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HIV-1 has been the target of intensive research at the molec-
ular andbiochemical levels for>25 years.Collectively, thiswork
has led to a detailed understanding of viral replication and the
development of 24 approved drugs that have five different tar-
gets on various viral proteins and one cellular target (CCR5).
Although most drugs target viral enzymatic activities, our
detailed knowledge of somuch of the viral life cycle is leading us
into other types of inhibitors that can block or disrupt protein-
protein interactions. Viruses have compact genomes and
employ a strategy of using a small number of proteins that can
form repeating structures to enclose space (i.e. condensing the
viral genome inside of a protein shell), thusminimizing the need
for a large protein coding capacity. This creates a relatively small
number of critical protein-protein interactions that are essen-
tial for viral replication. For HIV-1, the Gag protein has the role
of a polyprotein precursor that contains all of the structural pro-
teins of the virion: matrix, capsid, spacer peptide 1, nucleocap-
sid, spacer peptide 2, and p6 (which contains protein-binding
domains that interact with host proteins during budding). Sim-
ilarly, the Gag-Pro-Pol precursor encodes most of the Gag pro-
tein but now includes the viral enzymes: protease, reverse tran-
scriptase (with its associated RNase H activity), and integrase.
Gag and Gag-Pro-Pol are the substrates of the viral protease,
which is responsible for cleaving these precursors into their
mature and fully active forms (see Fig. 1A).

TheGag andGag-Pro-Pol precursors assemble at the plasma
membrane of the cell, with the membrane ultimately being
pinched off from the cell surface to create a membrane-bound
virion with a diameter of �120 nm, representing a volume of
�0.9 attoliters (Fig. 1). The host ESCRT (endosomal sorting
complex required for transport) pathway that is subverted to
drive themembrane fission event needed for virion budding has
been reviewed in detail (1–3). The virion assembly process that
takes place at the cell membrane results in a finite number of
each viral protein within the particle. The budded particle has
�2400 Gag molecules embedded in the membrane via the

N-terminal matrix (MA)3 protein domain, which, in a 120-nm
sphere, gives Gag a concentration of �4.4 mM, with a crude
estimate that the Gagmolecules occupy 50–60% of the volume
of the sphere (4). There are also �120 Gag-Pro-Pol molecules
(5). The embedded protease (PR) must dimerize, release itself
from the Gag-Pro-Pol precursor, and then cleave the other PR
cleavage sites in Gag and Gag-Pro-Pol (6). From these cleaved
products, the nucleocapsid (NC) condenses and stabilizes the
viral dimeric RNA, and �1500 copies of the processed capsid
(CA) protein reform to make the mature conical capsid struc-
ture around viral RNA to create an infectious particle (7). In this
minireview, we examine outstanding issues surrounding the
HIV-1 PR, the role of protein processing and rearrangement in
the assembly pathway, the impact of PR inhibitor resistance on
viral fitness and assembly, and the fact that all of this biochem-
istry takes place within the confines of a particle that is only 120
nm wide.

A Closed System

The activity of all of the viral enzymes appears to take place
within a closed system, with a finite number of protein mole-
cules available for each process. This is true for protein proc-
essing during the production of the virus particle and for viral
DNA synthesis after the particle infects the next cell. Modest
changes in the number of one of the viral enzymes or the num-
ber of active molecules can have surprising effects on particle
assembly, maturation, and infectivity, and from this, we can
infer that certain steps in replication require more than one
molecule (ormolecular complex) of an enzyme, whereas others
require only one. The number of active enzyme molecules in a
virus particle can be manipulated by titrating in an inhibitor,
titrating in an inactive subunit through phenotypic mixing, or
reducing enzymatic activitywithmutations that confer a fitness
loss. Furthermore, reductions in PR activity can have pleiotro-
pic effects because the PR is responsible for cleaving the Gag-
Pro-Pol precursor to generate active reverse transcriptase (RT)
and integrase (IN). It is now clear that for replication steps that
require multiple copies of an enzyme, the partial loss of enzy-
matic activity, to the point where this activity is limiting for
replication, results in a virus particle that has enhanced sensi-
tivity to further inhibition by an inhibitor.
The simplest example is the sensitivity of RT to non-nucleo-

