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Introduction
Chronic kidney disease affects more than 50 million people in the U.S.1. The top three
etiologies for end-stage kidney disease are diabetes mellitus (45% of patients), hypertension
(29% of patients), and glomerulonephritis (19% of patients).2 While it is well established
that chronic kidney diseases can result in decreased elimination of drugs via the kidneys, the
effects of kidney disease on non-renal clearance processes, especially specific metabolic
routes, are less well described. Experimental models of chronic kidney disease have reported
reductions in hepatic cytochrome P450 (CYP) enzymes including 3A1, 3A2, 2C11, and N-
acetyltransferases.3–5 Reductions in nonrenal clearance ranging from 30% to 67% have been
reported for substrates of the CYP3A4, CYP2D6, CYP2B6, and CYP2C9 enzymes in
patients with kidney disease.6 In order to fully understand the clinical significance of altered
metabolic routes associated with kidney disease, it will be necessary to evaluate the effects
that specific forms of kidney diseases have on these pathways and whether these processes
effect drug disposition.

Numerous studies have reported various probe drugs or cocktail approaches to evaluate the
in vivo function of various drug metabolizing enzymes and transporters in patients.7, 8

However, only a few studies9–12 were actually conducted in chronic kidney disease patients,
and hence applicability of most of the published studies beyond the healthy control
population remains to be established. As chronic kidney disease patients are commonly
prescribed ~10–12 different daily medications13, studies that evaluate metabolic pathway
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alterations should address requirements for modifications in drug regimens as well as drug
interaction potential.

While studies designed to assess and report the pharmacokinetics of bupropion exist14, 15,
studies designed specifically to assess the influence of chronic kidney diseases on CYP2B6
activity are currently nonexistent. CYP2B6 is responsible for the metabolism of 3–8% of the
currently marketed drugs16, 17 including bupropion, cyclophosphamide, efavirenz,
selegiline, methadone, and sertraline18–22 and several drugs, including clopidrogrel,
ticlopidine, clotrimazole, itraconazole, sertraline, and raloxifene have been purported to
inhibit CYP2B6.23 Data from healthy subjects demonstrate that both the R and S
enantiomers of bupropion and its hydroxy-metabolite are present in plasma, but only
stereoselective S bupropion and (S,S) hydroxybupropion formation clearance have been
shown to be a phenotypic probe for CYP2B624, complicating the assessment of in vivo
activity. The purpose of the current study was to evaluate the pharmacokinetics of
enantiomeric bupropion and its hydroxybupropion metabolite in patients with kidney
diseases affecting the glomerulus in order to provide an assessment of CYP2B6 activity in
this disease state.

Methods
Patients

Patients with biopsy confirmed lupus nephritis and ANCA-associated vasculitis were
enrolled in a functional phenotyping study using oral bupropion as a CYP2B6 probe.
Concomitant therapy with other immunosuppressants was allowed and recorded. Patients
who were not able to abstain from ingestion of alcohol, orange and grapefruit juices for 14
days prior to and during the study were excluded from study participation. Clinical data
including creatinine clearance (Clcr), urinary protein to creatinine ratio (UP:Cr), serum
albumin, and serum creatinine were measured at the time of the study or abstracted from the
medical record within 30 days of the study. The study and consent form were approved by
the University’s Institutional Review Board and patient consent was required prior to
participation.

Pharmacokinetic Study
Patients were admitted to the General Clinical Research Unit (GCRC) to participate in a 72-
hour inpatient stay for pharmacokinetic analysis. Patients were fasting at study initiation and
were fed a standard CYP diet in the research unit throughout the study period. This diet
consisted of avoidance of foods that could interfere with cytochrome P450 metabolism
(cruciferous vegetables, spinach, garlic, grapefruit, chargrilled meats, smoked meats). All
patients received one bupropion 150mg sustained release tablet (Budeprion SR®, Teva
Pharmaceutical Industries, LTD North Wales, PA) with 8 ounces water. Baseline blood was
drawn for a trough plasma concentration and additional heparinized blood samples (7.5 mL)
were obtained at 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 18, 24, 36, 48, and 72 hours. Urine was
collected during the following intervals: 0–6, 6–12, 12–24, 24–36, 36–48, 48–72 hours.
Heparinized blood samples were centrifuged immediately for 10 minutes at 4°C, plasma was
transferred to plastic screw top tubes and stored at −80°C until assay. Urine volume for each
collection period was recorded, and 2 mL aliquots were stored at −80°C until analysis.

