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Abstract

Interactions between exposure to ambient air pollutants and respiratory pathogens have been 

shown to modify respiratory immune responses. Emerging data suggest key roles for Toll-like 

receptor (TLR) and nucleotide-binding oligomerization domain–like receptor (NLR) signaling in 

pathogen-induced immune responses. Similarly, immune responses elicited by exposure to air 

pollutants are mediated by specific TLR- and NLR-dependent mechanisms. This review article 

will summarize current knowledge about how air pollutants modify TLR- and NLR-dependent 

signaling and host defense responses in the lung.
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Since the 1970 Clean Air Act, many cities have experienced dramatic improvements in air 

quality. Levels of large particulate matter (PM10) have decreased by 83% in this period, 

even though there has been an increase of 178% in the number of vehicle miles traveled.1 

Despite these advances, the American Lung Association estimates that more than half of 

persons in the United States live in counties that have unhealthy levels of pollution.2 The 

last 40 years has also seen important advancements in our understanding of the risks posed 
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by high levels of both indoor and outdoor air pollutants on respiratory health. Accordingly, 

numerous reviews have described the potential of gaseous pollutants, such as ozone, and 

particulate pollutants, such as diesel, cigarette smoke (CS), and biomass, to impair lung 

function and exacerbate and promote asthma.3,4 In addition to direct physiologic changes, 

many have highlighted the ability of these agents to modulate the adaptive immune response 

and thereby increase IgE levels and promote a TH2 milieu that can promote allergic airway 

disease.5 Recently, there has been a growing appreciation that pollutants might also 

significantly affect respiratory innate immune responses.

Therefore here we will review the potential cellular mechanisms by which exposure to air 

pollutants modulates respiratory immunity and host defense. The public health significance 

is clear: respiratory tract infections are among the most common source of illness in the 

United States and Europe. Their effects are felt most acutely in susceptible populations, such 

as children, the elderly, and asthmatic patients. Focusing on the role of Toll-like receptors 

(TLRs) and nucleotide-binding oligomerization domain (NOD)–like receptors (NLRs), this 

review will summarize current evidence on how air pollutants might alter innate immunity.

POLLUTANTS AND HEALTH RISKS FROM RESPIRATORY TRACT 

INFECTIONS

The strongest evidence of a link between pollutants and respiratory tract infections comes 

from studies in the developing world of those exposed to the high levels of particles 

generated from the combustion of biomass fuels (eg, wood and dung) for cooking or 

heating. Chronic bronchitis, acute respiratory tract infections, recurrent pneumonia, and 

tuberculosis have all been shown to be significantly more prevalent in mothers who cook or 

their children.6 Fewer studies have been completed in the developed world, where better 

ventilation results in much lower exposure levels. These studies tend to show an increased 

risk of acute respiratory tract infections from woodstoves.7 Similarly, exposure to CS has 

long been thought to reduce host defense because smokers have much higher rates of 

respiratory tract infections.8 Numerous studies have now shown that secondhand smoke can 

also significantly increase the risk from lower respiratory tract infections in children and 

infants.9,10

The United States Environmental Protection Agency is mandated to set National Ambient 

Air Quality Standards for 6 criteria pollutants, including ozone and PM. These have tended 

to receive the most attention of the studies on air pollution and respiratory health effects. 

Evidence of increased susceptibility to infections from ambient pollutants has come from 

experimental pulmonary infections. For example, in mice infected with bacteria, exposure to 

low levels of ozone will increase mortality.11 Population-based studies have supported these 

findings but have not been conclusive because of methodological problems. For example, 

multiple epidemiologic studies have now shown an association between increases in ambient 

ozone or PM levels and hospital admissions for respiratory disease.12–16 Unfortunately, the 

difficulty in ascertaining the role of pulmonary infections in these studies limits our ability 

to determine whether this was due to the pollutants acting on susceptible airways, as in 

patients with asthma or chronic obstructive pulmonary disease (COPD), or rather an 

impaired immune response to an infection after pollutant exposure. Hospital visits for PM-
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induced asthma are more prevalent in children and the elderly,15,16 yet in these 

subpopulations viral infection is a primary driver of exacerbations. Complicating the issue is 

that agents like ozone can cause inflammation and alter the immune system while also 

having an independent effect on lung function.17

As we detail below, pollutants from biomass, CS, and ambient air can work through 

common mechanisms to alter innate immune responses. Understanding these cellular 

pathways provides valuable information to address future concerns. Recently, the emerging 

field of nanotechnology and the resultant explosion in exposure to inhaled engineered 

nanoparticles has led some to question the potential health risks. Although no population-

based study to date has investigated the association between nanoparticle exposure and 

respiratory tract infections, given the cellular studies reviewed below, these might be 

warranted.

PATTERN RECOGNITION RECEPTORS AND RESPONSE TO 

ENVIRONMENTAL AIR POLLUTION

Recent studies seeking to determine the receptors and intracellular signaling mechanisms 

used by airway cells to recognize pollutants and induce an inflammatory response have 

implicated pattern recognition receptors (PRRs).18 These receptors were originally identified 

as innate immune sensors that function to distinguish innocuous from pathogenic exposures 

and induce an appropriate inflammatory response. PRRs recognize conserved microbial 

ligands, termed pathogen-associated molecular patterns (PAMPs), and endogenous ligands 

derived from stressed cells, termed damage-associated molecular patterns (DAMPs).19 

Activation of PRRs results in the release of cytokines and chemokines to attract leukocytes 

and antigen-presenting cells to the site of infection or injury and trigger their maturation.20

There are several classes of PRRs, including the TLRs, C-type lectin receptors, retinoic 

acid–inducible gene I–like receptors, and NLRs.21,22 An increasing number of studies have 

demonstrated the role of TLR signaling in pollutant-induced inflammation. More recently, 

NLRs and the subset that assemble and oligomerize to form the complex known as the 

inflammasome have been implicated as an innate immune mechanism that might be 

involved in the inflammatory response to ambient pollutants.23

TLRs

The TLR family is responsible for sensing PAMPs and DAMPs and disseminating the signal 

to intracellular transcription factors, which regulate cytokine and chemokine gene 

expression. There are currently 13 identified mammalian TLRs (10 in humans and 12 in 

mice), which are classified as type 1 transmembrane receptors containing an N-terminal 

leucine-rich repeat domain, a transmembrane region, and a C-terminal cytoplasmic 

domain.24 TLRs are expressed by a wide variety of hematopoietic cells (eg, macrophages 

and dendritic cells [DCs]), as well as epithelial cells.25 Each TLR is associated with specific 

recognition patterns: extracellular TLR1, TLR2, TLR4, and TLR5 sense bacterial 

components, such as lipoproteins and the bacterial wall component LPS (also known as 

endotoxin), whereas endosomal TLR3, TLR7, TLR8, and TLR9 recognize nucleic acids.22
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Interaction of the TLR with its specific ligand results in the activation of a signaling 

cascade, leading to the production of innate effector molecules and the initiation of the 

adaptive immune response (Fig 1).26,27 TLRs signal to the cytoplasm through adaptor 

proteins, such as myeloid differentiation primary response gene 88 (MyD88), TIR domain–

containing adaptor protein, TIR domain–containing adapter-inducing IFN-β (TRIF), and 

translocation-associated membrane protein, all of which harbor a TIR domain for the 

recruitment of the adaptor protein to the TLR cytoplasmic domain through a TIR-TIR 

interaction.24 MyD88 is an adaptor protein shared by all TLRs except TLR3, which instead 

uses TRIF to signal to the cytoplasm. The TLR signaling cascades result in the activation of 

transcription factors in the cytoplasm, such as nuclear factor κ light chain enhancer of 

activated B cells (NF-κB), interferon-regulatory factors (IRFs), and mitogen-activated 

protein kinases, which then induce or inhibit the transcription of genes involved in 

inflammatory and immune responses.20,28 More detailed reviews of TLR signaling have 

been previously published.28–30

Dysfunction of the innate immune system and TLR signaling has been associated with the 

pathogenesis of several airway diseases, including acute lung injury, asthma, and COPD.20 

For example, acute lung injury can be triggered by bacterial or viral infections and 

noninfectious insults, such as environmental exposures (ozone or metals) or trauma, which 

can stimulate TLR signaling and initiate an inflammatory response and tissue 

damage.20,31,32 Additionally, TLR4, the endotoxin receptor, has been shown to play a role 

in the induction of the TH2-biased immune response in the lung and the development of 

asthma.23 Consequently, mutations in several TLRs, including TLR4, have been associated 

with asthma.20,33,34 Clearly, the TLR signaling pathways play an important role in initiating 

the immune response to PAMPs and DAMPs, which, when left unchecked, can lead to tissue 

injury and airway disease.