side RT inhibitors (NNRTIs). When RT activity is partially
inhibited by including an intermediate level of an NNRTI
(8–10), by creating a mixture of wild-type and mutant RT sub-
units (8, 11), or by reducing PR activity to decrease the amount
of processed RT subunits (12, 13), the remaining viral infectiv-
ity is hypersensitive to inhibition by adding additional NNRTI.
The interpretation is that viral DNA synthesis requires more
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than one RT heterodimer to be successful; as the number of RT
molecules in the replication complex decreases, the probability
of successfully completing DNA synthesis is reduced, i.e. it is
easier to get to the threshold of too little RT if some of it is
alreadymissing. Thus, multiple RT heterodimersmust be asso-
ciated with the replication complex where viral DNA synthesis
occurs in a newly infected cell, and DNA synthesis requires the
participation of multiple RT complexes, making the process
distributive.
The same phenomenon is seen with PR activity in the forma-

tion of an infectious particle. Partial reduction of PR activity
through titrationwith an inhibitor (10), bymixingwith an inac-
tive subunit (11, 13), or by incorporatingmutations that reduce
enzymatic activity/fitness (13) results in enhanced sensitivity to
further inhibition with a protease inhibitor (PI). Thus, the mat-
uration process requires multiple PR dimers, and as the total
number of active PR dimers in the assembling virion decreases,
it becomes easier to titrate the remaining activity to reach a
threshold of too little enzymatic activity to make an infectious
particle.
The opposite phenomenon is seenwith the viral IN tetramer,

where reduction in IN activity through partial titration with an
inhibitor (10) or including an inactive subunit (11) does not
enhance sensitivity to further inhibition, presumably due to the
fact that a single IN tetramer binds to the ends of viral DNAand
does not exchange with free IN within the replication complex
even if the bound form is inactive. Also, chain-terminating
nucleoside/nucleotide RT inhibitors (NRTIs) cap the growing
DNA chain instead of inhibiting RT itself; thus, viral infectivity
does not become increasingly sensitive to NRTIs as the amount
of RT activity is decreased because reducing the amount of RT
does not change the probability of selecting a normal nucleo-
tide or a chain-terminating nucleotide for incorporation. The
exception among NRTIs is azidothymidine (AZT), which,

when incorporated, cannot translocate from the nucleotide-
binding site onRT to the primer site because of steric hindrance
by the large 3�-azido group (14, 15). In this position, the chain-
terminating nucleotide can be excised by RT by forming a dinu-
cleotide with ATP (14, 16). The increased sensitivity to AZT in
virus with decreased PR activity, first seen with PR fitness
mutants (12) and then with phenotypic mixing with an active
site mutant (13), shows that the RT heterodimer that incorpo-
rates AZT is not necessarily the same one that excises it.

Assembly and Processing

As depicted in Fig. 1B, a small number of Gag molecules
traffic dimers of the RNA genome to the plasma membrane (1,
17). Once at the membrane, additional Gag proteins are
recruited through Gag-Gag interactions and nonspecific Gag-
RNA interactions, utilizing Gag molecules from both the cyto-
sol and those already attached to the membrane (17–19). Gag-
Pro-Pol is recruited to sites of assembly simultaneously.
Although Gag oligomerization initiates budding, the process is
facilitated and completed by the ESCRT family of proteins (1,
4). Each immature virion will contain �2400 Gag monomers
(4) and �120 Gag-Pro-Pol molecules (5). For the emerging
virus particle to become infectious, theHIV-1 PRmust catalyze
a series of cleavage events that trigger structural and morpho-
logical changes that result in the condensation of the NC-RNA
core, the formation of the CA shell, and the release of viral
enzymes from their precursors (Fig. 1C). For a thorough discus-
sion of the architecture of the HIV-1 viral core, we direct you to
a number of recent publications (see Ref. 20).
The HIV-1 PR is an aspartic proteinase and functions as a

homodimer (Fig. 2A) (21). Each monomer contributes an
aspartic acid residue to coordinate a water molecule during the
proteolysis reaction. Most aspartic proteinases exist as pseu-
dodimers in eukaryotes, but the retroviral PR originates as a