Analytical Methods
Plasma and urine samples were assayed for R- and S- bupropion and (R,R) and (S,S)
hydroxybupropion by high-performance liquid chromatography (HPLC) tandem mass
spectrometry as described previously.25 The bupropion enantiomer assays were linear from
0.5–200 ng/mL plasma and 5–2000 ng/mL urine, and the hydroxybupropion stereoisomer
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assays were linear from 2.5–1000 ng/mL in plasma and 25–10,000 ng/mL in urine. Interday
coefficients of variations were 6% (S-bupropion), 6% (R-bupropion), 7% ((S,S)
hydroxybupropion), and 5% ((R,R) hydroxybupropion), respectively.

Pharmacokinetic Analysis
Noncompartmental pharmacokinetic analyses of (R) and (S) bupropion and (R,R) and (S,S)
hydroxybupropion were conducted using WinNonlin v4.1 (Pharsight, Mountain View CA)
with the linear up-log down method for AUC determination. The following parameters were
reported: observed concentration maximum (Cmax), time to maximum concentration (Tmax),
half-life (T1/2), area under the plasma concentration time curve from 0–∞ hours (AUC0–∞)
and 0–72 hours (AUC0–72), apparent oral clearance (Cl/F), and renal clearance (Clr).
Amount of drug/metabolite in the urine (Ae) was calculated by multiplying the assayed
concentration by the total urine volume for each collection period (0–6, 6–12, 12–18, 18–24,
24–36, 36–48, 48–72 hours). The Ae over the 72 hour study period was computed by adding
the Ae for the seven collection intervals. Clr for the 0–72 hour time frame was calculated by
Ae0–72/ AUC0–72. The percentage of the bupropion dose excreted in urine as the R and S
bupropion and the R,R and S,S hydroxybupropion were calculated as the amount of
enantiomer in the urine in the 0–72 hour time frame divided by the bupropion dose.
Hydroxybupropion formation clearance (Clformation) for the 0–72 hour time frame was
calculated as hydroxybupropion Ae0–72/ buproprion AUC0–72.

Statistics
Descriptive analyses for pharmacokinetic parameters, demographic variables and clinical
laboratories included mean values and standard deviations, as appropriate. Paired t-tests or
nonparametric equivalent were used to assess the significance of differences between
enantiomeric parent and enantiomeric metabolite pharmacokinetic parameters, respectively.
(Instat v3.0 GraphPad, Inc, La Jolla, CA) Relationships between pharmacokinetic variables
and clinical laboratories were assessed by Pearson Correlation Coefficients. P values <0.05
were considered statistically significant.

Results
A total of 10 biopsy-confirmed lupus nephritis (n=3) and ANCA vasculitis (n=7) patients
completed the bupropion and hydroxybupropion pharmacokinetic study. The patient
demographic composition included: age 43 ± 18 years, 7 female/3 male, 50% Caucasian,
weight 90.4 ± 14.3 kg. The non-Caucasian patients included 3 African Americans, 1
Hispanic, and 1 “other” patient. Clcr was used as the assessment of GFR in this study.26 The
mean (± standard deviation) clinical laboratory data at baseline included: serum creatinine,
1.2 ± 0.4 mg/dL; UP:Cr, 1.1 ± 0.9; Clcr, 102 ± 33 mL/min; serum albumin, 3.5 ± 0.6 g/dL.
All patients received intravenous cyclophosphamide treatment during the bupropion
pharmacokinetics study. Seventy percent (n = 7) of patients were receiving concomitant
chronic glucocorticoids, with a (mean ± SD) daily prednisone dose of 21.4 ± 18.9 mg. No
other immunosuppressants were prescribed. Most patients received a pre-cyclophosphamide
anti-emetic regimen consisting of dexamethasone and ondansetron.

Pharmacokinetics
Single dose concentration vs time profiles for bupropion/hydroxybupropion, R-bupropion/
(R,R) hydroxybupropion, and S-bupropion/(S,S) hydroxybupropion concentrations are
shown in Figure 1. The mean (± standard deviation) bupropion and hydroxybupropion
pharmacokinetic parameters for the 10 study patients are provided in Table 1.

Joy et al. Page 3

J Clin Pharmacol. Author manuscript; available in PMC 2013 April 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In our population of patients with glomerulonephritis, the half-life was ~2-fold greater
(43.0±29.7 hr vs 22.9±18.0 hr) and exposure (AUC0–∞) was ~13-fold greater
(31600±14800 µg hr/L vs 2329±593 µg hr/L) for the hydroxybupropion metabolite as
compared to the parent drug. Renal clearance estimates demonstrated a 3-fold greater
elimination rate of parent drug as compared to metabolite (1.3±0.6 L/hr vs 0.4±0.2 L/hr).
Formation clearance of bupropion to hydroxybupropion was 3.8±3.0 L/hr.