Neutrophilic influx is a shared characteristic of exposure to endotoxin and many airway 

pollutants, including PM, CS, and ozone, suggesting that the inflammatory response might 

be mediated by a common innate immune mechanism.35 Knowledge that TLR4 mediates the 

inflammatory response to endotoxin has led to the hypothesis that TLR4 might also be 

involved in the inflammatory response to air pollutants.23 More recently, TLRs involved in 

nucleic acid recognition and antiviral response (TLR3, TLR7, and TLR9) were also shown 

to be modified by PM or CS.36–38 Although numerous studies suggest that air pollutants 

might alter the activation of TLR signaling, expression of TLR molecules at the membrane, 

or response to ligands, it is unclear which components of the pollutants are responsible for 

these changes. TLR activation might also be mediated by a secondary messenger or DAMP 

produced in response to airway damage, such as heat shock protein 70 (Hsp70) or 

hyaluronic acid (HA).20 Here we will compare and contrast what is currently known 

regarding the effects of PM, CS, and ozone on TLR signaling.

PM

PM-associated biological components (ie, endotoxin, pollen, bacteria, fungal spores, and 

viruses), soluble metals, and organic content are hypothesized to stimulate a 

proinflammatory response in the airway that might be mediated by TLR activation.18,39–43 
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There are several published studies that investigate the mechanism of PM recognition by 

TLRs. Becker et al40 demonstrated the involvement of TLR2 and TLR4 in the inflammatory 

response to PM2.5-10 using Chinese hamster ovary cells transfected with CD14 and TLR2 or 

TLR4. Alveolar macrophages were then treated with a TLR4 antagonist (E5531), which 

inhibited the PM2.5-10-induced inflammatory response. In contrast to alveolar macrophages, 

exposure of primary human airway epithelial cells to various sizes of PM resulted in TLR2-

dependent, TLR4-independent production of IL-8. This response was associated with low 

expression of TLR4 by the epithelial cells. Interestingly, levels of the DAMP Hsp70 were 

also increased by PM treatment, suggesting indirect activation of the TLR pathway.44 

Recently, Shoenfelt et al18 suggested that ambient air particles might use distinct receptors 

and proinflammatory signaling pathways based on particle composition. Exposure of murine 

peritoneal macrophages to PM2.5, which had high levels of redox active metals and low 

levels of endotoxin, induced cytokine secretion in a TLR2-dependent mechanism. By 

comparison, exposure to PM10, which had high levels of endotoxin, induced cytokine 

secretion in a TLR4-dependent mechanism. Both inflammatory responses were dependent 

on MyD88 expression, which is consistent with the shared use of MyD88 by TLR2 and 

TLR4. These studies demonstrate the ability of certain TLRs to recognize PM or PM-

induced danger signals and induce an inflammatory response.

In addition to acting as a TLR ligand, PM might modify the ability of TLRs to respond to 

other ligands and change the nature of the inflammatory response. In a coculture of human 

monocytes and airway epithelial cells, treatment with diesel exhaust particles (DEPs) 

enhanced the inflammatory response to low levels of the TLR agonists LPS and flagellin, 

suggesting that low-level exposure to a pollutant can enhance the proinflammatory potential 

of future stimuli.45 Modifications in the TLR response to an agonist might be the result of 

altered receptor expression. For example, respiratory epithelial cells exposed to a suspension 

of aqueous DEPs had increased expression and activity of TLR3, as evidenced by increased 

IL-6 and IFN-β expression in response to the agonist polyinosinic:polycytidylic acid.36 In 

another study, human airway epithelial cells exposed to PM had increased TLR4 expression 

and IL-8 production, whereas TLR2 expression remained constant.44 In contrast to the 

airway epithelial cell response to PM, Williams et al46 demonstrated downregulation of 

TLR2 and TLR4 expression in human myeloid DCs exposed to PM, which correlated with a 

pro-TH2 inflammatory profile (decreased IL-12 and IL-6 secretion and increased IL-18 and 

IL-10 secretion). Thus in addition to acting as a TLR ligand, PM can also prime the airway 

for a more severe or proallergic response to a subsequent challenge by influencing TLR 

expression and response.

CS

Similar to PM, CS exposure induces a proinflammatory response while concurrently altering 

TLR expression and the ability to respond appropriately to PAMPs. Several studies have 

shown that acute exposure to CS activates TLR4 signaling, leading to neutrophilic 

inflammation of the airway. Doz et al47 found that acute exposure of Tlr4−/−, Il-1r1−/−, or 

Myd88−/− mice to CS resulted in fewer neutrophils; reduced IL-1, IL-6, and keratinocyte 

chemoattractant levels; and lower matrix metal-lopeptidase 9 activity in the bronchoalveolar 

lavage (BAL) fluid compared with those seen in wild-type mice, suggesting that the airway 

Bauer et al. Page 5

J Allergy Clin Immunol. Author manuscript; available in PMC 2015 February 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



inflammation was dependent on TLR4/MyD88 and IL-1 receptor 1/MyD88 signaling. The 

inflammation was not mediated by endotoxin contamination because CS inhalation did not 

induce bronchoconstriction, a phenotype of endotoxin exposure. Moreover, the 

inflammatory effect of CS condensate on in vitro–cultured, bone marrow–derived 

macrophages was not affected by the addition of polymyxin, an endotoxin inhibitor. 

Interestingly, CS exposure also heightened levels of the known TLR4 agonist Hsp70 in BAL 

fluid, suggesting that inflammation might be mediated by a DAMP rather than direct 

stimulation of TLR4.47 Therefore CS might activate TLR4 independently of endotoxin 

exposure through either direct stimulation or a danger signal.

In vitro exposure to cigarette smoke extract (CSE) also induced the production of TLR-

mediated proinflammatory cytokines in airway macrophages, plasmacytoid dendritic cells 

(pDCs), and airway epithelial cells.48–50 Pace et al49 documented that airway epithelial cells 

exposed to CSE caused increased expression of TLR4 and heightened production of IL-8, a 

neutrophil chemoattractant.48 Likewise, Mortaz et al48 demonstrated that the production of 

IL-8 was increased by CSE treatment in pDCs. In both of these studies, combined exposure 

of CSE and TLR agonist further increased IL-8 production while decreasing production of 

other cytokines and chemokines, including TNF-α, IL-6, interferon α (IFN-α), and IFN-γ–
induced protein 10 (IP-10). These studies suggest that CS might activate TLR4, resulting in 

the induction of some proinflammatory mediators while decreasing the production of other 

cytokines.

Despite the high level of inflammation in the airway, smokers are known to have poor 

antiviral defense, which is hypothesized to be in part due to altered TLR stimulation and 

cytokine production. As mentioned above, CSE exposure decreased production of important 

innate immune cytokines, including the leukocyte chemoattractant IP-10 in airway epithelial 

cells and the immune cell activator IFN-α in pDCs.48,49 CSE was also found to inhibit 

respiratory syncytial virus–induced IFN-α, IL-1β, IL-10, and IP-10 in pDCs while not 

affecting the production of other cytokines and chemokines, including IL-6 and TNF-α. The 

reduction of IFN-α production correlated with decreased expression of TLR7 and 

phosphorylation of downstream IRF7.37 Thus CS might potentiate viral symptoms by 

increasing the proinflammatory environment of the lung while compromising the ability of 

TLRs to recognize and respond to other stimuli, such as viral infections.

