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Abstract

Despite attempts and some successes to improve air quality over the decades, current U.S. national 

trends suggest that exposure to outdoor and indoor air pollution remains a significant risk factor 

for both the development of asthma and the triggering of asthma symptoms. Emerging science 

also suggests that environmental exposures during the prenatal period and early childhood years 

increase the risk of developing asthma. Multiple mechanisms mediate this risk as a wide range of 

deleterious air pollutants contribute to the pathogenesis of asthma, across a variety of complex 

asthma phenotypes. In this review, we will consider the role of altered innate and adaptive 

immune responses, gene by environment interactions, epigenetic regulation, and possibly gene by 

environment by epigene interactions. Gaining a greater understanding of the mechanisms that 

underlie the impact of exposure to air pollution on asthma, allergies, and other airway diseases can 

identify targets for therapy. Such interventions will include pollutant source reduction amongst 

those most exposed and most vulnerable, and novel pharmaceutical strategies to reduce asthma 

morbidity.
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1. Introduction

Despite the strengthening of the Clean Air Act in 1990 and improvements in air quality, 

current U.S. national trends suggest that exposures to outdoor and indoor air pollution 

remain a significant risk factor for both the development of asthma and the triggering of 

asthma symptoms.1-3 Using data from the Childrens Health Study in Southern California 

where exposure to traffic-related air pollution is relatively high, almost 40% of asthma 

exacerbations were attributable to exposure to air pollution.4 Within the New England, New 

Jersey and New York area that was studied in one public health impact analysis, 72% of the 

population live in densely populated cities with elevated ambient fine particulate matter 

(PM2.5) concentrations.5 The consequences of these exposures can be great. As an example, 

using modeled and measured ambient measurements of PM2.5 and ozone (O3), 2,500,000 

asthma exacerbations in children and 110,000 pediatric emergency room visits for asthma 

were attributed to 2005 ambient PM2.5 concentrations nationwide; 27,000 hospital 

admissions for respiratory causes and 19,000 pediatric emergency room visits for asthma 

were attributed to ambient O3.6

As the effects of air pollution become increasingly important, a unifying biological theme is 

that many pollutants modify innate and acquired immune responses, and susceptibility can 

vary by age, other modifying factors, and additional exposures. This review will provide 

updates on the effect of pollutant exposure on the innate and adaptive immune responses, 

genetic and epigenetic modifiers of response to pollutants, and potential interventions to 

mitigate these effects.

2. Impact of time windows of susceptibility

Murine and human birth cohort studies suggest that the prenatal period is a time when the 

effects of ambient air pollution are heightened.7,8 Studies from the Columbia Center for 

Childrens Environmental Health (CCCEH) showed that prenatal exposure to polycyclic 

aromatic hydrocarbon (PAH), either in association with exposure to second hand smoke,9,10 

or in association with higher cockroach allergen levels,11 was associated with asthma-related 

symptoms in children and cockroach allergic sensitization in urban children respectively. 

African American children in the San Joaquin Valley of California born to mothers who 

smoked during pregnancy, in association with prenatal exposure to nitrogen dioxide (NO2), 

PM with median aerodynamic diameter less than 10 microns (PM10) and carbon monoxide 

(CO), exhibited declines in lung function.12

The very young also are particularly susceptible. In the Genes–Environments and Admixture 

in Latino Americans II and Study of African Americans, Asthma, Genes and Environments 

II studies, a 5 ppb increase in average NO2 during the first year of life, was associated with 

an odds ratio of 1.17 for asthma among 8 to 21 year olds. Odds ratio for NO2 exposure 

during the first 3 years was associated 1.26.15 The preschool years (age 2-5 years) 
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demonstrated the greatest association between O3 levels and nighttime primary care visits 

for asthma exacerbations in a Japanese cohort.16 In daily time series analyses of over 6000 

intensive care unit admissions for asthma in New York City hospitals, children age 6-18 

years had a higher risk for each 12 og/m3 increase in PM2.5 and for each 22 ppb increase in 

O3, compared to adults.3 Combined, these results suggest that there is greater vulnerability 

of the growing lungs and the developing immune system, thus predisposing towards more 

airway inflammation later in life.13 As discussed later, epigenetic regulation may underlie 

mechanisms occurring during the prenatal period in particular.

