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Abstract

Background—The mechanisms responsible for the development of airway hyperresponsiveness 

in asthma are poorly understood. Adenosine levels are high in the lungs of patients with asthma, 

but a role for adenosine in the development of this cardinal feature of asthma has not been 

previously reported.

Objective—To determine the capacity of adenosine to induce airway hyperresponsiveness, and 

to investigate the mechanisms behind these effects of adenosine on airway physiology.

Methods—Wild-type C57BL/6 mice were exposed to aerosolized adenosine analog adenosine-5′ 

N-ethylcarboxamide (NECA), and subsequent hyperresponsiveness to methacholine was 

investigated by measuring airway mechanics after anesthesia and tracheostomy. Similar 

experiments were conducted with A1-deficient, A3-deficient, and mast cell–deficient mice, as well 

as with mast cell–deficient mice engrafted with wild-type (wt) or A3
−/− mast cells. The effect of 

NECA on methacholine-induced tension development in ex vivo tracheal rings was also 

examined.

Results—Exposure of wt mice to NECA resulted in the robust induction of airway 

hyperresponsiveness. NECA failed to induce hyperresponsiveness to methacholine in tracheal ring 

preps ex vivo, and NECA-induced airway hyperresponsiveness in vivo was not affected by the 

genetic inactivation of the A1 adenosine receptor. In contrast, NECA-induced airway 

hyperresponsiveness was abolished in A3 adenosine receptor-deficient mice and in mice deficient 
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in mast cells. Reconstitution of mast cell–deficient mice with wt mast cells restored 

hyperresponsiveness, whereas reconstitution with A3 receptor–deficient mast cells did not.

Conclusion—Adenosine induces airway hyperresponsiveness indirectly by activating A3 

receptors on mast cells.
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Asthma is a major public health problem in developed countries, and it has become the most 

common chronic illness of children in the United States.1 Asthma is characterized by 3 

major features: (1) reversible airflow obstruction, (2) airway inflammation, and (3) airway 

hyperresponsiveness (AHR). The mechanisms by which these distinct features of asthma 

develop have been extensively investigated. The pathogenesis of AHR, however, has 

remained most elusive.

Airway hyperresponsiveness is characterized by the immediate and excessive airway 

contraction that occurs after exposure to nonspecific stimuli (eg, cold air, perfumes). 

Bronchoconstriction after exposure to these normally innocuous stimuli is a major cause of 

morbidity for patients with this disease. A number of inflammatory cytokines and mediators, 

airway remodeling, neural reflexes, and secondary dysfunction of airway smooth muscle 

(ASM) all have been postulated to contribute to the development of AHR in patients with 

asthma.2–7 Because of the vast array of inflammatory mediators present simultaneously in 

the asthmatic airway, the pathophysiological mechanisms responsible for AHR development 

have been exceedingly difficult to study in human beings.

Adenosine is a metabolic by-product of ATP, present in high levels in exhaled breath 

condensates and bronchoalveolar lavage fluid from patients with asthma.8,9 By activating 4 

G-protein–coupled adenosine receptors (A1, A2A, A2B, and A3) on immunocytes, neurons, 

goblet cells, and ASM, adenosine is believed to contribute to asthma pathogenesis.8–20 

However, a role for adenosine in the development of AHR has not been previously 

investigated. In smooth muscle cells, Gerwins and Fredholm21 demonstrated that adenosine 

could stimulate Ca2+ mobilization and enhance the contractile response to activation of 

Gq/11-coupled receptors. In human ASM cells, adenosine mobilizes intracellular calcium 

through an inositol 1,4,5-triphosphate–mediated pathway.22 Because AHR is a 

hyperresponsive state of ASM and calcium mobilization is essential for smooth muscle 

contraction, these studies have suggested to us that adenosine may be capable of inducing 

AHR. To test this hypothesis, we conducted a series of in vivo and ex vivo experiments 

examining the capacity of the nonselective adenosine analog NECA to induce AHR in mice.