Ozone

The oxidant gas ozone has also been shown to alter innate immune response and host 

defense through a TLR4-dependent mechanism.23,51 The involvement of TLR4 in ozone-

induced airway injury was first reported by Kleeberger et al,52 who examined the response 

of C3H/HeJ, Tlr4−/− (HeJ) mice to ozone. Compared with wild-type C3H/HeOuJ mice, the 

HeJ mice had decreased airway permeability and TNF-α expression. Further 

characterization of the murine model indicated that Tlr4−/− HeJ mice exposed to ozone had 

reduced expression of inducible nitric oxide synthase, an enzyme important for the 

production of nitric oxide (NO).53 Because NO plays a role in endotoxin-induced acute lung 

injury and alveolar epithelial permeability,54 this finding suggests that TLR4 modulation of 

NO synthesis might be one mechanism by which ozone induces airway injury. Subsequent 
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study of genetically modified Tlr4−/− mice (C57BL/6, Tlr4−/−) exposed to ozone indicated 

that ozone-induced airway hyperresponsiveness was dependent on intact TLR4 signaling. 

Interestingly, the Tlr4−/− and wild-type mice had a similar inflammatory response to ozone, 

as indicated by comparable neutrophil, cytokine, and protein content in the BAL fluid.55 

These results suggest that the activation and modulation of TLR4 signaling is an important 

process in the development of ozone-induced airway injury.

Beyond the mechanistic murine models, TLR4 has been suggested to play a role in the 

asthmatic human response to ozone. Similar to other air pollutants, ozone has been shown to 

heighten airway inflammation and modulate the response to subsequent inhaled allergen, 

particularly in asthmatic subjects who have underlying airway inflammation.5,56 A recent 

human study of atopic asthmatic, nonatopic asthmatic, and healthy subjects exposed to 0.4 

ppm ozone revealed that the expression of TLR4 by airway macrophages isolated from 

induced sputum was increased in atopic asthmatic subjects.35 This finding was correlated 

with increased sputum neutrophil numbers and IL-8, IL-6, and IL-1β production. Because 

asthma is a risk factor for acute ozone-associated respiratory disease, this study suggests that 

TLR4 might be a pathway through which ozone causes an inflammatory response in allergic 

asthmatic subjects.

Although these studies indicate a role for TLR4 in response to ozone, specifically how 

ozone activates TLR4 remains unclear. It is doubtful that ozone, an oxidant gas, is directly 

recognized by a discrete receptor. Several groups have suggested that ozone-induced airway 

injury results in the release of DAMPs, which can activate TLR signaling and cause an 

inflammatory response. Garantziotis et al57 hypothesized that HA can facilitate the 

inflammatory response to ozone. Mice challenged with ozone had increased HA levels in the 

BAL fluid. In line with this finding, mice deficient in the primary HA receptor, CD44, had 

decreased airway hyperresponsiveness and inflammation in response to ozone. Further 

studies by this group indicated that Tlr4−/− mice (C57BL/6, Tlr4−/−) were protected from 

airway hyperresponsiveness after ozone exposure and intratracheal instillation of low-

molecular-weight HA. In vitro exposure of bone marrow–derived macrophages to HA 

resulted in the induction of NF-κB and the production of proinflammatory cytokines in a 

pattern characteristic of TLR4 activation.58 In addition to HA, levels of Hsp70, a known 

TLR4 ligand, have been shown to be upregulated in C3H/HeOuJ mice after ozone 

exposure.59 Mice deficient in Hsp70 (Hspa1a/hspa1btm1Dix [Hsp70−/−]) had reduced 

ozone-induced inflammation and MyD88 upregulation compared with wild-type (Hsp70+/+) 

mice. Together, these studies suggest that ozone-induced inflammation and TLR4 activation 

are mediated by a secondary messenger or DAMP.

TLR summary

In summary, this discussion on the effect of air pollutant exposure on TLR signaling 

highlights several common themes (Fig 2). It is not clear which component of the air 

pollutants induce a TLR response or whether the effect is mediated by a secondary 

messenger, such as a DAMP. In the context of PM, endotoxin contamination is likely one 

constituent that induces TLR signaling. However, for pollutants such as ozone, it is much 

more likely that a DAMP mediates the TLR response. Regardless of the mechanism, it is 
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apparent that air pollutants activate TLR signaling, resulting in a proinflammatory response 

in the lung. In the process, air pollutants can prime the airway for a modified immune 

response to subsequent stimuli (eg, by shifting the leukocyte TH1/TH2 profile or reducing 

the production of antiviral cytokines). This effect might be due to alterations in TLR 

expression. Alternatively, air pollutants might overload the ability of TLRs to respond to 

ligands. Pollutant-induced alterations in TLR recognition of pathogens might contribute to 

the increased susceptibility and severity of viral infections and pollutant-induced 

pathogenesis of airway diseases such as asthma. Further research is necessary to clarify 

these mechanisms and reveal the implications of pollutant exposure on human disease.

THE INFLAMMASOME AND NLRS

In addition to the membrane-associated TLRs, PAMPs and DAMPs are also recognized by 

the cytosolic NLR family of PRRs. NLRs include proteins such as nucleotide-binding oligo-

merization domain 1 and 2, NOD-like receptor protein 3 (NLRP3, or cryopyrin), and NLR 

family CARD domain–containing protein 4 (or IPAF). Engagement of these receptors 

results in a cascade of intracellular signaling, leading to the initiation of an innate immune 

response.60–62 On recognition of a PAMP or DAMP, certain NLRs can form a multiprotein 

complex termed the inflammasome. The inflammasome is composed of a PRR (NLR or the 

IFI200 family member absent in melanoma 2), procaspase-1, and the adaptor protein 

apoptosis speck-like protein containing a CARD (also known as PYCARD).61 This complex 

has been most studied in myeloid cells, particularly macrophages, although recently there 

has been increased interest in inflammasome signaling in nonmyeloid cells.63

On formation of the inflammasome complex, caspase-1 is autoactivated from the proform to 

the cleaved active form, which can then catalyze the proteolytic processing and release of 

IL-1β, IL-18, and IL-33 (Fig 3). Active caspase-1 might also participate in one of several 

other effector mechanisms, including induction of a caspase-1–dependent form of 

programmed cell death termed pyroptosis.64,65 Caspase-1–mediated processing and the 

release of mature cytokines require 2 distinct stimuli. First, an inflammatory stimulus 

activates the transcription of procytokines, such as pro–IL-1β and pro–IL-18. This signal can 

be triggered by TLR activation and downstream signaling through the NF-κB or mitogen-

activated protein kinase pathways. The second signal induces activation of the 

inflammasome, cleavage of caspase-1, and hence procytokine maturation and release.

The exact mechanism of inflammasome activation is not clear. For the prototypical NLRP3 

inflammasome, there are 3 proposed models of activation, all of which include cytoplasmic 

potassium (K+) efflux from the cell as an important step for inflammasome activation (Fig 

3).66–68 The channel model of inflammasome activation suggests that ATP-mediated 

activation of the membrane-associated purinergic receptor P2X purinoceptor 7 triggers 

membrane permeability, K+ efflux, and pannexin-1 channel recruitment, thereby allowing 

direct interaction of the agonist with the NLR.60,66,69 Endogenous ATP is a known NLRP3 

agonist that is released by injured or necrotic cells. ATP is not required for activation of the 

inflammasome by some bacterial pathogens, and thus this model might not apply to all 

NLRP3 agonists.60 An alternate hypothesis is the lysosome rupture model, which suggests 

that the uptake of large particulate activators (eg, alum, asbestos, and silica) leads to 
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phagosomal destabilization, lysosomal rupture, and release of the lysosomal protein 

cathepsin B, which directly or indirectly triggers inflammasome activation.70 Finally, the 

third model proposes that NLRP3 acts as a broad sensor of cellular injury through 

recognition of oxidative stress, which commonly occurs with K+ efflux.70,71 Reactive 

oxygen species (ROS) are generated within and outside of the cell by many NLRP3 

agonists, including ATP and the particulate activators asbestos and silica, and thus might 

play a crucial role in inflammasome activation. Because of the wide range of stimuli 

recognized by NLRP3, inflammasome activation likely involves a combination of these 

mechanisms and is tailored for specific stimuli.