3. Impact of modifying factors

Susceptibility to the hazards of exposure to air pollution and its molecular and clinical 

consequences can be modified by the presence of atopy, stress and obesity. Modification by 

atopy was well-described in the Northeast Chinese Children Health Study of over 30,000 

Chinese children aged 3 to 12 years selected in 2009 that examined associations using multi 

(PM10, SO2, NO2, O3, C0)-pollutant models.17 In contrast, in the NYC CCCEH birth cohort, 

repeated exposure to the PAH pyrene was associated with asthma among the nonatopic 

children.18 Shankardess and colleagues from the Children’s Health Study published a 

seminal article showing the risk of asthma attributable to exposure to traffic-related air 

pollution, measured by line source dispersion model, was significantly higher for subjects 

with high parental stress (measured by the Perceived Stress Scale (PSS) than for subjects 

with low parental stress.19 More recently, the same group showed that children from high-

stress households, again measured by the PSS, exhibited decrements in lung function in 

association with higher home and school NOx levels.20 Being overweight also has been 

shown to increase the susceptibility to the respiratory effects of exposure to air pollution. Lu 

and colleagues reported that overweight or obese children had more asthma symptoms, but 

not worse lung function or airway inflammation, following higher exposure to fine 

particulate matter and NO2 than normal-weight participants across a range of asthma 

symptoms.21 In the CCCEH cohort, among the obese children, a significant positive 

association was observed between select semivolatile PAH concentrations and asthma that 

was not observed among the nonobese children.22 Combined, these studies suggest that 

factors like chronic low-grade systemic inflammation associated with obesity and stress may 

predispose towards asthma, although other mechanisms related to the host conditions, such 

as mechanical impediment of ventilation or sedentary lifestyle in obesity, also could 

contribute.

4. Update on pollutant effects on immune mechanisms

So how do pollutants impact disease? Epidemiological findings associating phenotypes like 

atopy and obesity with greater susceptibility provide mechanistic clues. Also evident is that 

multiple mechanisms are involved, as would be expected given the range of deleterious air 

pollutants and complex asthma phenotypes. To date, the best supportive evidence implicates 

both heightened innate and adaptive immune responses, as described below.
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Altered innate immune signaling

A number of studies have provided strong evidence that innate immune responses modulate 

acute response to pollutants. As acute endotoxin-rich bioaerosol exposure is a known cause 

of acute lung disease and asthma exacerbation, MyD88 dependent toll like receptor (TLR) 

signaling is an intriguing candidate mechanism for the inflammatory actions of pollutants. 

This is coupled with the increasing understanding that innate immune mechanisms can be 

activated by damage associated molecular patterns (DAMPs) as well as more traditional 

pathogen associated molecular pattern moieties (PAMPs). For example, low molecular 

weight hyaluronic acid, a DAMP produced by several types of cell injury, can activate 

CD44 and TLR4 dependent acute inflammatory processes 23 Pollutant exposure also 

resulted in increased expression of CD14 and TLR4 in airway macrophages, thus increasing 

both the DAMP ligands and appropriate effector cell numbers in the airway.24,25

The recent description of the nucleotide-binding oligomerization domain-like receptor 

(NLR) based inflammasome provided another potential innate immune mechanism for 

increased response to pollutants. NLR activation of caspases allows for cleavage of pro-

forms of interleukin (IL)-1β, IL-18 and IL-33 to active forms.25,26 IL-1β was increased in 

asthmatics exposed to O3, and inflammasome-based mechanisms have been identified in 

inflammatory responses to PM as well.25,27,28 Silica and uric acid particles were among the 

first recognized stimuli for inflammasome activation, and ATP is the classic activator for 

inflammasome responses.26 Taken together, TLR and inflammasome-mediated responses 

likely account for a substantial portion of acute response to pollutants.