METHODS

Animals

All studies were conducted in accordance with the Institutional Animal Care and Use 

Committee guidelines of the University of North Carolina at Chapel Hill. Female C57BL/6 

mice and WBB6F1/J-KitW/W-v mast cell–deficient mice were purchased from the Jackson 
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Laboratory and bred in our animal facility. Female A1
−/− and A3

−/− mice were generated and 

genotyped as previously described, and backcrossed 12 generations to the C57BL/6 

background.16,23,24 Female C57BL/6 KitW-sh/W-sh mast cell–deficient mice were bred in our 

animal facility. All mice were housed under pathogen-free conditions with 12-hour day and 

night switch.

Exposure of mice to aerosolized adenosine analog NECA

The non selective adenosine analogue NECA was used in place of adenosine in all studies. 

Similar to adenosine, NECA is approximately equipotent on A1, A2A, and A3 receptors, but 

has the advantage over the natural parent compound that its duration in tissues is much 

longer than just a few seconds.25 Mice were placed in individual plexiglass chambers and 

exposed to aerosolized NECA (3 mg/mL in 25% dimethyl sulfoxide) or vehicle (25% 

dimethyl sulfoxide) for 10 minutes. Ten minutes later, mice were anesthetized and 

tracheostomized for measurement of airway mechanics.

Measurement of lung mechanics in anesthetized mice

Lung mechanics including lung resistance (RL), dynamic compliance (Cdyn), airway 

resistance (Raw), and tissue damping (Gtissue) were measured in anesthetized mice as 

previously described.16 After the determination of basal mechanics (at 10-second intervals 

for 1 minute), mice were serially challenged with aerosolized methacholine (20 mg/mL, 40 

mg/mL, and 80 mg/mL) for 20 seconds, and the RL, Cdyn, Raw, and Gtissue after each 

challenge were recorded every 10 seconds for 2 minutes.

Tension development in tracheal ring preparations

Tracheal ring preparations and ex vivo tension measurements were performed by using a 

modified protocol similar to that described previously with some modification.16 After the 

preparation of tracheal rings, the preload tension was set to 0.5 g. The rings were treated 

with 10 µmol/L methacholine for 5 minutes, then washed and reset to 0.5 g resting tension, 

which was maintained throughout the 45-minute equilibration period. After a 10-minute 

pretreatment with vehicle, the rings were challenged with increasing concentrations (1 

nmol/L to 10 µmol/L) of methacholine to establish dose-response curves. To assess the 

effect of NECA on methacholine-induced contraction, after stimulation with the highest 

tested concentration (50 µmol/L) of methacholine, rings were washed thoroughly and 

allowed to recover for 30 minutes, adjusted to the original resting tension, then treated for 10 

minutes with either vehicle or 50 µmol/L NECA, and the dose-dependent response to 

methacholine was assessed again. At the conclusion of each experiment, tracheal segments 

were blotted on a gauze pad and weighed. Force generation was calculated as milligrams 

tension per milligrams tracheal ring weight.

Bone marrow–derived mast cell culture and mast cell reconstitution in C57BL/6 
KitW-sh/W-sh mice

Murine bone marrow–derived mast cells (BMMCs) were harvested and cultured from 

C57BL/6 mice (wild-type [wt] or A3
−/−) 8 to 12 weeks old as previously described.10 After 

5 weeks of culture, cells were collected, washed, and injected into C57BL/6KitW-sh/W-sh 
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mice (10 million cells per mouse) via tail vein. Reconstituted mice were housed in pathogen-

free circumstance with 12 hours of day-night shift for 7 months. Confirmation of mast cell 

reconstitution in these recipients was histologically confirmed by toluidine blue stain of 

tissues from several different organs.

