequently intersected with each
other, creating a complex mesh that filled the spine. In each tomogram studied, we noted
scattered loci where multiple filaments joined together, associated with a marked
accumulation of electron-dense material (illustrated schematically by yellow circles in Fig.
4B,C). The filament network made numerous contacts with the plasma membrane.
Typically, a small accumulation of electron-dense material was visible at these points of
contact. Throughout our material, we noted an accumulation of densely branched filaments
flanking the edges of the PSD (dotted ellipses, Fig. 4A,D) and lateral to it (arrows, Fig.
4A,D).

The complexity of this filamentous network made precise reconstruction unfeasible; for
example, at some points it was impossible to establish whether two filaments intersected, or
instead crossed without touching (cf. Korobova and Svitkina, 2010). Nevertheless, with care
we could make a reasonably accurate diagram of the large-scale structure of the
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“spinoskeleton” in double-tilt material acquired at high magnifications, either manually (Fig.
4B,C; also see interactive 3D PDF in Supplementary Fig. 2) or by using skeletonization
algorithms (Fig 4E; also see Supplementary Fig. 3 and Movie 3). Several features that are
difficult to recognize in a tomographic stack are more easily appreciated in these diagrams.
For example, one sees an increased density of filament branch-points ~20–30 nm from the
plasma membrane (red dots in Fig. 4B,C), especially at the lateral edge of the PSD (dotted
circles, Fig. 4C).

Segmentation allowed us to determine the distribution of filament thickness and length (Fig.
4F,G): the median diameter of filaments (n =4,676) was 8.6 nm (excluding 512 filaments
shorter than 20 nm), whereas median filament length was 49.3 nm (excluding 585 filaments
thinner than 4 nm or thicker than 20 nm). These values imply an overall filament density
within the spine of ~12,000 μm of filament per μm3 of spine.

The observed filament thickness is consistent with the diameter of F-actin. To further
investigate the issue, we compared filamentous structures from a tomogram (Fig. 5A) with
an atomic model for F-actin, derived from high-resolution cryo-electron microscopy (Fujii et
al., 2010). The extracted density proved to be an excellent fit to the model (Fig. 5B,C). After
symmetrization, the filaments in the tomograms indeed represented actin filaments
faithfully, down to a resolution of 4 nm.

The presynaptic active zone
The tomographic slices provide clear visualization of a series of large electron-dense blobs
arrayed along the presynaptic apposition (Fig. 6A, Movie 4). These blobs, corresponding to
the “dense projections” reported in the older literature, were more prominent in our material
than after osmium fixation. Examination of tomograms from low-magnification tilt series (3
× 3 microm; data not show) revealed that dense projections could be organized into a
geometric lattice reminiscent of the classical description by Pfenninger et al. (1972), but this
pattern was not consistent; in other synapses the dense projections instead seemed randomly
distributed along the pre-synaptic membrane.

Notwithstanding considerable variability in their internal structure, the dense projections
shared common features: a wide base typically lay beneath a main pillar of ~40-nm
thickness that extends ~60 nm into the cytoplasm. The dense projections in our material
exhibited a stubby tree-like structure, giving rise to several short branches that made direct
contact with synaptic vesicles (Fig. 6B). 3D reconstruction revealed that each dense
projection contacted four to six vesicles (Fig. 6C). Clathrin-coated vesicles were
occasionally seen at some distance from the active zone (Fig. 3B), but we never observed
clathrin-coated vesicles at the active zone itself.

Away from the active zone, presynaptic vesicles seldom approached closer than ~30 nm to
the plasma membrane, whereas at the active zone, some vesicles made direct contact with
the membrane (Fig. 6D). This region of contact between docked vesicles and plasma
membrane appeared to contain two lipid bilayers (Fig. 6D), with only a thin (~5-nm) layer
of electron-dense material dividing the vesicle from the plasma membrane. We also saw
vesicles directly fused to the membrane; in many cases these fusing vesicles were deformed
and shrunken, seemingly caught in the process of exocytosis (Fig. 6E, Movie 4). In these
cases, the internal surface of the lipid bilayer was strongly contrasted; we presume that
tannic acid had improved access to the interior of these vesicles during the initial stages of
tissue processing. The abundance of these fusion events exceeds what one would expect in
vivo (Heuser et al., 1979); the onset of chemical fixation presumably triggered massive
exocytosis. Importantly, all docked and fusing vesicles studied were in close contact with a
dense projection.
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The synaptic cleft
A somewhat variable ~20–30-nm spacing between the two plasma membranes was seen at
the synaptic cleft, substantially greater than at nonsynaptic regions of apposition. The
synaptic cleft was packed with electron-dense material, making it difficult to analyze,
although certain features were recognizable, including bridges that spanned the full extent of
the cleft (Fig. 7A–C), intermingled with the dense feltwork of cleft material. Densitometry
revealed a markedly increased electron density adjacent to the edges of the plasma
membrane, with modest evidence of increased density in the central zone (marked by
vertical black rectangle in Fig. 7D), consistent with results from electron tomography of
cryo-fixed synaptosomes (Lucic et al., 2005b). At the edges of the synapse, the cleft space
constricted, and the pre- and post-synaptic membranes often seemed to make direct contact
(Fig. 7E, black lines; see also Figs. 2B, 4A), although a few nanometers may have remained
between the two membranes. These physical obstacles are likely to limit diffusion within the
cleft.