Cells in the airway epithelium are among the first to encounter particulate and gas phase 

pollutants. Airway epithelial cells exposed to O3 or various species of PM can have a 

proinflammatory response.25,29 Additionally, these cells will produce a number of DAMPs 

that then can activate airway macrophages and other myeloid derived innate immune 

cells.24,29 Epithelial cells are sources of hyaluronic acid and ATP after challenge with O3.24 

Much of the cytotoxicity caused by pollutants is due to increased oxidative stress. It has 

been shown that cells from glutathione S-transferase Mu 1 (GSTM1) null individuals (who 

cannot make the GSTM1 antioxidant protein) or in which RNA silencing techniques have 

been used to inhibit GSTM1, there is increased response to O3, and PM.30-32 Conversely, 

cells treated with N-acetyl cysteine (which increases intracellular antioxidant tone) are 

protected from pollutant-induced inflammatory responses. Taken together, these 

observations suggest that oxidative stress plays an important role in pollutant-induced innate 

immune responses.

Adaptive immunity: Allergic; TH17; Treg, endothelial/DC cell, B2AR signaling

Experimental studies have provided insight as to how adaptive immune responses may be 

involved, including upregulation of T helper (Th2), IL-17, thymic stromal lymphopoietin 

(TSLP)-related pathways, and dendritic cells and downregulation or impairment of 

Tregulatory (Treg) function. A number of animal models and human experimental work 

have demonstrated upregulation of proallergic Th2 cytokines or IgE following exposure to 

air pollution, and diesel, NO2 and PAH in particular.33,34 Acciani and colleagues exposed 

young mice to DEP in combination with dust mite allergens via the airway and reported 
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increased dust mite-specific IgE, airway inflammation, airway hyperreactivity, goblet cell 

metaplasia, Th2/Th17 cytokines, dendritic cells, and activated T cells.35 Similar patterns 

have been detected in cohort studies. In the 2005-2006 National Health and Nutrition 

Examination Survey (NHANES), using monitored or modeled air quality data, higher levels 

of NO2 were associated with higher IgE to inhalant (found in 42.7%) and indoor (found in 

30.4%) allergens in children and adults. Higher PM2.5 levels were associated positivity with 

indoor allergen-specific IgE.36 CCCEH also showed that the presence of elevated levels of 

the urinary PAH metabolites 3-hydroxyfluorene, 3-hydroxyphenanthrene, 2-

hydroxynaphthalene, 2-hydroxyflourene and 1-hydroxyphenanthrene concentrations, were 

associated with elevated cat-IgE levels at age 5 years in multivariate analyses.37 In 

additional work utilizing annual spatial data on the proximity and density of roadways and 

built environment that were collected for a 250 m buffer around a child’s home, associations 

between geographic information systems (GIS) indicators (eg concurrent proximity to 

highway) and total IgE levels were found. Positive associations also were observed between 

percent commercial building area and asthma, wheeze, and IgE.38

Allergic immune pathway upregulation is not the only proinflammatory pathway involved, 

as IL-17-mediated inflammation has been shown to be induced following exposure to air 

pollution. IL-17A contributes to host defense to bacterial and fungal infections, and its 

upregulation has been associated with moderate to severe asthma specifically.39 In addition 

to Acciani and colleagues murine models in dust mite antigen sensitized mice exposed to 

diesel, Brandt et. al. in subsequent studies replicated the combined proallergic (ie Th2) and 

IL-17 murine model of asthma following diesel and dust mite sensitization. They also 

prevented DEP-induced exacerbation of airway hyperresponsiveness by administering anti-

IL17A antibodies. Finally, they determined that high DEP–exposed children, calculated as 

individual estimates based on land use regression models, with allergic asthma had nearly 6 

times higher serum IL-17A levels compared with low DEP–exposed children.40 Van 

Voorhis and colleague showed that exposure to urban dust particles and diesel exhaust 

induced Th17 expression, polarization and differentiation in wild-type, but not mice 

deficient in the aryl hydrocarbon receptor,41 the main receptor for polycyclic aromatic 

hydrocarbons.42 Although, AHR expression was not required for Th17 differentiation in 

their study, and the mechanism through which AHR activation induces TH17 differentiation 