FIGURE 1. HIV-1 assembly pathway. A, schematic diagram representing the Gag and Gag-Pro-Pol polyproteins: MA (blue), CA (dark green), SP1 (light green), NC
(brown), SP2 (orange), p6 (salmon), PR (purple), RT (cyan), and IN (navy). B, summary of the HIV-1 budding process at the plasma membrane. C, sequential
proteolytic processing of HIV-1 Gag polyprotein. Listed above each cleavage event is the processing site targeted within the intermediate.
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monomer within the Gag-Pro-Pol polyprotein. The need for a
dimer to form the active site necessitates the interaction of two
Gag-Pro-Pol molecules for proteolysis to begin. Relative to the
excised mature PR, dimers formed between monomers still
embedded in Gag-Pro-Pol are much less stable (22, 23) and
exhibit poorer enzymatic activity (23). The instability results in
the embedded dimers sampling awide variety of conformations
(22, 24, 25), potentially adopting the mature dimer interface
only 3–5% of the time (25). Because of this low enzymatic activ-
ity, the first cleavage events performed by the embedded PR are
intramolecular (26), with the primary result being the removal
of the transframe region from theN terminus of the PRdomain.
These processing events occur at three locations: the spacer
peptide 1 (SP1)/NC site, an internal site within the p6* domain
(the transframe protein in Gag that is expressed only after the
frameshift), and finally the transframe/PR interface. Removing
the transframe region from the N terminus of the PR greatly
improves dimer stability because the first four amino acids of
each PRmonomer interact with the final four residues to create
a four-stranded �-sheet (23). With improved stability, the PR
exhibits increased enzymatic activity, which is likely necessary
for efficient intermolecular cleavages to occur (26–28). These
more functional PR dimers will carry out the bulk of the
remaining processing events, including removal of RT from the
C-terminal end of the PR and cleavage of the Gag polyprotein.
Processing of the Gag polyprotein proceeds in a particular

order, with the five cleavage events roughly occurring in three
different phases, as measured using an in vitro derived Gag
substrate and purified PR (29–31). The initial site targeted is
the SP1/NC site. In the second phase of processing, the spacer
peptide 2 (SP2)/p6 and MA/CA sites are cleaved. Finally, the
spacer peptides SP1 and SP2 are removed from CA and NC,
respectively (Fig. 1C) (31). Although processing has proven dif-
ficult to observe in the virion, mutant particles defective for
cleavage at particular sites generated intermediates consistent
with the proposed order of events determined in vitro (32).
Furthermore, these mutants or others that alter the processing
order severely disrupt infectivity (32–35), indicating that the
timing and order of cleavage are important for the assembly of
the mature viral core. The mechanisms governing ordered
cleavage have been difficult to uncover, largely because no dis-
cernible pattern can be found among the cleavage site amino

acid sequences (36). Instead of a consensus sequence, the sub-
strate specificity demonstrated by the HIV-1 PR appears to be
dependent upon a conserved shape (37). All of the peptide sub-
strates derived from the cleavage sites within the Gag polypro-
tein were shown to adopt an asymmetric extended �-strand
conformation when bound in the active site of the enzyme,
creating a consensus volume termed the “substrate envelope”
(Fig. 2B). Molecular modeling suggests that the cleavage sites
share particular hydrogen bonding patterns between the pep-
tide backbone and the PR, but the hydrogen bonds and hydro-
phobic interactions between substrate side chains and the PR
are not conserved among the different cleavage sites. Thus, the
differences in the side chain hydrogen bonding and hydropho-
bic interactions may contribute to the unique processing rate
for each cleavage site (38).
Assembly, budding, and proteolytic processing of Gag and