Through the recognition of pollutants or pollutant-induced danger signals, the 

inflammasome might be a pathway by which environmental air pollutants stimulate an 

innate immune response. Alterations in inflammasome signaling are associated with 

inflammatory diseases, including gout, autoimmunity, atherosclerosis, Crohn disease, 

ulcerative colitis, and metabolic disorders.72 Moreover, it has recently been shown that lung 

transplant tissue from chronic smokers and patients with COPD has been shown to have 

enhanced caspase-1 activity compared with that seen in nonsmokers.73 Thus it is likely that 

modified inflammasome signaling, as caused by a pollutant exposure or an underlying 

inflammatory disease, might lead to altered inflammatory responses to pathogens and 

particles and enhanced pathogenesis in the airway.

The first indication of inflammasome involvement in pollutant-induced inflammation was 

the finding that the NLRP3 inflammasome was activated by aluminum salts, silica crystals, 

and asbestos particles in primary murine and human macrophages and the human THP-1 

(monocyte) cell line.70,74 In both of these studies, the activation of NLRP3 was attributed to 

phagosomal destabilization. However, Hornung et al74 hypothesized that NLRP3 activation 

was mediated by lysosomal damage and the release of the lysosomal protein cathepsin B, 

whereas Dostert et al70 suggested that K+ efflux and the generation of ROS was responsible 

for inflammasome activation. On the basis of these initial findings, the inflammasome has 

since been shown to be activated by CS47 and nanoparticles75,76 but, as yet, not by 

DEPs.45,70

Nanoparticles

Because of their unique size and physiochemical properties, nanoparticles are becoming 

increasingly useful for numerous medical (eg, drug delivery), consumer, and industrial 

applications. However, these same properties raise safety concerns for potential adverse 

effects on the respiratory system, which serves as both a portal of entry for inhaled particles 

and a receiver of cardiac output.77 Although the toxicity of nanoparticles remains unclear, 

an increasing number of studies highlight the potential respiratory toxicity of nanoparticles, 

including several recent studies that indicate that nanoparticles might induce pulmonary 

inflammation and respiratory disease through a mechanism involving activation of the 

inflammasome.75,76,78 Using genetically engineered mice, Yazdi et al75 reported that the 

IL-1 receptor was necessary for induction of lung inflammation by titanium dioxide (TiO2) 

nanoparticles, suggesting an important role for inflammasome signaling. Using in vitro 

cultures, TiO2 and silicon dioxide nanoparticle exposure was shown to activate the NLRP3 
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inflammasome and IL-1β release in LPS-primed murine bone marrow–derived macrophages 

and human THP-1 cells. Interestingly, phagocytosis was not required for inflammasome 

activation by the nanoparticles because silicon dioxide nanoparticles also activated IL-1β 

secretion in nonphagocytic keratinocytes. Thus nanoparticle exposure might activate the 

inflammasome through a yet to be determined mechanism, resulting in lung inflammation.

In addition to inflammasome regulation of IL-1β release, certain nanoparticles have also 

been shown to induce an inflammasome-dependent form of cell death termed pyroptosis. 

Carbon-based nanoparticles are a major constituent of diesel exhaust and ambient PM and 

are known to cause oxidative stress, inflammation, and cytoxicity.79 In a recent study, 

Reisetter et al76 demonstrated that exposure of unprimed macrophages (both the RAW264.7 

cell line and primary human alveolar macrophages) to carbon-based nanoparticles, but not 

TiO2, induced caspase-1–dependent pyroptosis, as evidenced by the loss of plasma 

membrane integrity, lactate dehydrogenase release, and cellular swelling. Interestingly, 

carbon-based nanoparticle exposure alone did not induce IL-1β release from macrophages. It 

was only after LPS priming that the nanoparticles activated caspase-1 to its cleaved form 

and increased IL-1β release. These findings suggest that the involvement of caspase-1 in 

activities other than IL-1β secretion, such as pyroptosis, might require a different mode of 

activation independent of TLR activation and cytokine processing. Thus although many 

studies focus on IL-1β secretion as a marker of inflammasome activation, activity can also 

be measured through other end points, such as membrane permeability and lactate 

dehydrogenase release.

CS

Although nanoparticles act as inflammasome activators, other pollutants might instead be 

involved in the initiation of procytokine transcription through activation of TLR signaling. A 

recent study of CS exposure by Doz et al47 highlighted the important association between 

TLR signaling and inflammasome activation. CS was shown to induce inflammation and 

increase IL-1β production in the lungs of wild-type mice. However, in mice deficient in IL-1 

receptor type 1 (Il-1r1−/−), exposure to CS resulted in significantly decreased airway 

inflammation, suggesting that IL-1 signaling was an important mediator of this process. 

Cultured murine bone marrow–derived macrophages were exposed to cigarette smoke 

condensate (CSC) and then stimulated with either CSC or ATP to further investigate this 

finding. CSC exposure alone induced the production of pro–IL-1β but not the release of 

mature IL-1β, whereas the addition of ATP resulted in both the production of pro–IL-1β and 

the release of mature IL-1β. The release of IL-1β was abrogated in Tlr4−/− mice. Thus CSC 

activation of TLR signaling induced production of pro–IL-1β, but a second signal, such as 

ATP, was needed to activate the inflammasome complex. These results suggest that by 

modulating the activation of TLRs and hence procytokine production, pollutants can prime 

the cell for an inflammasome-mediated inflammatory response to a second stimulus.

Diesel exhaust

Beyond acting as stimulators of TLR and NLR signaling, environmental pollutants can 

indirectly modify inflammasome function by interfering with inflammasome agonists. DEPs 

are an interesting example of this phenomenon. In an initial study on the effect of 
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particulates on inflammasome activation, Dostert et al70 reported that exposure of THP-1 

cells to DEPs did not result in IL-1β production. A recent study by Chaudhuri et al45 

elucidated this finding by demonstrating that DEPs had the ability to sequester or breakdown 

ATP and thereby prevent IL-1β processing and release. By using an epithelial cell/monocyte 

coculture, it was found that monocyte-derived IL-1 was important for the production of 

proinflammatory mediators in response to LPS exposure, yet cocultures stimulated with 

combined LPS and DEPs did not have detectable IL-1β. Interestingly, DEP exposure did not 

alter the production or cleavage of pro–IL-1β, and incubation of DEPs with IL-1β did not 

inhibit recovery or biological action. However, it was found that incubation of ATP with 

DEPs resulted in a rapid decrease in recoverable ATP. These results suggest that DEPs have 

the capability to inhibit IL-1β release by interfering with ATP, a molecule known to be 

involved in IL-1β processing and highlights the possibility that environmental pollutants can 

alter inflammasome signaling by impeding inflammasome activators.