is not well understood at this time.41

Emerging studies suggest roles of Treg cells as well. Much of this works stems from studies 

of PAH exposure. In one, treatment with the PAH phenanthrene of primary human Treg 

cells induced DNA methylation of CpG sites within the forkhead box P3 (FOXP3) promoter 

and intronic enhancer, and reduced FOXP3 expression. Such changes in treated cells were 

associated with impaired Treg function and conversion of Treg into a CD4+CD25lo Th2 

phenotype, as well as decreased TGF-β and IL-10 and increased IL-4, IL-13, tyrosine-

phosphorylated STAT6, and GATA-3.43 The same group reported related findings in a 

cohort of asthmatic and nonasthmatic children in Fresno, California, an area with relatively 

high levels of traffic-related air pollution. In cross-sectional analyses, high levels of ambient 

PAH, determined using subject-specific estimates of annual average exposure based on land 
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use regression analyses, was associated with worse asthma symptoms, higher average 

methylation levels at the FOXP3 locus and impaired Treg cell function.44

It is also increasingly evident that the pulmonary dendritic cells (DCs) are active mediators 

of the immunological responses to air pollution exposure. This contribution was well-

described by Provoost and colleagues who showed in murine models upon DEP 

administration via oropharyngeal aspiration that there was considerable migration of DCs to 

the mediastinal lymph nodes, and maturation of DCs, and recruitment of DCs to the airways. 

Once arrived in the mediastinal lymph nodes, the DCs induced the proliferation and 

differentiation of naive T cells and production of IL-4, IL-13, IL-10, and IFN-γ.45

Markers of coagulation disturbances and endothelial damage have been shown to be affected 

by air pollution exposure .46,47 Recently elderly men (mean age 73.2 years) participating in 

the Veterans Administration Normative Aging Study were studied and short (4 hours, 24 

hours) and more intermediate-term (3 to 28 days moving average) air pollution measures 

were compared to a variety of biomarkers. Ambient particle numbers, and levels of BC, NO2 

and CO, measured using central site particle counter and other monitors, were associated 

with higher levels of fibrinogen. Higher ambient O3 levels were associated with greater 

plasma levels of C-reactive protein and intercellular adhesion molecule-1.47 Given the older 

subject population, these studies may offer mechanisms beyond age and associated 

morbidities that may underlie epidemiological findings associating emergency room visits, 

asthma hospital admissions, and mortality from cardiopulmonary disease among the elderly 

with higher ambient PM2.5, O3 and NO2.48-51

Finally, impairment of β2 adrenergic receptor (β2AR) signaling has been implicated. In 

primary murine airway epithelial cells and human airway smooth muscle cells, 

administration of PAH in culture reduced the gene and protein expression of β2AR and 

decreased the production of cellular cyclic adenosine monophosphate, suggesting impaired 

β2AR function.52 Higher levels of NO2 measured from passive samplers in homes combined 

with higher DNA methylation of the β2AR gene (in CpG island in the 5’ untranslated 

region) was associated with a greater odds of severe asthma in atopic and nonatopic 

children.53 However, while decreased gene expression of β2AR was found following 

prenatal experimental exposure to PAH, this was not associated with altered airway 

hyperreactivity (AHR) in mice.54

5. Gene x environment interactions

Another emerging area of investigation in mechanisms of air pollution exposure on asthma 

is in the identification of gene by environment interactions. Much of this work has been 

conducted in studies of oxidative stress genes like the glutathione S-transferase (GST) 

genes, as well as genes associated with TLRs. In the Taiwan Children Health Study using 

data derived from over 4000 children and measures collected from the Taiwan 

Environmental Protection Agency air monitoring stations, interactions between various 

alleles (Ile/Ile, Ile/Val, and Val/Val) of glutathione S-transferase P (GSTP)1 and levels of 

PM10 on risk for reported childhood asthma were found. Specifically, children possessing a 

GSTP1 Ile/Ile genotype living in low PM10 communities were more likely to be report ever 