Gag-Pro-Pol are intricately linked events, although the relative
timing of each and the importance of that timing are questions
that are still being explored. Following initiation of assembly at
the membrane, complete virions are observed at the surface of
the cell within 5–10 min (18, 39), and virion release occurs
15–20min later (18). It has been difficult to observe processing
events in released virions, and early activation of PR activity by
creating a tethered dimer within a single Gag-Pro-Polmolecule
or delay of particle formation relative to processing negatively
impacts particle formation (40, 41); these observations suggest
that activation of the PR is delayed until later in the assembly
process but that processing must be completed either during
budding or relatively quickly after budding. PR activity is not
required for the initiation of assembly (18), but there is some
evidence that the presence of a PR with decreased activity can
slow the rate of virion release (42). The excess of Gag over
Gag-Pro-Pol (20:1) suggests that the vast majority of Gag-Pro-
Pol will have primary interactions with Gag molecules. Thus,
the infrequent juxtaposition of two Gag-Pro-Pol precursors to
create a homodimer, the stochastic spacing ofGag-Pro-Pol pre-
cursors in the budding Gag shell spatially limiting the number
of Pro-Pol interactions, and the poor stability of the immature
PR dimer in the Gag-Pro-Pol homodimer all reduce the likeli-
hood of significant PR activity early in the assembly process.
The slow or delayed release of the first PR dimer can then ini-
tiate cleavage events in trans that would include the release of

FIGURE 2. Structure of the HIV-1 PR and its substrates. A, structure of HIV-1 PR with the resistance mutations. The dimeric PR is shown (Protein Data Bank
code 3EL1; rendered with PyMOL) bound to an inhibitor (green). The active site aspartic acid (Asp-25) from each subunit is shown in blue. The positions of PI
resistance mutations proximal to the active site are shown in red. The positions of compensatory mutations are shown in purple. B, substrate envelope of HIV-1
PR. The substrate envelope was calculated from the overlapping van der Waals volume of four or more substrate peptides. The colors of the substrate peptides
are red (MA/CA), green (CA/SP1), blue (SP1/NC), cyan (SP2/p6), magenta (RT/RNase H), and yellow (RNase H/IN). This figure was reprinted from Ref. 101 with
permission.
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PRmonomers that could dimerize and have high levels of activ-
ity. Still, it must be acknowledged that we do not know when
processing is initiated, although most textbook conceptualiza-
tions of processing have it occurring after budding. We are
likely to know the answer to this question when fluorescent
proteins are incorporated into the virion that can also serve as
substrates for the PR.

Protease Inhibitors, Resistance, and Viral Fitness

Due to the requirement of thematuration process to produce
infectious virions, PR has been a major target for developing
antiretroviral inhibitors, with nine PIs approved for clinical use.
These PIs are transition state analogs, mostly peptidomimetics,
that bind the enzyme with much higher affinity than do the
substrates (21). The binding affinity of the PIs for the wild-type
enzyme ranges from nM to pM (43) under conditions in which
peptide substrates bindwith affinities in the high�M range. The
effectiveness of the PIs in antiretroviral therapy can be compro-
mised by the emergence of resistance mutations in the PR
region. More resistance mutations have been selected by PIs
than any other antiretroviral drugs. Although mutations at as
many as 46 positions of the 99 residues in PR have been shown
to be associated with selection by PIs, only a subset of �26
positions have been identified as those most commonly
involved in PI resistance (see Refs. 44 and 45 and references
therein). High level resistance to a PI typically requires four to
six mutations, and PIs are thus considered to have a high
genetic barrier (46). The ability tomake tight binding transition
state analogs that require multiple mutations to confer resist-
ance suggests that it may be possible eventually to treat HIV-1
with a single PI if it were sufficiently potent. Efforts along these
lines have been explored with some success (47–49).
There are several mechanistic features of resistance to PI.