The pharmacokinetics of the enantiomers of bupropion and hydroxybupropion were
significantly different. For S-bupropion, the Cmax was 3-fold greater (p=0.0015) and the
AUC0–∞ (p=0.0003) was ~2-fold greater than R-bupropion. The apparent oral clearance
was 2-fold greater for R-bupropion than S-bupropion (p=0.002). Exposure (AUC0–∞) to the
(R,R) hydroxybupropion was 17-fold greater (p=0.0005), Cmax was 11-fold greater
(p<0.0001), and Tmax was 2-fold greater (p=0.0215) than the (S,S) hydroxybupropion. The
(R,R) hydroxybupropion plasma half-life was non-significantly greater than the (S,S)
hydroxybupropion. The metabolic ratio, as defined by the metabolite AUC/parent AUC, was
significantly greater for the R vs S enantiomer (25.6±34.5 vs 0.7±1.2 respectively).
Assessment of correlations between albumin or creatinine clearance and apparent oral
clearance, renal clearance, formation clearance, or metabolic ratios of the parent or
metabolite failed to show any relevant trends. Urinary protein to creatinine ratio, the clinical
laboratory measure demonstrating the largest degree of abnormality in this study population,
showed a significant negative relationship with buproprion apparent oral clearance (r=
−0.6848, p=0.0347), and a trend toward significance in the relationship with metabolic ratio
(r=−0.6121, p=0.0667). Additionally, urinary protein to creatinine ratio showed a trend
toward a significant negative relationship with S buproprion apparent oral clearance (r=
−0.6121, p=0.0667), while R bupropropion showed a trend in the relationship between
urinary protein to creatinine ratio and metabolic ratio (r=−0.6242, p=0.0603).

S-bupropion and (S,S) hydroxybupropion exhibited 2-fold (p=0.0079) and 5-fold (p=0.0001)
greater renal clearance values than the R-bupropion and (R,R) hydroxybupropion
enantiomers. The parent and metabolite enantiomers all exhibited a fairly low fraction of the
dose in the urine. The fraction of the dose excreted in urine as S-bupropion was 3-fold
greater than the R- bupropion; the fraction of the dose excreted in urine as the (R,R)
hydroxymetabolite was 4-fold greater than the (S,S) hydroxymetabolite. Overall, ~2% of the
bupropion dose was recovered unchanged in the urine, and 4% was excreted in urine as
hydroxybupropion. Hence, the primary elimination route for bupropion was through a
nonrenal clearance pathway. Assessment of potential correlations between albumin or
creatinine clearance and apparent oral clearance, renal clearance, formation clearance, or
metabolic ratios of the parent or metabolite enantiomers failed to show any relevant trends.

Discussion
The current study enhances the understanding of enantiomeric bupropion and
hydroxybupropion pharmacokinetics and CYP2B6 activity in patients with chronic kidney
diseases due to glomerulonephritis, e.g. ANCA-associated vasculitis and lupus nephritis.
These diseases typically disrupt the normal filtration barrier and result in enhanced filtration
of larger molecular weight substances including plasma proteins and effect creatinine
clearance to various extents. Our study suggested a reduction in buproprion apparent oral
clearance and resultant metabolic ratios in glomerulonephritis patients with higher urinary
protein to creatinine ratios. A potential mechanism behind this finding may be related to
disease severity and/or activity; patients with enhanced urinary protein to creatinine ratios
have reduced metabolic capabilities of the CYP2B6 enzyme.
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Reductions in drug binding proteins such as albumin, occur in glomerular diseases, and
result in the potential for alterations in unbound drug pharmacokinetics.2738 The protein
binding of bupropion to albumin is reported to be 84%,28 hence, extremely large changes in
plasma albumin would be necessary to affect the unbound concentration. In the present
study, patients exhibited only mild to moderate changes in serum albumin (2.7 g/dL to 4.4 g/
dL) and analyses did not support correlation trends between serum albumin and clearance or
metabolism. A reduction in kidney function as measured by the glomerular filtration rate or
creatinine clearance can also occur and result in reduced clearance of small molecules
through the kidneys requiring decreases in drug dosages. Creatinine clearance measures in
the glomerular disease patients were reasonably preserved in our study population and we
did not detect any relationships between creatinine clearance and metabolism.

Our glomerulonephritis patients had apparent differences in bupropion and
hydroxybupropion pharmacokinetics than previously reported in healthy control
subjects.24, 29–31 The glomerulonephritis patients exhibited greater (R+S) bupropion
AUC0-∞ (2329±953 vs 1240±395 µg hr/L) and lower bupropion apparent oral clearance
(73.5±27.2 vs 137±52.2 L/hr) values than in healthy controls.2429–31 Historical bupropion
pharmacokinetic data from patients with reduced creatinine clearance, however, were more
consistent with results from healthy control patients,14, 15 suggesting a mechanism other
than creatinine clearance reductions for altered pharmacokinetics in the glomerulonephritis
population. For the hydroxybupropion metabolite, which exhibits ~50% of the
pharmacologic activity of the parent, the trend in half-life was longer for glomerular disease
patients (43.0±29.7 vs 28.2±9.2 hrs) than healthy controls24 and impaired kidney disease
patients14. The metabolic ratio in patients with glomerular disease was considerably lower
(~8.3) compared to values previously reported in healthy subjects (~14)24 and patients with
impaired kidney function (12 and 26).14, 15 These results suggest a reduced metabolic
capability in patients with glomerulonephritis.