Miller and Peden Page 6

J Allergy Clin Immunol. Author manuscript; available in PMC 2015 November 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



having asthma than those with a GSTP1 Ile/Val or Val/Val genotype. For children living in 

a high PM10 communities, the GSTP1 Ile/Val or Val/Val genotype were the high-risk 

genotype for childhood asthma.55 The Taiwan Children Health Study group also reported 

that exposure to PM2.5 and O3 was associated positively with a greater risk of asthma among 

those with at least one Val105 allele of the GSTP1 gene. Paradoxical opposite effects on 

asthma risk was detected among Ile105 homozygotes. A tendency of effect modification 

between PM2.5 and O3 and GSTP1 on wheezing also was found.56 In the Cincinnati 

Childhood Allergy and Air Pollution Study birth cohort, high exposure to DEP, determined 

using land-use regression models, was associated with wheezing phenotypes only in 

children with the GSTP1 Val105 allele.57

The expression of additional oxidative stress genes may modify these effects. The presence 

of single nucleotide polymorphisms (SNPs) in the synuclein alpha (SNCA) gene and the 

Parkinson disease protein (PARK) 2 gene, in interaction with higher estimated PM10 levels, 

was associated with declines in FEV1/FVC and FEV1 respectively over 11 years in 

nonasthmatics from the Swiss Study on Air Pollution and Lung and Heart Diseases in 

Adults (SAPALDIA) adults.58 Genetic variation in the genes that encode glutathione 

synthetase also was associated with worse lung function deficits in children over 8 years 

following exposure to NO2, PM10, PM2.5, EC, organic carbon and O3, especially the 

Children’s Health Study in Southern California.59 The Children’s Health Study also showed 

that children with specific functional SNPs in the promoters of the catalase (CAT) and 

myeloperoxidase (MPO) genes combined with higher exposure to O3 or NO2 had greater 

risk of respiratory-related school absences.60 Previously, the group showed that children 

with the transforming growth factor (TGF)-β1 C-509T genotype living within 500 m of a 

freeway had over three-fold increased lifetime asthma risk compared with children with 

CC/CT genotype living more than 1500 m from a freeway.61

Genetic alterations in TLR genes also may modify the effects of exposure to air pollution. In 

human bronchial epithelial cells, three PAHs potentiated the chemokine (IL-8, RANTES) 

response induced by the TLR3 ligand polyinosinic:polycytidylic acid (Poly I:C), suggesting 

a priming effect, at least in culture.62 Several TLR2 and TLR4 SNPs have been shown to 

modify the association of ambient PM2.5, estimated by land use regression models, on the 

prevalence of asthma through age 8 years.63

6. Epigenetic mechanisms

Newer mechanistic lines of investigation focus on epigenetic regulation, gene by 

environment by epigene interactions, and identifying asthma genes whose imprinting may 

be disrupted by environmental exposures. Several air pollutants such as diesel, PM, SO4 and 

PAH, have been shown to induce epigenetic changes in asthma candidate genes. For 

example, DEP exposure combined with the allergen Aspergillus fumigatus (A. fumigatus) 

induced DNA methylation changes in several CpG sites of the IFNγ and IL-4 promoter that 

correlated with IgE production in mice.64 In the Normative Aging Study cohort, an 

interquartile range (IQR) increase in black carbon (BC)/soot exposure measured by a central 

monitoring site over a 90-day period was associated with a decrease of 0.31% in methylation 

of the repetitive short interspersed nucleotide element Alu.65 Subsequently, in the same 
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cohort using a genome wide screen (DNA methylation microarray) of promoter regions of 

19,000 genes, 30 day BC/soot levels were associated with specific patterns of DNA 

methylation consistent with the involvement of several asthma pathways (egs. Th2/B cell 

signaling, eosinophil upregulation) and included genes coding for major histocompatibility 

complex, class II, IgE receptors, interleukins and major basic protein.66

Moreover, the Cincinnati Childhood Allergy and Air Pollution Study recently reported a 4% 

increase in FOXP3 methylation measured in saliva DNA per interquartile range increase in 

DEP exposure, estimated by land-use regression modeling. They also found that increased 