The postsynaptic density
The PSD as visualized by electron tomography was very jagged (Fig. 8A, Movie 4),
reminiscent of high-resolution images of the biochemically isolated PSD fraction (Petersen
et al., 2003). The overall appearance of the PSD, although consistent with the electron
tomographic images shown in Rostaing et al. (2006), was thicker and more complex than in
cultured neurons (Chen et al., 2008a). Standard TEM methods have shown that the PSD
contains a dense lamina facing the synaptic cleft, and a more attenuated cytoplasmic lamina
(Welch et al., 2007). Electron tomography clarified the nature of this organization: a
relatively thin (~10–20-nm) sheet of electron-dense material lay adjacent to the plasma
membrane. At its lateral margin, this PSD sheet became more attenuated, ending at or just
before the cleft began to pinch together (cf. Fig. 7E). Interior to this sheet, an irregular spiky
network of material entered the cytoplasm of the spine. Filaments (likely to represent F-
actin) made contact with these cytoplasmic PSD projections. At these zones of contact, the
thickness of the PSD increased, forming a pyramidal structure whose vertex contacted the
filament (Fig. 8A). Densitometric analysis confirmed our visual impression of PSD
structure; variations in density tangentially along the length of the synapse were of higher
spatial frequency and smaller amplitude along laminar zones sampled within 10 nm from the
plasma membrane, than along zones sampled from deeper in the cytoplasm (Fig. 8B).

DISCUSSION
Transmission electron microscopy remains the primary tool for study of synaptic
morphology. The most important recent advance in instrumentation for biological electron
microscopy has been the introduction of electron tomography. Here we have used electron
tomography of aldehyde-fixed brain sections stabilized with tannic acid, providing a new
view of the fine structure of the excitatory synapse.

Methodological issues
Specimen preparation requires fixation to stabilize the constituent molecules, thus
preventing postmortem changes, but the fixation process itself can induce structural artifacts.
An attractive solution is physical fixation with rapid cooling under high pressure; freezing
samples into vitreous ice immobilizes the cytoplasm and inactivates enzymatic activity,
while minimizing damage from ice crystals (Medalia et al., 2002; Lucic et al., 2005a;
Bouchet-Marquis and Hoenger, 2011; Yahav et al., 2011). However, it is unfeasible to use
this approach on vertebrate brain without preliminary surgical and hypoxic insult; for this
reason, electron tomography of cryo-fixed synapses has been limited to reduced systems.
Beyond the problem of cryo-fixing brain per se, cutting thin sections from native cryo-fixed
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material is challenging, and immunoprocessing requires that the sections be thawed,
destroying many of the advantages of cryopreservation. Moreover, cryosections (which lack
heavy metal staining) are inherently low-contrast, and exhibit poor stability under the
electron beam.

The alternative is chemical fixation. To study the mammalian brain, fixation normally relies
on vascular perfusion with mixed aldehydes. Chemical fixation stabilizes the cytoplasm via
protein crosslinking and inactivation of proteolytic enzymes, but may lead to artifacts arising
both from the relatively slow fixation process and from the crosslinking itself. Nevertheless,
the use of aldehyde fixation in specimen preparation leads to surprisingly little disruption of
biological structure (Reger and Escaig, 1988; Sosinsky et al., 2008). For the reasons listed
above, most work on synaptic ultrastructure has relied on plastic embedding of the
chemically fixed material. One strategy is to perform high-pressure freezing followed by
freeze-substitution; this minimizes dehydration-associated artifacts, especially loss of lipid.
However, the approach generally relies on UV polymerization of the plastic resin, implying
that heavy metals (which can act to stabilize structure and enhance contrast) must be
avoided or kept to a minimum.