Inflammasome summary

It is clear that environmental pollutants can modulate or activate the inflammasome, leading 

to the production of proinflammatory cytokines. Pollutants are involved in and might 

interfere with all steps of inflammasome activity, from the initiation of procytokine 

production to the activation of the NLRs and the release of mature cytokines. Although these 

processes are only beginning to be understood, pollutants might also induce caspase-1 

activities beyond cytokine processing, such as pyroptotic cell death. Although most of these 

studies investigate pollutant-induced activation of the NLRP3 inflammasome, little is known 

about the effect of pollutants on other inflammasomes, such as NLRP1, NLR family CARD 

domain–containing protein 4, or absent in melanoma 2. Although the pollutant might not be 

specifically recognized by other receptors, pollutants might act as a general stimulant of 

inflammasome signaling through the initiation of procytokine production. The 

understanding that procytokine processing requires both TLR and inflammasome activation 

demonstrates that there is clear cooperation between the TLR and NLR signaling pathways. 

By acting as a signal for either TLR or NLR signaling, a pollutant might prime the cell for a 

heightened or modified inflammatory response to a second immune stimulus. In addition, 

pollutant-induced DAMPs, such as the extracellular matrix proteins HA79 and biglycan,80 

can activate both TLR and inflammasome activity. Ozone induces the release of ATP by 

epithelial cells in vitro81 and increases levels of HA in animals and human subjects,35,57 yet 

the role of inflammasome-mediated signaling in ozone-induced changes in respiratory 

immune responses is poorly understood and needs to be further investigated. Future research 

on the interaction between TLR and NLR signaling might elucidate the adjuvant capabilities 

of environmental air pollutants and provide another link between pollutant exposure and 

human airway disease.

CONCLUSION

Recent discoveries in signaling pathways mediating innate immune responses provide the 

basis to further our mechanistic understanding of how air pollutants increase susceptibility 

to pathogens or severity of infection. However, there are several considerations that warrant 

follow-up studies based on the information provided here.
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First, it is likely that pollutant-induced modifications of innate immune responses and the 

roles of TLR and NLR pathways are cell type specific. For example, NLRP3 is highly 

expressed in monocytes/macrophages, conventional DCs, and neutrophils but not in T cells, 

B cells, natural killer cells, and eosinophils82 or nonmyeloid cells, such as airway epithelial 

cells.83 Studies examining the effects of pollutants on NLR signaling are primarily 

conducted in models of monocytes/macrophages, which need to be expanded to include 

other cell types likely to be directly affected by pollutants, such as epithelial cells. Similarly, 

epithelial cells express TLR1 to TLR6 and TLR9 and respond to activation with microbial 

ligands specific for TLR2, TLR3, and TLR4.84–86 Thus pollutant-induced modulations of 

TLR and NLR pathways are anticipated to differ among myeloid cells and between immune 

cells and epithelial cells.

Second, one of the clinically most relevant adverse effects of pollution exposure is 

exacerbation of pre-existing lung diseases, such as asthma and COPD. Expression, 

localization, or both of TLRs are modified in epithelial cells from asthmatic subjects87 or 

smokers,49 which might affect pollutant-induced effects on TLR signaling. Thus whether 

and how the disease state alters the effects of air pollutants on TLR and NLR signaling 

should be considered.

In conclusion, concurrent exposures to pollutants and pathogens are likely, thus making 

potential interactions between the 2 insults and mechanisms mediating these responses of 

great public health importance.

GLOSSARY

CATHEPSIN Cathepsins are proteases that are found in lysosomes. 

Newly discovered functions for cathepsins include 

activation of the innate immune system. For example, 

cathepsin K activates the innate immune system by 

altering TLR9 signaling and inhibiting the production of 

IL-6, IL-23, and TH17 cells. Phagocytosis of large 

particles has been shown to cause lysosomal 

destabilization, leading to the release of cathepsin B from 

the lysosome and the activation of the NLRP3 

inflammasome

CLEAN AIR ACT The US Clean Air Act was first signed in 1970 and was 

followed by a number of amendments in 1977 and 1990. 

The purpose of the Clean Air Act was to protect the public 

from exposure to high levels of air pollutants. In 1990, the 

US Environmental Protection Agency estimated that it 

prevented more than 200,000 premature deaths and almost 

700,000 cases of chronic bronchitis in its first 20 years. 

Since 1970, total emissions of the 6 principal air 

pollutants have decreased by greater than 41%

Bauer et al. Page 12

J Allergy Clin Immunol. Author manuscript; available in PMC 2015 February 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



HYALURONIC ACID 
(HA)

HA is a major component of the extracellular matrix 

protein that is found in connective, epithelial, and neural 

tissues. HA is an endogenous DAMP that is recognized by 

the innate immune system through TLR2 and TLR4, 

thereby inducing interleukin production (eg, IL-8)

IL-6 IL-6 acts as both a proinflammatory and anti-

inflammatory agent but is most commonly associated with 

acute-phase reactions and fever. IL-6 is released by 

numerous cell types, including macrophages, dendritic 

cells, T cells, and epithelial cells. IL-6 can be released in 

response to various microbial stimuli through activation of 

pattern recognition receptors (eg, Toll-like receptors)

IL-33 IL-33 is an IL-1 family member that is produced by 

epithelial cells, smooth muscle cells, and fibroblasts. 

IL-33 induces the production of type 2 cytokines, such as 

IL-5 and IL-13, from TH2 cells, mast cells, eosinophils, 

and basophils. IL-33 is transcribed in a proform, which 

must be cleaved to the active form by caspase-1 for 

secretion

IFN-γ–INDUCED 
PROTEIN 10 (IP-10)

IP-10 (also known as CXCL-10) is secreted by several 

cell types, such as endothelial cells, epithelial cells, 

fibroblasts, and monocytes, in response to microbial, IFN-

γ, or TNF-α stimulation. IP-10 is involved in 

chemoattraction of T and natural killer cells and binds to 

CXCR3

INTERFERONS Interferons are a class of cytokines produced in response 

to pathogenic infections and tumors. The interferon family 

consists of type I (IFN-α and IFN-β), type II (IFN-γ), and 

type III (IFN-λ) interferons. Interferons are produced by 

activation of Toll-like receptor and retinoic acid–inducible 

gene I–like receptor signaling. Interferons play a key role 

in innate immunity through such functions as antiviral 

defense, activation of immune cells (eg, natural killer cells 

and macrophages), and upregulation of antigen 

presentation to T cells

MATRIX 
METALLOPEPTIDASES 
(MMPs)

MMPs, or matrix metalloproteinases, break down 

extracellular matrix and promote tissue remodeling. 

MMPs are involved in several physiologic and pathologic 

processes, including tissue repair, angiogenesis, 

morphogenesis, cirrhosis, and metastasis. The activity of 

MMPs is balanced by tissue inhibitors of 

metalloproteinases (TIMPs). Misbalance between MMPs 
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and TIMPs is thought to contribute to asthma 

pathogenesis

MYELOID 
DIFFERENTIATION 
PRIMARY RESPONSE 
GENE 88 (MYD88)

MyD88 is an adaptor protein for all Toll-like receptors 

except Toll-like receptor 3, as well as IL-1 receptors. 

MyD88 serves as a link between the extracellular 

receptors and intracellular signaling pathways leading to 

activation of the transcription factor NF-kB and 

expression of many genes important for innate immunity. 