FOXP3 methylation was associated with 3 times greater risk of persistent wheezing in the 

children studied.67 Diesel exposure induced other epigenetic pathways besides DNA 

methylation. Exposure of human bronchial epithelia cell lines to DEP increased the 

recruitment and acetylation of histone H4 associated with the proinflammatory 

cyclooxygenase (COX)-2 promoter, and caused degradation of histone deacetylase 1 

(HDAC1).68 Steel plant workers with documented high occupational exposures to PM 

exhibited evidence of decreased methylation of inducible nitric oxide synthase gene (iNOS), 

and time-weighted measured PM10 levels were associated with global hypomethylation in 

peripheral blood.69 In the Childrens Health Study, elevated weekly averages of PM2.5 levels 

were associated as well with decreased methylation of iNOS in buccal DNA. Exposure to 

SO4 also seemed to induce epigenetic changes, as an IQR increase in SO4 over a 90 day 

period was associated with a 0.27% decrease in the repetitive long interspersed repetitive 

element long interspersed element (LINE)-1 in the Normative Aging Study cohort, and 

associated with altered DNA methylation of several known asthma genes (egs. IL-10, 

eotaxin).66

Exposure to PAH also has been associated with changes in DNA methylation. In the 

CCCEH birth cohort, higher prenatal exposure to PAH, determined using prenatal personal 

air monitoring, was associated with greater DNA methylation in cord white blood cells of 

several new asthma candidate genes. Greater methylation of one in particular, acyl-CoA 

synthetase long-chain family member 3 (ACSL3), was associated with parental report of 

asthma by age 5 years.70 A similar association between prenatal PAH measures and IFN-γ 

promoter methylation also was found.71 Postnatal PAH also was associated with altered 

DNA methylation of multiple sites in the FOXP3 promoter and intronic regions of FOXP3 

and impaired Treg function in the Fresno Asthmatic Children’s Environment Study.44

Just beginning to emerge is a series of papers suggesting three-way interactions between 

genetic inheritance, exposure to air pollution, and epigenetic alterations. In the Children’s 

Health Study, the association between report of prenatal exposure to tobacco smoke on 

global DNA methylation varied by the presence of GSTM1 and GSTP1. Prenatal tobacco 

smoke exposure was associated with lower LINE1 methylation in the GSTM1-null children 

but higher methylation in the GSTM1-present children.72 In the Normative Aging Study, 

effect modifications by DNA methylation were detected. Associations between NO2 

exposure and fibrinogen levels were increased among participants with higher Alu 

methylation,47 and associations between BC/soot and Alu methylation was stronger among 

those with the GSTM1-null genotype.65
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New studies suggest that environmental exposures may disrupt imprinting and thereby 

impact the development of asthma. Indeed, some asthma and allergy genes have exhibited 

evidence of imprinting,73-77 and a few have investigated how environmental exposures may 

modify the effects of imprinted genes on phenotypes.78 In recent work by the CCCEH, 

higher PAH adduct levels in cord blood modified the effects of imprinted asthma candidate 

genes on asthma at age 5-6 years. SNP markers cytochrome P450 (CYP)1B1-05 and 

CYP1B1-06 borderline interacted with prenatal PAH on asthma when maternal imprinting, 

but not paternal imprinting or Mendelian inheritance, was modeled. The proallergic gene 

IL-13 SNP significantly interacted with prenatal PAH exposure on asthma when paternal, 

but not maternal imprinting or Mendelian inheritance, imprinting was modeled.79

7. Interventions

As much of the pathobiology of pollutant-induced asthma is due to inflammation, it is also 

logical that standard anti-inflammatory agents would be useful in preventing acute 

exacerbations. Inhaled steroid use has been shown to decrease both neutrophilic and 

eosinophilic inflammation following experimental O3 challenge.80,81 Epidemiologic studies 

indicate that pollutant-induced asthma exacerbation is less frequent in asthmatics using 

inhaled corticosteroids than those not using these agents.82 A novel selective CXCR2 

antagonist was recently shown to inhibit CXCL1-induced CD11b expression on peripheral 

blood neutrophils with subsequent decrease in neutrophil activation and recruitment in 

ozone-induced airway neutrophilia.83 Taken together, these observations suggest that 

interventions targeted to acute inflammatory responses should mitigate pollutant-induced 

lung disease is susceptible populations.