First, mutations in the active site can change the interaction
with the inhibitor either by reducing a contact or creating a
steric hindrance (Fig. 2A) (50–55). Such changes are more eas-
ily tolerated if a side chain of the drug extends outside of the
substrate envelope. However, when such changes also impact
interaction with the substrate, this results in a fitness cost in
howwell the enzyme functions in the context of replication (12,
56–58). Second, the fitness cost associatedwith these active site
mutations can be compensated bymutations that occur outside
of the active site but appear to be capable of enhancing PR
activity (51, 54, 59–65). Although the active site mutations are
absent in the untreated population, the compensatory muta-
tions pre-exist in the population, perhaps compensating for
deleterious mutations in PR that can get fixed fortuitously.
Third, cleavage sites around SP2 can become limiting for mak-
ing an infectious virus, and cleavage site sequences can undergo
evolution to make them more easily cleaved by the mutant PR
(66–70). Fourth, other mutations in Gag have been described
that appear to contribute to PI resistance (71) but in unknown
ways, suggesting that there are other pathways to at least low
level resistance.
Our view is that the concept of fitness is synonymous with

the idea of PR acting in a closed system.When PR loses activity
on its normal Gag substrate cleavage sites, the probability of
completing assembly and processing to yield an infectious par-

ticle is reduced, i.e. the virus is less fit to produce the full com-
plement of infectious virus. Thus, in some assays, a single resis-
tance-associated mutation will actually sensitize the virus to an
inhibitor when the fitness loss in substrate recognition is
greater than the fitness gain in resistance (13). This balance
shifts as multiple resistance mutations and compensatory
mutations are added. Such fitness cost and pleiotropic effects of
a virus with reduced PR activity may be the reason that patients
with virus carrying PI resistance mutations (that lower fitness
overall) can have slowed disease progression in the setting of
drug failure (72).

Assembly Inhibitors

HIV-1 particle assembly is a highly ordered process and
involves the association and rearrangement of several thousand
viral structural proteins.One key step involves cleavage at theN
terminus of CA by the viral PR, followed by the formation of a
new �-hairpin structure anchored by a salt bridge between the
released N-terminal Pro-1 of CA and an internal aspartic acid
side chain in CA (Asp-51 in HIV-1), an essential step in the
proper assembly of the capsid cone (73, 74). Disrupting this salt
bridge is an attractive drug target, although, as yet, an unreal-
ized target. The fully processed CA makes key intermolecular
CA-CA interactions that result in hexameric (and some penta-
meric) rings that are the basic structural unit of the conical
capsid (75). Due to the indispensable nature of these interac-
tions in generating infectious virus particles, there is an ongoing
search for molecules that bind CA and inhibit these interac-
tions. A 12-mer peptide (capsid assembly inhibitor (CAI)) and a
smallmolecule (CAP-1) are able to disruptHIV-1CAassembly.
CAI, a helical peptide selected in a phage display, binds to a
hydrophobic cleft within the C-terminal domain (CTD) of CA
(76, 77), and CAP-1 bind to the N-terminal domain (NTD) of
CA, forming a hydrophobic pocket (78, 79). Recently, new CA
inhibitors have been identified in high throughput screening
assays. PF74, a small molecule, binds to the NTD of HIV-1 CA,
near the CAP-1-binding site, and inhibits both early and late
events of viral replication (80, 81). Twomore series of inhibitors
have been identified based on benzodiazepines (BDs) and ben-
zimidazoles (BMs), which also bind to the same NTD of CA as
CAP-1 (82). It has been proposed that all of these inhibitors are
interfering with a critical NTD-CTD intermolecular interac-
tion of CA-CA that stabilizes the hexameric and pentameric
rings (82).
The structural changes that must occur during virion matu-