Autosomal recessive MyD88 deficiency causes increased 

susceptibility to Streptococcus pneumoniae, 

Staphylococcus aureus, and Pseudomonas aeruginosa, as 

well as other gram-negative infections

NANONOPARTICLES Nanoparticles are between 1 and 100 nm in size and have 

been used for consumer, manufacturing, and medical 

purposes (eg, drug delivery). Inhalation of nanoparticles 

has uncertain pulmonary toxicity but has been 

increasingly shown to have potential adverse effects on 

the respiratory tract and vasculature

OZONE Ozone is a naturally occurring gas, which can be formed 

at low levels in the atmosphere through the interaction 

between hydrocarbons and nitrogen oxides (eg, as 

produced by fuel exhaust) and sunlight. Because of its 

strong oxidizing capabilities, ozone is a primary irritant 

and can affect the eyes and respiratory system. Ozone can 

induce the production of reactive oxygen species, leading 

to oxidative stress and tissue and cellular damage

PARTICULATE MATTER 
(PM)

PM consists of solid and liquid compounds from organic, 

inorganic, and biological sources. A major source of PM 

is diesel exhaust. PM is broken into the following 3 

classes by size: coarse (PM2.5-10), fine (PM0.1-2.5), and 

ultrafine (PM<0.1). Fine and ultrafine particles are capable 

of depositing into the lung, with ultrafine particles 

reaching the small airways. The components of PM are 

toxic to cells and can induce DNA damage. Chronic 

exposure has been associated with airway diseases, such 

as asthma, and cardiovascular disease

Abbreviations used

BAL Bronchoalveolar lavage

COPD Chronic obstructive pulmonary disease

CS Cigarette smoke
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CSC Cigarette smoke condensate

CSE Cigarette smoke extract

DAMP Damage-associated molecular pattern

DC Dendritic cell

DEP Diesel exhaust particle

HA Hyaluronic acid

Hsp70 Heat shock protein 70

IP-10 IFN-γ–induced protein 10, also known as CXCL10

IRF Interferon-regulatory factor

MyD88 Myeloid differentiation primary response gene 88

NF-κB Nuclear factor κ light chain enhancer of activated B cells

NLR NOD-like receptor

NLRP NOD-like receptor protein

NO Nitric oxide

NOD Nucleotide-binding oligomerization domain

PAMP Pathogen-associated molecular pattern

pDC Plasmacytoid dendritic cell

PM Particulate matter

PRR Pattern recognition receptor

ROS Reactive oxygen species

TiO2 Titanium dioxide

TIR Toll–IL-1 receptor

TLR Toll-like receptor

TRIF TIR domain–containing adapter-inducing IFN-β

References

1. US Environmental Protection Agency. [Accessed September 7, 2011] Air quality trends. Available 
at: http://www.epa.gov/airtrends/aqtrends.html. Last updated February 10, 2011

2. American Lung Association. [Accessed September 7, 2011] State of the air. 2011. Available at: 
http://www.stateoftheair.org/2011/assets/SOTA2011.pdf

3. Bloomberg GR. The influence of environment, as represented by diet and air pollution, upon 
incidence and prevalence of wheezing illnesses in young children. Curr Opin Allergy Clin 
Immunol. 2011; 11:144–9. [PubMed: 21368621] 

4. Saxon A, Diaz-Sanchez D. Air pollution and allergy: you are what you breathe. Nat Immunol. 2005; 
6:223–6. [PubMed: 15716966] 

5. Peden D, Reed CE. Environmental and occupational allergies. J Allergy Clin Immunol. 2010; 
125(suppl 2):S150–60. [PubMed: 20176257] 

Bauer et al. Page 15

J Allergy Clin Immunol. Author manuscript; available in PMC 2015 February 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.epa.gov/airtrends/aqtrends.html
http://www.stateoftheair.org/2011/assets/SOTA2011.pdf


6. Kaplan C. Indoor air pollution from unprocessed solid fuels in developing countries. Rev Environ 
Health. 2010; 25:221–42. [PubMed: 21038757] 

7. Morris K, Morgenlander M, Coulehan JL, Gahagen S, Arena VC. Wood-burning stoves and lower 
respiratory tract infection in American Indian children. Am J Dis Child. 1990; 144:105–8. 
[PubMed: 2294707] 

8. Huttunen R, Heikkinen T, Syrjanen J. Smoking and the outcome of infection. J Intern Med. 2011; 
269:258–69. [PubMed: 21175903] 

9. Kum-Nji P, Meloy L, Herrod HG. Environmental tobacco smoke exposure: prevalence and 
mechanisms of causation of infections in children. Pediatrics. 2006; 117:1745–54. [PubMed: 
16651333] 

10. Strachan DP, Cook DG. Health effects of passive smoking. 1. parental smoking and lower 
respiratory illness in infancy and early childhood. Thorax. 1997; 52:905–14. [PubMed: 9404380] 

11. Mikerov AN, Gan X, Umstead TM, Miller L, Chinchilli VM, Phelps DS, et al. Sex differences in 
the impact of ozone on survival and alveolar macrophage function of mice after Klebsiella 
pneumoniae infection. Respir Res. 2008; 9:24. [PubMed: 18307797] 

12. Fusco D, Forastiere F, Michelozzi P, Spadea T, Ostro B, Arca M, et al. Air pollution and hospital 
admissions for respiratory conditions in Rome, Italy. Eur Respir J. 2001; 17:1143–50. [PubMed: 
11491157] 

13. Spix C, Anderson HR, Schwartz J, Vigotti MA, LeTertre A, Vonk JM, et al. Short-term effects of 
air pollution on hospital admissions of respiratory diseases in Europe: a quantitative summary of 
APHEA study results. Air pollution and health: a European approach. Arch Environ Health. 1998; 
53:54–64. [PubMed: 9570309] 

14. Atkinson RW, Anderson HR, Sunyer J, Ayres J, Baccini M, Vonk JM, et al. Acute effects of 
particulate air pollution on respiratory admissions: results from APHEA 2 project. Air pollution 
and health: a European approach. Am J Respir Crit Care Med. 2001; 164:1860–6. [PubMed: 
11734437] 

15. Migliaretti G, Cadum E, Migliore E, Cavallo F. Traffic air pollution and hospital admission for 
asthma: a case-control approach in a Turin (Italy) population. Int Arch Occup Environ Health. 
2005; 78:164–9. [PubMed: 15726395] 

16. Sun HL, Chou MC, Lue KH. The relationship of air pollution to ED visits for asthma differ 
between children and adults. Am J Emerg Med. 2006; 24:709–13. [PubMed: 16984840] 

17. Kim CS, Alexis NE, Rappold AG, Kehrl H, Hazucha MJ, Lay JC, et al. Lung function and 
inflammatory responses in healthy young adults exposed to 0.06 ppm ozone for 6. 6 hours. Am J 
Respir Crit Care Med. 2011; 183:1215–21. [PubMed: 21216881] 

18. Shoenfelt J, Mitkus RJ, Zeisler R, Spatz RO, Powell J, Fenton MJ, et al. Involvement of TLR2 and 
TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate 
matter. J Leukoc Biol. 2009; 86:303–12. [PubMed: 19406832] 

19. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 
2007; 81:1–5. [PubMed: 17032697] 

20. Lafferty EI, Qureshi ST, Schnare M. The role of toll-like receptors in acute and chronic lung 
inflammation. J Inflamm (Lond). 2010; 7:57. [PubMed: 21108806] 

21. Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity. Curr Opin 
Immunol. 2002; 14:123–8. [PubMed: 11790542] 

22. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010; 140:805–20. 
[PubMed: 20303872] 

23. Peden DB. The role of oxidative stress and innate immunity in O(3) and endotoxin-induced human 
allergic airway disease. Immunol Rev. 2011; 242:91–105. [PubMed: 21682740] 

24. Watters TM, Kenny EF, O’Neill LA. Structure, function and regulation of the Toll/IL-1 receptor 
adaptor proteins. Immunol Cell Biol. 2007; 85:411–9. [PubMed: 17667936] 

25. West AP, Koblansky AA, Ghosh S. Recognition and signaling by toll-like receptors. Annu Rev 
Cell Dev Biol. 2006; 22:409–37. [PubMed: 16822173] 

26. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat 
Immunol. 2004; 5:987–95. [PubMed: 15454922] 

Bauer et al. Page 16

J Allergy Clin Immunol. Author manuscript; available in PMC 2015 February 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



27. Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem J. 
2009; 420:1–16. [PubMed: 19382893] 

28. Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci. 2008; 
1143:1–20. [PubMed: 19076341] 

29. Lee MS, Kim YJ. Signaling pathways downstream of pattern-recognition receptors and their cross 
talk. Annu Rev Biochem. 2007; 76:447–80. [PubMed: 17328678] 