Because of the emerging science supporting the central role of oxidative stress in 

modulating pollutant induced inflammation, there has been renewed interest in testing 

nutraceutical approaches with agents with antioxidant and anti-inflammatory actions. Some 

specific nutritional supplements have been reported to be protective of the effects of air 

pollution. These include antioxidant supplements (vitamin C, E) that were associated with 

diminished IL-6 responses in nasal lavages after high levels of exposure to O3 in a 

randomized double blinded study.84 Supplementation with combination vitamin C and E 

also prevented exacerbations of asthma, primarily in those children with the GSTM1 null 

genotype.84,85 In Taiwan, vitamin C and E intake was associated with diminished declines 

in peak expiratory flow in the setting of high particulate matter exposure in asthmatic school 

children.86 Sulforaphane, an upregulator of NRF2 that activates antioxidant and phase II 

enzymes, increased expression of airway epithelial cell antioxidant enzymes, and inhibited 

diesel exhaust augmentation of allergic inflammation in the nasal airway.87-89 Omega-3 

fatty acid supplementation has been shown to decrease cardiovascular risks associated with 

experimental PM exposure, and it is likely that this treatment may also be useful in PM-

induced asthma.90 These observations should be tempered against meta-analyses that 

suggest there are inadequate data to support the efficacy of antioxidants in asthma,91,92 

especially as many studies are underpowered. Additionally, it may be that persons with 

specific genetic or nutritional risk factors are more likely to benefit from antioxidant 

intervention.
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8. Conclusion

Air pollution remains a significant cause for exacerbation of allergic airway diseases, and 

there is increasing evidence that pollutants may modulate incidence of disease as well. 

Pollutants have been shown to have a number of specific pro-inflammatory actions 

(summarized in Table I). Interventions need to be tested in large clinical trials. Indoor 

interventions, including better cook stoves which minimize exhausting wood smoke 

particles into indoor environments, and HEPA filters which may mitigate both PM and 

allergen exposure, have promise to reduce exposure to pollutants. However, it is also 

important to include public policy as a means for potential intervention against ambient air 

pollutants. As has been shown in studies of both the Atlanta and Beijing Olympic Games, 

interventions that decrease automotive and point source combustion can result in decreased 

asthma morbidity.93,94 Following the implementation of EPA’s nitrogen oxides (NOx) 

Budget Trading Program policy, there also were significant reductions in mean ozone levels 

(−2% to −9%) throughout NY state and post-intervention declines in respiratory admissions 

were observed.95 The Clean Air Act and its amendments have reduced vehicle-related 

pollutants significantly.96 These examples and others highlight the opportunities that exist to 

decrease pollutant impacts on allergic lung disease.
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Abbreviations

ACSL acyl-CoA synthetase long-chain family member

AHR airway hyperreactivity

BC black carbon

β2AR β2 adrenergic receptor

CAT catalase

CCCEH Columbia Center for Childrens Environmental Health

CO carbon monoxide

CRP C-reactive protein

LRTI lower respiratory tract infections

CYP cytochrome P450

DCs dendritic cells

DAMPs damage associated molecular patterns

DEP diesel exhaust particles

EC elemental carbon

FEV1 forced expiratory volume in first second

Miller and Peden Page 10

J Allergy Clin Immunol. Author manuscript; available in PMC 2015 November 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