ration represent one type of target in inhibiting assembly.
Another target is the processing sites themselves. Blocking
cleavage at a specific processing site is analogous to blocking
viral DNA synthesis with a chain-terminating analog; in each
case, the enzyme (PR or RT) is not inhibited, but rather its
substrate (a cleavage site or the growingDNA chain) is blocked.
Processing at each site in Gag is essential for making an infec-
tious particle (32, 33, 83), althoughmutations blocking process-
ing at the NC/SP2 site do not completely ablate infectivity (33,
84). Bevirimat, the prototype HIV-1maturation inhibitor iden-
tified in a screen for inhibition of viral replication, specifically
inhibits the cleavage event between CA and SP1 within the Gag
polyprotein (85, 86). The drug is incorporated into immature
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particles near the CA/SP1 cleavage site and stabilizes an imma-
ture form of the CA lattice, and this interaction with Gag alters
its ability to serve as a PR substrate at the CA/SP1 site (87, 88).
Recently, direct binding of bevirimat to the CA/SP1 cleavage
site in immature Gag particles has been reported (89). The dra-
matic effect on infectivity of bevirimat binding to the CA/SP1
site is similar to the effect of a processing mutant at this site,
especially if a fortuitous cleavage site within SP1 is absent (90).
Thus, bevirimat provides a proof of concept for an inhibitor of
a specific processing site. Along these lines, cleavage at the
MA/CA site must go to near-completion to make an infectious
particle, and this has been seen for both MuLV and HIV-1 (33,
34, 91). Inhibiting cleavage at this site by as little as 10% is
sufficient to ablate virion infectivity (33). TheMA/CA cleavage
site is the most sensitive site among all of the cleavage sites in
Gag in terms of requiring nearly complete cleavage to allow
infectivity (33), suggesting that the MA/CA cleavage site could
be an important target for the development of a new class of
maturation inhibitors. The extreme sensitivity of this site to
underprocessing in the context of forming an infectious parti-
cle reinforces the idea that strong trans-dominant effects can be
realized in inhibiting the assembly/processing pathway. The
EM morphology of the virions showing defects in the CA
assembly process is shown in Fig. 3. Note that the inside of the
Y132I virion (where cleavage between MA and CA has been

blocked) is less electron-dense due to the lack of free CA pro-
tein. Virus particles with other CA assembly defects often dis-
play similar ring-shaped capsid-like structures, presumably
aberrant CA assemblies, regardless of the type of maturation
inhibitors used.
Another potential step in the life cycle that is impacted by PR

processing is the condensation of the viral dimeric RNA. In the
absence of processing, viral RNA is in a low stability dimeric
form in the virion (92). With processing, the RNA is in a much
more stable dimeric form. Condensation of the RNA is medi-
ated by the NC region after it is released fromGag (93). During
the maturation process, NC is found within four different pro-
teins: full-length Gag, NC/SP2/p6 (p15), NC/SP2, and fully
released NC. These different versions of the NC protein may
have distinct functions at different steps in the life cycle (94),
providing a role for processing in the regulation of RNAbinding
by the NC domain. Furthermore, there is evidence that nucleic
acid binding can regulate the efficiency of cleavage at the
SP2/p6 site using a p15 substrate (95, 96). Thus, on several
levels, processing around the NC domain of Gag is involved in
regulation of the protein activity.

Looking Ahead

Answering the question of when processing occurs in the
budding pathway is central to our understanding of virionmor-
phogenesis, and we are likely to know the answer to this ques-
tion with the application of new technologies. Our detailed
understanding of the role of protein processing in the regula-
tion of protein function for the proteins present in Gag is cre-
ating opportunities to design assays amenable for use in high
throughput screens to search for lead compounds that can
inhibit the assembly of an infectious particle (97–99). The 25
years of studying the biochemistry of theHIV-1 virionwas built
on an earlier 15 years of studying other retroviruses, starting
with the identification of a Gag precursor in avian myeloblas-
tosis virus (100). We are now at a point where we understand
critical steps in virion assembly at the molecular level and can
conceptualize newways of disrupting these essential processes.
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