For these reasons, most tomographic studies on the synapse (Harlow et al., 2001; Zampighi
et al., 2006, 2008; Siksou et al., 2007; Nagwaney et al., 2009; Arthur et al., 2010; Perkins et
al., 2010) have used chemically fixed material and OsO4, which helps to stabilize lipids
while enhancing electron contrast. However, OsO4 is a strong oxidizer, and it damages the
secondary structure of proteins (Lenard and Singer, 1968). Likewise, OsO4 can disrupt the
integrity of protein complexes, including F-actin filaments (LaFountain et al., 1977; Maupin
and Pollard, 1983). We speculate that these effects explain osmium’s well-known adverse
effects on tissue antigenicity.

Tannic acid was introduced to electron microscopy as a mordant to enhance electron
contrast (Simionescu and Simionescu, 1976). Consistent with its long-recognized efficacy as
a tissue preservative, tannic acid has been shown to stabilize supramolecular assemblies, and
in particular to maintain the integrity of F-actin (Maupin and Pollard, 1983; Takagi et al.,
1983). Moreover, tannic acid-based fixation preserves antigenicity for a variety of proteins
(Berryman et al., 1992; Phend et al., 1995). Taken together, these traits suggest that
important features of fine structure in vivo are preserved in our material, notwithstanding the
disruption inherent in chemical fixation, dehydration, and plastic embedment.

Considerable evidence from model systems in the older literature suggests that the identity
of the buffer used during fixation influences specimen preservation and retention of protein.
We relied on phosphate, a simple and nontoxic inorganic buffer. However, phosphate is
likely to reduce the effective concentration of extracellular Ca2+, considering the rather low
solubility product for calcium phosphate. Because Ca2+helps to stabilize membranes, the
phosphate may have impaired membrane preservation; future work using Good buffers
could address this issue (Good et al., 1966). More generally, the reader must recognize that
the images shown here include a variety of artifacts not present in the native state, and that
current limits on our knowledge make it difficult to know which features may be artifactual
(see discussion in Griffiths, 1993).

The presynaptic terminal
Our data confirm observations from freeze-etched material and from previous electron
tomographic studies showing that synaptic vesicles are linked together by a network of
filaments (Fernandez-Busnadiego et al., 2010; Siksou et al., 2011). Although the overall
appearance of the presynaptic terminal is generally consistent with previous reports, its fine
structure differs; these differences were especially noticeable in synaptic vesicles. In our
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material, vesicles were defined by numerous electron-dense blobs organized into hollow
spheres. This pattern, although not typically reported in osmium-treated material, fits
biochemical evidence for an exceptionally high concentration of proteins embedded in the
vesicular membrane (Takamori et al., 2006), and is consistent with the images of platinum-
shadowed replicas and native cryosamples shown in that paper. We believe that these blobs
correspond to individual proteins or protein assemblies. Systematic study using our
approach might permit implementation of “visual proteomics,” allowing identification of
proteins based on morphology alone (Nickell et al., 2006); supporting this possibility is our
success with atomic docking of actin filaments.

As in classical (Couteaux, 1961; Gray, 1963; Bloom and Aghajanian, 1968; Pfenninger et
al., 1972) and recent (Zampighi et al., 2008) studies of chemically fixed tissue, the landscape
of the active zone in our material was dominated by presynaptic dense projections. The
prominence of these dense projections has varied considerably in different studies; early
studies of cryofixed material failed to detect them (Landis et al., 1988), raising the
possibility that these structures are artifacts arising from chemical fixation. Although not
reporting dense projections per se, a recent cryo-EM tomographic study showed filamentous
structures linking vesicles to the active zone (Fernandez-Busnadiego et al., 2010; see also
Lenzi et al., 1999; Rostaing et al., 2006; Siksou et al., 2007). We speculate that the dense
projections seen in our material represent the same biological structure, after fixative-
induced chemical crosslinking and post-staining. It seems unlikely that fixation would create
dense projections de novo from a homogeneous presynaptic matrix. The presence of this
modular pre-synaptic structure, together with the strong association of these dense
projections with docked and fusing vesicles reported here suggests that the active zone
contains multiple exocytic “hot spots,” perhaps associated with presynaptic calcium
nanodomains (Muller et al., 2010). Interestingly, a recent study in insects shows a similar
presynaptic density associated with docked vesicles (Leitinger et al., 2011).