Enantiomers of bupropion and hydroxybupropion have different pharmacokinetic profiles
per in vitro and in vivo studies employing healthy control subjects.24, 32 A previous in vitro
study using recombinant CYP2B6 reported a 3-fold greater rate of (S,S) vs (R,R)
hydroxybupropion formation (0.65 µl/min/pmol 2B6 vs 0.21 µl/min/pmol 2B6).33 Higher
rates of formation of the (S,S) hydroxybupropion enantiomer may be relevant
pharmacologically as it is more potent at nicotinic receptors, as well as noradrenergic and
dopaminergic transporters.34, 35 Our glomerulonephritis patient data supported a higher
formation clearance of (R,R) hydroxybupropion (9.3±6.3 L/hr) versus (S,S)
hydroxybupropion (1.2±1.1 L/hr).

The S-bupropion and (R,R) hydroxybupropion enantiomers contributed predominantly to
bupropion and hydroxybupropion concentrations, respectively, in the glomerulonephritis
population. However, previous data in healthy subjects suggested that the R-bupropion
enantiomer was in excess (64% of total bupropion) to the S bupropion33, conflicting with
our data, while other reports indicate that (R,R) hydroxybupropion represented 83%–94% of
total hydroxybupropion, consistent with our data.32, 33 As bupropion enantiomers are known
to rapidly racemize36, it is unknown whether clinical assay results actually reflect what was
present in the blood at the time of sample collection versus conditions at the time of storage
or analysis, and this is a potential confounding factor in all studies.

Since it is plausible that kidney diseases may alter the disposition of bupropion and
hydroxybupropion, we collected and assayed the urine. Our current results showed that
although bupropion and hydroxybupropion exhibited a fairly low fraction of the total dose
excreted in the urine (e.g., 2 to 4%), a relatively larger percentage of the total dose was
excreted in the urine as the S- enantiomer of the parent and the (S,S) enantiomer of the
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hydroxy-metabolite. This contrasts with healthy control data that demonstrated a greater
urinary recovery of the R bupropion.24 Renal clearance assessments in glomerulonephritis
patients, in fact, showed that the S-bupropion and (S,S) hydroxybupropion were 2- and 5-
fold increased, respectively, over the R- bupropion and (R,R) hydroxybupropion. Previous
data have shown stereoselective pharmacokinetics for nonsteroidal anti-inflammatory drugs
in patients with diminished kidney function.37–39

The current study adds to the existing literature of drug metabolizing enzyme assessments in
kidney disease, but contributes a new dimension into a specific group of patients with
glomerulonephrits. The current study does not support applying bupropion pharmacokinetic
data derived from healthy controls and general kidney diseases to patients with diseases such
as lupus or ANCA vasculitis. Ongoing studies in these patients will help to identify
alterations in other metabolic pathways.

Conclusions
The pharmacokinetics of bupropion and hydroxybupropion are altered in patients with
glomerulonephritis. Bupropion exposure (AUC0–∞) was 2-fold greater and apparent
clearance was ~one-half what has been reported previously in healthy controls and chronic
kidney disease patients in general. However, the hydroxy-metabolite of bupropion, with
50% of the pharmacological activity, appears to exhibit a longer half-life and AUC in
glomerulonephritis patients, with possible pharmacological implications for drugs whose
metabolites harbor some activity. Stereoselectivity in drug and metabolite disposition is
apparent from differences in measured pharmacokinetic parameters between the enantiomers
of bupropion and hydroxybupropion, with the S- and (R,R) enantiomers most contributory
toward overall patient exposure.
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Figure 1.
a. Plasma concentration (ng/mL) versus time (hours) curve of bupropion and
hydroxybuproprion in ten patients with glomerulonephritis. Error bars represent mean ±
standard deviation.
b. Plasma concentration (ng/mL) versus time (hours) curve of R bupropion and R,R
hydroxybupropion in ten patients with glomerulonephritis. Error bars represent mean ±
standard deviation.
c. Plasma concentration (ng/mL) versus time (hours) curve of S bupropion and S,S
hydroxybupropion in ten patients with glomerulonephritis. Error bars represent mean ±
standard deviation.
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