30. O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in toll-like receptor 
signalling. Nat Rev Immunol. 2007; 7:353–64. [PubMed: 17457343] 

31. Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, et al. Regulation of lung injury and repair by toll-
like receptors and hyaluronan. Nat Med. 2005; 11:1173–9. [PubMed: 16244651] 

32. Jiang D, Liang J, Li Y, Noble PW. The role of toll-like receptors in non-infectious lung injury. Cell 
Res. 2006; 16:693–701. [PubMed: 16894359] 

33. Fageras Bottcher M, Hmani-Aifa M, Lindstrom A, Jenmalm MC, Mai XM, Nilsson L, et al. A 
TLR4 polymorphism is associated with asthma and reduced lipopolysaccharide-induced 
interleukin-12(p70) responses in Swedish children. J Allergy Clin Immunol. 2004; 114:561–7. 
[PubMed: 15356557] 

34. Corr SC, O’Neill LA. Genetic variation in toll-like receptor signalling and the risk of inflammatory 
and immune diseases. J Innate Immun. 2009; 1:350–7. [PubMed: 20375592] 

35. Hernandez ML, Lay JC, Harris B, Esther CR Jr, Brickey WJ, Bromberg PA, et al. Atopic asthmatic 
subjects but not atopic subjects without asthma have enhanced inflammatory response to ozone. J 
Allergy Clin Immunol. 2010; 126:537–44. e1. [PubMed: 20816188] 

36. Ciencewicki J, Brighton L, Wu WD, Madden M, Jaspers I. Diesel exhaust enhances virus- and 
poly(I: C)-induced toll-like receptor 3 expression and signaling in respiratory epithelial cells. Am J 
Physiol Lung Cell Mol Physiol. 2006; 290:L1154–63. [PubMed: 16399790] 

37. Castro SM, Chakraborty K, Guerrero-Plata A. Cigarette smoke suppresses TLR-7 stimulation in 
response to virus infection in plasmacytoid dendritic cells. Toxicol In Vitro. 2011; 25:1106–13. 
[PubMed: 21435390] 

38. Mortaz E, Adcock IM, Ito K, Kraneveld AD, Nijkamp FP, Folkerts G. Cigarette smoke induces 
CXCL8 production by human neutrophils via activation of TLR9 receptor. Eur Respir J. 2010; 
36:1143–54. [PubMed: 19840968] 

39. Dye JA, Adler KB, Richards JH, Dreher KL. Role of soluble metals in oil fly ash-induced airway 
epithelial injury and cytokine gene expression. Am J Physiol Lung Cell Mol Physiol. 1999; 
277:L498–510.

40. Becker S, Fenton MJ, Soukup JM. Involvement of microbial components and toll-like receptors 2 
and 4 in cytokine responses to air pollution particles. Am J Respir Cell Mol Biol. 2002; 27:611–8. 
[PubMed: 12397021] 

41. Goulaouic S, Foucaud L, Bennasroune A, Laval-Gilly P, Falla J. Effect of polycyclic aromatic 
hydrocarbons and carbon black particles on pro-inflammatory cytokine secretion: impact of PAH 
coating onto particles. J Immunotoxicol. 2008; 5:337–45. [PubMed: 18830893] 

42. Hopke PK, Rossner A. Exposure to airborne particulate matter in the ambient, indoor, and 
occupational environments. Clin Occup Environ Med. 2006; 5:747–71. [PubMed: 17110290] 

43. Inoue K, Takano H, Yanagisawa R, Hirano S, Ichinose T, Shimada A, et al. The role of toll-like 
receptor 4 in airway inflammation induced by diesel exhaust particles. Arch Toxicol. 2006; 
80:275–9. [PubMed: 16254717] 

44. Becker S, Dailey L, Soukup JM, Silbajoris R, Devlin RB. TLR-2 is involved in airway epithelial 
cell response to air pollution particles. Toxicol Appl Pharmacol. 2005; 203:45–52. [PubMed: 
15694463] 

45. Chaudhuri N, Paiva C, Donaldson K, Duffin R, Parker LC, Sabroe I. Diesel exhaust particles 
override natural injury-limiting pathways in the lung. Am J Physiol Lung Cell Mol Physiol. 2010; 
299:L263–71. [PubMed: 20435687] 

46. Williams MA, Porter M, Horton M, Guo J, Roman J, Williams D, et al. Ambient particulate matter 
directs nonclassic dendritic cell activation and a mixed TH1/TH2-like cytokine response by naive 
CD4+ T cells. J Allergy Clin Immunol. 2007; 119:488–97. [PubMed: 17187851] 

Bauer et al. Page 17

J Allergy Clin Immunol. Author manuscript; available in PMC 2015 February 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



47. Doz E, Noulin N, Boichot E, Guenon I, Fick L, Le Bert M, et al. Cigarette smoke-induced 
pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J Immunol. 
2008; 180:1169–78. [PubMed: 18178857] 

48. Mortaz E, Lazar Z, Koenderman L, Kraneveld AD, Nijkamp FP, Folkerts G. Cigarette smoke 
attenuates the production of cytokines by human plasmacytoid dendritic cells and enhances the 
release of IL-8 in response to TLR-9 stimulation. Respir Res. 2009; 10:47. [PubMed: 19515231] 

49. Pace E, Ferraro M, Siena L, Melis M, Montalbano AM, Johnson M, et al. Cigarette smoke 
increases toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway 
epithelial cells. Immunology. 2008; 124:401–11. [PubMed: 18217953] 

50. Sarir H, Mortaz E, Karimi K, Kraneveld AD, Rahman I, Caldenhoven E, et al. Cigarette smoke 
regulates the expression of TLR4 and IL-8 production by human macrophages. J Inflamm (Lond). 
2009; 6:12. [PubMed: 19409098] 

51. Hollingsworth JW, Kleeberger SR, Foster WM. Ozone and pulmonary innate immunity. Proc Am 
Thorac Soc. 2007; 4:240–6. [PubMed: 17607006] 

52. Kleeberger SR, Reddy S, Zhang LY, Jedlicka AE. Genetic susceptibility to ozone-induced lung 
hyperpermeability: role of toll-like receptor 4. Am J Respir Cell Mol Biol. 2000; 22:620–7. 
[PubMed: 10783135] 

53. Kleeberger SR, Reddy SP, Zhang LY, Cho HY, Jedlicka AE. Toll-like receptor 4 mediates ozone-
induced murine lung hyperpermeability via inducible nitric oxide synthase. Am J Physiol Lung 
Cell Mol Physiol. 2001; 280:L326–33. [PubMed: 11159012] 

54. Li XY, Donaldson K, MacNee W. Lipopolysaccharide-induced alveolar epithelial permeability: 
the role of nitric oxide. Am J Respir Crit Care Med. 1998; 157:1027–33. [PubMed: 9563715] 

55. Hollingsworth JW 2nd, Cook DN, Brass DM, Walker JK, Morgan DL, Foster WM, et al. The role 
of toll-like receptor 4 in environmental airway injury in mice. Am J Respir Crit Care Med. 2004; 
170:126–32. [PubMed: 15020293] 

56. Jorres R, Nowak D, Magnussen H. The effect of ozone exposure on allergen responsiveness in 
subjects with asthma or rhinitis. Am J Respir Crit Care Med. 1996; 153:56–64. [PubMed: 
8542163] 

57. Garantziotis S, Li Z, Potts EN, Kimata K, Zhuo L, Morgan DL, et al. Hyaluronan mediates ozone-
induced airway hyperresponsiveness in mice. J Biol Chem. 2009; 284:11309–17. [PubMed: 
19164299] 

58. Garantziotis S, Li Z, Potts EN, Lindsey JY, Stober VP, Polosukhin VV, et al. TLR4 is necessary 
for hyaluronan-mediated airway hyperresponsiveness after ozone inhalation. Am J Respir Crit 
Care Med. 2010; 181:666–75. [PubMed: 20007931] 