The postsynaptic spine
It was already recognized by Fifkova and Van Harreveld (1977) that the spine cytoskeleton
is dominated by F-actin. A variety of human neurocognitive disorders have been linked to
abnormalities of spine morphology associated with dysregulation of the actin cytoskeleton
(Newey et al., 2005; van Spronsen and Hoogenraad, 2010; Penzes and Vanleeuwen, 2011).
The structural complexity of the actin network presents a formidable technical challenge, as
emphasized by a recent high-resolution study using metal shadowing of spines in cultured
neurons (Korobova and Svitkina, 2010). Here, electron tomography allowed us to examine
the 3D organization of actin networks whose integrity had been preserved with tannic acid.
Despite our direct evidence that the fine structure of the F-actin polymer has been preserved,
the present results must be treated with caution: Our reconstructions of the cytoskeleton
have been modified by artifacts introduced by dehydration and shrinkage (presumably
accounting for the wavy/tortuous filaments); by the crosslinking of chemical fixation
(perhaps accounting for many of the electron-dense blobs directly attached to the filaments);
and by the uncertain degree of remodeling that occurred during initial stages of the fixation
process. Notwithstanding these caveats, the reconstructions revealed intriguing cytoskeletal
features, including the organization of contacts with the plasma membrane, and
specializations at loci of filament convergence.

Extensive published evidence documenting a link between synaptic strength and actin
remodeling suggests that, beyond defining the architecture of the spine, actin must play a
direct role in postsynaptic function (Carlisle and Kennedy, 2005; Alvarez and Sabatini,
2007; Cingolani and Goda, 2008; Kasai et al., 2010; Svitkina et al., 2010). In this context, it
is noteworthy that a dense nexus of actin filaments just lateral to the PSD was a consistent
feature of all the spines examined. It is tempting to relate our structural data to accumulating
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evidence that a zone just lateral to the PSD is specialized for receptor trafficking (Newpher
and Ehlers, 2009); we suggest that the perisynaptic accumulation of actin filaments reported
here may be a component of this endo/exocytic zone.

Numerous contacts were seen between F-actin filaments and the PSD. Typically, the PSD
was thickened, extending into the cytoplasm at these points of contact. Our results are
reminiscent of the “PSD projections” previously found in electron tomograms from unfixed
material after high-pressure freezing (Rostaing et al., 2006), although the overall
architecture of filaments appears extended along the axodendritic axis in that material.
Rostaing et al. (2006) also provided immunogold identification of at least some of their
filamentous structures as F-actin, consistent with previous work (Gulley and Reese, 1981).
The biochemical identity of these points of contact between filaments and the PSD remains
uncertain, although biochemistry has identified a variety of actin-binding proteins within the
PSD (Bockers et al., 2001; Hering and Sheng, 2003; Qualmann et al., 2004), and
immunogold confirms the presence of several of these proteins on the cytoplasmic side of
the PSD, including cortactin (Rostaing et al., 2006) and α-actinin, which can interact
directly with the N-methyl-D-aspartate receptor (Wyszynski et al., 1997).

CONCLUSIONS
Electron tomography offers a powerful new tool for the analysis of synaptic structure, but
specimen preparation remains problematic. Our tomographic analysis of synapses from
chemically fixed brain processed according to an osmium-free protocol provides a new
view. These data may help to elucidate important aspects of synaptic organization.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
TEM images illustrate the influence of two different protocols on ultrastructure. A:
Axospinous synapse (stratum radiatum of CA1 hippocampus) from material postfixed with
OsO4 according to standard protocol (osmicated [OS]). B: Axospinous synapse (stratum
radiatum of CA1 hippocampus) from nonosmicated (NON-OS) material, prepared according
to the technique used for tomography. The smooth, clearly defined membranes and internal
organelles revealed with OsO4 are more aesthetic and easier to understand than the high-
contrast image on the right, but many ultrastructural details are better defined with our
osmium-free protocol. Scale bar =100 nm in A,B.
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Figure 2.
Electron tomography of an axospinous synapse in cerebral cortex (layer II–III of S1 from rat
R2869; see Materials and Methods). The subsequent figures are from this synapse, except as
noted. A: A raw TEM image of the field used to generate the tomographic stack. The
general impression of fuzziness reflects the relatively thick (~120-nm) section and high
(400-KV) accelerating voltage used for image acquisition. Small black dots are 10-nm
colloidal gold particles applied to the section surface, used as fiducial markers. A dual-axis
tilt series of images from this synapse was collected and processed for electron tomographic
reconstruction (see Materials and Methods). B: A representative ultrathin virtual
tomographic section. Inset (enlargement of boxed region) shows the plasma membrane more
clearly; the external surfaces of the lipid bilayer are lined with electron-dense particles. C: A
projection of 11 tomographic slices using ImageJ (W.S. Rasband, ImageJ, National
Institutes of Health, Bethesda, MD, http://rsb.info.nih.gov/ij/1997-2011). Red, presynaptic
terminal; green, postsynaptic spine; yellow, astrocytic process. Scale bar =250 nm in A–C;
25 nm in inset in B.