FVC forced vital capacity

FOXP3 forkhead box P3

GST glutathione S-transferase

HDAC histone deacetylase

IQR interquartile range

IL interleukin

Line-1 long interspersed element-1

MPO myeloperoxidase

NHANES National Health and Nutrition Examination Survey

NLR nucleotide-binding oligomerization domain-like receptor

NOx oxidized nitrogen species

OM organic matter

O3 ozone

PAH polycyclic aromatic hydrocarbon

PAMPs pathogen associated molecular pattern

PARK Parkinson disease protein

PM2.5 particulate matter 2.5 microns

PSS Perceived Stress Scale

SNCA synuclein alpha gene

SNPs single nucleotide polymorphisms

SO2 sulfur dioxide

Th2 T helper 2

TLR toll like receptors

TSLP thymic stromal lymphopoietin

Treg Tregulatory
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Table 1

Mechanisms underlying air pollution-related asthma

Mechanisms Pathways implicated References

Altered innate immunity TLR signaling 23-25

Inflammasome activation 25, 26

Oxidative stress 30-32

Altered adaptive immunity Allergy 33, 35-38

IL-17 mediation 40, 41

T regulation 43, 44

Altered cell specific (DC,
endothelial, epithelial, airway
smooth muscle) function

Altered DC migration,
maturation and recruitment to
airways

45

Altered β2AR signaling 52-54

Disturbances in coagulation 46, 47

Gene x environment
interactions

Oxidative stress genes:
GST/SNCA/Park2/CAT/MPO

55-60

TLR 63

Epigenetic regulation Altered DNA methylation of
adaptive immune genes: Th
Treg

64, 67, 71

Altered DNA methylation of
pro-inflammatory genes:
iNOS, ACSL3

70, 71

Global demethylation 72

Disruption of imprinting Altered interaction with
ADAM33, CYP1B1, IL-13
SNPs

79
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TERM DEFINITION

POLYCYCLIC AROMATIC
HYDROCARBON

A group of >100 substances that are formed
during burning of coal, tobacco, oil, gas,
garbage and also during grilling of meats.

HYALURONIC ACID A component of the extracellular matrix that
is capable of effecting cell migration and
proliferation. Hyaluronic acid can bind to
CD44 and its degradation products can
activate TLRs.

CD44 CD44 is expressed on multiple cell types
including white and red blood cells. Its
ligands include hyaluronate, osteopontin,
and fibronectin.

CD14 CD14 is the LPS receptor and mediates Toll
Receptor Like (TLR)-4 signaling. CD14 is
expressed on momocytes, macrophages
and neutrophils.

INFLAMMASOME The inflammasome is a multimeric protein
complex activated by the innate immune
system via DAMPs and PAMPs to ultimately
cleave pro-IL-1b to IL-1b and pro-IL-18 to IL-
18. Specific components of the
inflammasome can vary based on the
initiating signal but nod like receptors (NLRs)
are critical components.

N-ACETYL-CYSTEINE Acts as an anti-oxidant to counter the effects
of diesel exhaust particles. NAC can
decrease bronchial hyperreactivity and alter
miRNA expression induced by diesel
exhaust exposure.

MyD88 MyD88 is an essential component of TLR
signals. All TLRs except TLR3 use MyD88
as an adaptor molecule that precedes the
activation of IRAK and TRAF6, ultimately
leading to NFkb or AP-1 mediated gene
transcription. MyD88 deficient mice have
decreased autoimmunity .

LINE-1 (Long Interspersed Elements) The only complete retrotransposon in the
human genome, LINE-1 is 6kB in length,
contains 2 open reading frames, and exists
at about 516,000 copies. Retrotransposons
are “genomic parasites”, represent 17% of
the human genome, and can induce
spontaneous genetic diseases when they
become mobile.

Danger Associated Molecular Pattern
(DAMP)
Pathogen Associated Molecular Pattern
(PAMP)

DAMPs and PAMPs are recognized by
pattern recognition receptors such as Toll
Receptors (TLRs). PAMPs are exogenous or
endogenous but DAMPs are almost all
endogenous molecules. TLR4 binds
ipopolysaccharide from gram negative
bacteria, heat shock protein 6, and RSV
protein F. TLR7 and 8 bind single stranded
RNA and are important for anti-viral defense.

IL-33 IL-33 is an IL-1 family member that is
produced by epithelial cells, smooth muscle
cells and fibroblasts and increases IL-5 and
IL-13 production.

IL-18 IL-18 has effects similar to IL-12 and
induces IFNg production. Production of an
IL-18 binding protein by some viruses such
as molluscum contagiosum allows evasion
of the immune system.
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