59. Bauer AK, Rondini EA, Hummel KA, Degraff LM, Walker C, Jedlicka AE, et al. Identification of 
candidate genes downstream of TLR4 signaling after ozone exposure in mice: a role for heat-
shock protein 70. Environ Health Perspect. 2011; 119:1091–7. [PubMed: 21543283] 

60. Mariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of 
infection and inflammation. Nat Rev Immunol. 2007; 7:31–40. [PubMed: 17186029] 

61. Kanneganti TD. Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol. 
2010; 10:688–98. [PubMed: 20847744] 

62. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. The inflammasome: a caspase-1-activation 
platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009; 10:241–
7. [PubMed: 19221555] 

63. Yazdi AS, Drexler SK, Tschopp J. The role of the inflammasome in nonmyeloid cells. J Clin 
Immunol. 2010; 30:623–7. [PubMed: 20582456] 

64. Lamkanfi M. Emerging inflammasome effector mechanisms. Nat Rev Immunol. 2011; 11:213–20. 
[PubMed: 21350580] 

65. Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death. Immunol Rev. 2011; 
243:206–14. [PubMed: 21884178] 

66. Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling 
pathways on ROS production? Nat Rev Immunol. 2010; 10:210–5. [PubMed: 20168318] 

67. Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev 
Immunol. 2009; 27:229–65. [PubMed: 19302040] 

Bauer et al. Page 18

J Allergy Clin Immunol. Author manuscript; available in PMC 2015 February 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



68. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 
inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 2007; 
14:1583–9. [PubMed: 17599094] 

69. Di Virgilio F, Baricordi OR, Romagnoli R, Baraldi PG. Leukocyte P2 receptors: A novel target for 
anti-inflammatory and anti-tumor therapy. Curr Drug Targets Cardiovasc Haematol Disord. 2005; 
5:85–99. [PubMed: 15720226] 

70. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune 
activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008; 320:674–7. 
[PubMed: 18403674] 

71. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative 
stress to inflammasome activation. Nat Immunol. 2010; 11:136–40. [PubMed: 20023662] 

72. Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated 
diseases. Annu Rev Immunol. 2011; 29:707–35. [PubMed: 21219188] 

73. Eltom S, Stevenson CS, Rastrick J, Dale N, Raemdonck K, Wong S, et al. P2X7 receptor and 
caspase 1 activation are central to airway inflammation observed after exposure to tobacco smoke. 
PLoS One. 2011; 6:e24097. [PubMed: 21915284] 

74. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, et al. Silica crystals and 
aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat 
Immunol. 2008; 9:847–56. [PubMed: 18604214] 

75. Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I, et al. Nanoparticles activate the 
NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation 
through release of IL-1alpha and IL-1beta. Proc Natl Acad Sci U S A. 2010; 107:19449–54. 
[PubMed: 20974980] 

76. Reisetter AC, Stebounova LV, Baltrusaitis J, Powers L, Gupta A, Grassian VH, et al. Induction of 
inflammasome-dependent pyroptosis by carbon black nanoparticles. J Biol Chem. 2011; 
286:21844–52. [PubMed: 21525001] 

77. Card JW, Zeldin DC, Bonner JC, Nestmann ER. Pulmonary applications and toxicity of engineered 
nanoparticles. Am J Physiol Lung Cell Mol Physiol. 2008; 295:L400–11. [PubMed: 18641236] 

78. Demento SL, Eisenbarth SC, Foellmer HG, Platt C, Caplan MJ, Mark Saltzman W, et al. 
Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. 
Vaccine. 2009; 27:3013–21. [PubMed: 19428913] 

79. Yamawaki H, Iwai N. Mechanisms underlying nanosized air-pollution-mediated progression of 
atherosclerosis: carbon black causes cytotoxic injury/inflammation and inhibits cell growth in 
vascular endothelial cells. Circ J. 2006; 70:129–40. [PubMed: 16377937] 

80. Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF, et al. 
Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. 
J Biol Chem. 2009; 284:24035–48. [PubMed: 19605353] 

81. Ahmad S, Ahmad A, McConville G, Schneider BK, Allen CB, Manzer R, et al. Lung epithelial 
cells release ATP during ozone exposure: signaling for cell survival. Free Radic Biol Med. 2005; 
39:213–26. [PubMed: 15964513] 

82. Guarda G, Zenger M, Yazdi AS, Schroder K, Ferrero I, Menu P, et al. Differential expression of 
NLRP3 among hematopoietic cells. J Immunol. 2011; 186:2529–34. [PubMed: 21257968] 

83. Allen IC, Scull MA, Moore CB, Holl EK, McElvania-TeKippe E, Taxman DJ, et al. The NLRP3 
inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral 
RNA. Immunity. 2009; 30:556–65. [PubMed: 19362020] 

84. Sha Q, Truong-Tran AQ, Plitt JR, Beck LA, Schleimer RP. Activation of airway epithelial cells by 
toll-like receptor agonists. Am J Respir Cell Mol Biol. 2004; 31:358–64. [PubMed: 15191912] 

85. Armstrong L, Medford AR, Uppington KM, Robertson J, Witherden IR, Tetley TD, et al. 
Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells. Am J Respir Cell 
Mol Biol. 2004; 31:241–5. [PubMed: 15044215] 

86. Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M, et al. Involvement of toll-like 
receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza 
A virus. J Biol Chem. 2005; 280:5571–80. [PubMed: 15579900] 

Bauer et al. Page 19

J Allergy Clin Immunol. Author manuscript; available in PMC 2015 February 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



87. Cottey L, Jayasekera N, Haitchi H, Green B, Grainge C, Howarth P. S42 airway epithelial toll 
receptor expression in asthma and its relationship to disease severity. Thorax. 2010; 65:A21–2.

Bauer et al. Page 20

J Allergy Clin Immunol. Author manuscript; available in PMC 2015 February 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



FIG 1. 
Summary of TLR signaling. TLRs are transmembrane receptors that might exist either 

extracellularly at the cellular membrane or intracellularly at the endosomal membrane. Each 

TLR recognizes specific ligands and signals to cytosolic molecules through adaptor proteins, 

including translocation-associated membrane protein (TRAM), TRIF, TIR domain–

containing adaptor protein (TIRAP), and MyD88. The end result of TLR signaling is the 

activation of mitogen-activated protein kinase (MAPK), NF-κB, and IRF3/7, leading to the 

transcription of proinflammatory cytokines and IFN-inducible genes. dsRNA, Double-

stranded RNA; JNK, c-Jun N-terminal kinase; ssRNA, single-stranded RNA.
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FIG 2. 
Exposure to air pollutants modifies TLR-dependent signaling. Air pollutants, such as PM, 

ozone, and CS, might activate TLR signaling through either direct interaction with the 

receptor or through the production of a secondary mediator, such as a DAMP. Alternatively, 

the pollutants might indirectly alter TLR signaling by modifying the response to a PAMP or 

DAMP. Modifications in TLR signaling result in altered cytokine profiles and an enhanced 

proinflammatory response in the lung.
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FIG 3. 
NLR- and inflammasome-dependent signaling is altered by exposure to air pollutants. Air 

pollutants are involved in or interfere with all steps of inflammasome activity. CS and PM-

associated endotoxin (LPS) initiate the production of pro–IL-1β through activation of TLR 

signaling. Nanoparticles, silica, and asbestos directly activate NLR signaling and 

inflammasome formation through a mechanism that might involve phagocytosis, lysosome 

rupture, potassium (K+) efflux, and the production of ROS. Nanoparticles might induce 

additional caspase-1 activities, including pyroptosis. Pollutant-induced DAMPs, such as HA 

(induced by ozone exposure), can also act as activators of TLRs and NLRs. Air pollutants 

can also inhibit inflammasome activities. DEPs were shown to scavenge the inflammasome 

activator ATP and prevent mature cytokine release.
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