Burette et al. Page 16

J Comp Neurol. Author manuscript; available in PMC 2013 December 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://rsb.info.nih.gov/ij/1997-2011


Figure 3.
Presynaptic vesicles. A: Connections made by synaptic vesicles. Two examples of direct
membrane appositions between vesicles are circled; these appositions are commonly seen
within vesicle clusters. Blue arrow points to a short filament connecting two adjacent
vesicles; black arrows point to a longer filament that connects a vesicle to the nonsynaptic
plasma membrane. B1–B5: A Z-series showing several presynaptic vesicles; one of these
(#2) exhibits a clathrin coat. Note that each section contains distinct fine detail, documenting
the excellent z-axis resolution of the tomogram. The 3D projection in inset (B5) includes
seven sections through the center of vesicle #1. C: A manual reconstruction of an 88-nm-
thick slice through the terminal, generated with IMOD software (Kremer et al., 1996), from
a stack of forty 2.2-nm-thick virtual sections, illustrating the overall arrangement of vesicles
within the terminal. Pink spheres are presynaptic vesicles within the cytoplasm; purple
spheres are vesicles associated with presynaptic dense projections (shown as large green
spheres); blue sphere is a docked vesicle; and red spheres are vesicles fusing with the plasma
membrane (see Fig. 6 for further details). Short bridges between neighboring vesicles are
shown in blue; bridges connecting vesicles with the plasma membrane are in white. Scale
bar =50 nm in A,B4 (applies to B1–B4), B5.
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Figure 4.
Postsynaptic spine. A: A tomographic slice through the center of the synapse. Arrowheads at
both ends of the synaptic specialization point to a short zone of close contact between pre-
and postsynaptic membranes. Filaments emerging from the postsynaptic density extend into
the spine cytoplasm. A dense accumulation of filaments contacts the lateral edge of the PSD
(dashed ovals); this accumulation is also associated with an accumulation of electron-dense
material lateral to the PSD (arrow at left). The network of internal filaments, manually
reconstructed by using IMOD, is shown below. B: Filaments (green lines) exhibit numerous
branch points (small red spheres) and a few complex electron-dense junctions (large yellow
spheres). Points of contact between filaments and the nonsynaptic plasma membrane are
coded as blue circles; contacts with the PSD (indigo) are coded as white circles. C:
Filaments, plasma membrane, and PSD have been removed to emphasize the organization of
branching. Branch points are denser near the membrane, especially in a zone close to the
edges of the PSD (white dotted circles). D: Tomographic slice of a large axospinous synapse
in the stratum radiatum of CA1 hippocampus (from rat R2869, see Materials and Methods);
dashed ovals surround accumulations of filaments at the lateral edge of the PSD, and arrow
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points to accumulations of filaments contacting the plasma membrane lateral to the PSD. E:
Semiautomated reconstruction of filaments in the spine shown in D, using the “auto-
skeleton” tool in Amira (Visage Imaging). F: Histogram shows filament thickness
(analyzing all 4,164 filaments at least 20 nm long from both spines). G: Histogram shows
filament length (analyzing all 4,091 filaments that were at least 4 nm thick and not thicker
than 20 nm). Scale bar =100 nm in A,D.
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Figure 5.
Relationship of filaments to F-actin. A: A de-noised virtual slice through the postsynaptic
spine. A volume containing a long, straight filament is highlighted by the white box. B1: A
projection of the filament density extracted from the boxed volume. The helical symmetry of
the filament can be seen at a qualitative level; several putative actin-binding proteins are
attached to the filament. To facilitate comparison with the known structure of F-actin,
intensities were inverted so that electron density corresponds to bright intensity values. The
extracted filament volume was subjected to a search for helical symmetry parameters,
yielding values of 2.8 nm for helical rise, and −167.4 degrees for angular increment around
the axes, very close to the canonical symmetry observed for in vitro actin filaments (2.7 nm
and −166.7 degrees). B2: A surface representation of the extracted density after application
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of the deduced helical symmetry. The fact that individual subunits are discernible with sharp
edges indicates that the helical symmetry is quite accurate; otherwise the subunits would
blur into each other along the filament axis. B3: A low-resolution representation of an
atomic model of a canonical actin filament obtained from high-resolution electron
microscopy analysis (Fujii et al., 2010), adjusted for the difference in symmetry parameters.
B4: The fit of this atomic model (blue cartoon representation) into the symmetrized,
extracted filament density (white mesh representation of the surface shown in B2). C: Boxed
region shown magnified. Fourier shell correlation analysis of the fit indicates that the
symmetrized extracted density is equivalent to the atomic actin-filament model up to a
resolution of ~4 nm (0.5 cutoff criterion). Scale bar =100 nm in A; 10 nm in B,C.
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Figure 6.
Presynaptic active zone. A1–A6: A stack of six tomographic slices through depth illustrates
the active zone and associated dense projections. B: Colorized enlargement of the slice
shown in A3 illustrates vesicles in the immediate vicinity of the active zone. Three dense
projections are shown in green. Vesicles in the cytoplasm that contact dense projections are
shown in purple. A docked vesicle directly contacting the plasma membrane (left, brown) is
also associated with a dense projection. A vesicle that has fused with the plasma membrane
is seen in the center of the field (red). C: 3D reconstruction illustrates the relationship
among dense projections (green), presynaptic vesicles (indigo), and vesicles fused with the
plasma membrane (red). D1–D5: z-series shows a docked vesicle. The region of contact
between the docked vesicle and the plasma membrane comprises two separate membranes
(symbolized by schematic yellow phospholipid bilayers in D5). E1–E4: z-series shows an
exocytotic profile. The fusing vesicle is attached to a dense projection (asterisk in E1) via
small filaments. Scale bar =50 nm in A1 (applies to A1–A6), B; 10 nm in D1 (applies to D1–
D5) and E1 (applies to E1–E3).
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Figure 7.
Synaptic cleft (all panels are from the same tomogram shown in Fig. 2). A: Detail from a
tomographic slice, showing the synaptic cleft; note electron-dense “bridges” that span the
cleft (white arrow points to an example). B: A 3D reconstruction of the dense material
within the synaptic cleft. C: Enlargement of the boxed region in B. D: Histogram of electron
density across the cleft. Measurements were taken from a series of rectangular boxes (6 ×
6.6 nm) running from pre- to postsynaptic membranes, along the tangential length of the
synapse. Pre- and postsynaptic membrane estimates reflect lowered electron densities over
the clear center of each membrane; the (variable) cleft distance was partitioned into seven
bins between the membranes. The lowest densitometric estimate (associated with the
presynaptic membrane) was normalized to zero, and the highest value to 1 arbitrary unit.
Highest electron densities were adjacent to the plasma membranes; the modest local
maximum of density in the center of the cleft (marked with black rectangle) may correspond
to the “intercellular plaque.” E1–E3: Serial tomographic slices show details of a zone of
membrane approximation (marked with dotted line) at one end of the synaptic cleft. Scale
bar =25 nm in A; 20 nm in E1 (applies to E1–E3).
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Figure 8.
Postsynaptic density. A1,A2: High-magnification view of the postsynaptic specialization,
showing two slices (6.6 nm apart). Just inside the postsynaptic membrane, the PSD forms a
continuous strip; deeper into the cytoplasm it becomes spiky, breaking into a complex
network of filamentous material. The PSD expands at points of contact with cytoplasmic
filaments (dotted triangles). Note the dense material filling the synaptic cleft. White arrows
point to constrictions between the pre- and postsynaptic membranes, just lateral to the edge
of the PSD. B1–B3: Densitometry (right) quantifies the spatial organization in zones 0–10,
10–20, and 20–30 nm from the plasma membrane (thick yellow lines on left); densities
(measured at each nm tangentially along the synapse) are presented as moving averages of
six bins. The amplitude increases, and spatial frequency decreases, with distance from the
membrane. Scale bar =50 nm in A1 (applies to A1,A2) and B1 (applies to B1–B3).
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