Primary lung mast cell culture and hexosaminidase release measurement

Murine primary lung mast cells were isolated and cultured as described previously.26 Cells 

were used after 6 weeks in culture. After loading with murine anti-dinitrophenyl (DNP) IgE 

(100 ng/mL/million cells) overnight, cells were treated with antigen (DNP-human serum 

albumin) or adenosine for 20 minutes. Mast cell degranulation was determined by β-

hexosaminidase activity assay as described previously.10

Statistical analysis

All data are presented as means ± SEMs. Two-tailed, unpaired Student t test was used 

between different groups; repeated-measures ANOVA was used to analyze differences 

between groups over time, from the beginning of baseline measurements through the 

response period after each methacholine exposure. Least significant difference was used for 

multiple comparisons.

RESULTS

NECA robustly induces AHR in C57BL/6 mice

C57BL/6 mice were exposed to NECA (3 mg/mL) for 10 minutes by aerosol. Twenty 

minutes later, RL, Cdyn, Raw, and Gtissue were measured at the basal level and in response to 

graded methacholine challenge. Control animals were exposed to vehicle rather than NECA. 

NECA exposure had no effect on basal respiratory mechanics. Methacholine aerosolization 

at 20, 40, and 80 mg/mL only modestly increased RL in vehicle-pretreated mice (Fig 1, A). 

However, the same methacholine dosing resulted in much larger RL increases in NECA-

pretreated animals (Fig 1, A; P = .004). The maximum responses to 20, 40, and 80 mg/mL 

methacholine in NECA pretreated groups versus controls were, respectively, 135% ± 9% 

versus 131% ± 4%, 171% ± 11% versus 134% ± 10%, and 242% ± 25% versus 152% ± 8% 

of basal RL (Fig 1, B; P = .002). In addition, methacholine-induced changes in Cdyn were 

influenced by NECA, but to a lesser extent than changes in RL (see this article’s Fig E1, A 

and B, in the Online Repository at www.jacionline.org; P <.05). Because Cdyn 

predominantly reflects the changes in mechanics in the periphery of the lung, these data 

suggest that NECA acts on proximal airways to mediate the major part of these changes in 

airway physiology.27

To evaluate further the specific region of the tracheobronchial tree involved in adenosine-

induced AHR, we used a second method, the forced oscillation technique, to directly 

measure Raw and Gtissue (representing changes in small airways and lung parenchyma27). 

Similar to our findings by measuring RL and Cdyn, NECA pretreatment robustly potentiated 

methacholine-induced increases in Raw (Fig 1, C; P = .012). The maximum Raw after 20, 40, 

and 80 mg/mL methacholine in the NECA-exposed group versus the vehicle group was 

146% ± 6% versus 143%± 6.%, 178% ± 13% versus 146% ± 9%, and 310% ± 45% versus 
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185% ± 12% of basal Raw, respectively (Fig 1, D; P = .037). In addition, NECA potentiated 

methacholine-induced increases in Gtissue, but to a lesser extent than changes in Raw, 

suggesting that NECA induces AHR throughout the tracheobronchial tree, but with greater 

effects on the proximal airways (P = .08 in Fig E1, C; P = .046 in Fig E1, D). Collectively, 

using 2 different methodologies, these data demonstrate that exposure of murine airways to 

NECA in vivo induces AHR to subsequent cholinergic stimulation, and that this effect on 

airway physiology is most marked in the proximal airways.

NECA does not enhance methacholine-induced contraction of tracheal rings

To determine whether NECA acts directly on ASM to induce AHR, tracheal rings from 

C57BL/6 mice were isolated, and the effect of previous NECA exposure on the dose-

dependent contractile response to methacholine was assessed ex vivo. As shown in this 

article’s Fig E2 in the Online Repository at www.jacionline.org, after an intervening 

pretreatment with vehicle, the dose-dependent effect of methacholine is similar to that 

occurring with the initial (dose-dependent) challenge. For those rings instead receiving an 

intervening pretreatment with NECA, contractile responses to methacholine were also 

essentially unchanged. These data suggest that NECA-induced AHR cannot be explained by 

the result of activation of adenosine receptors on ASM.

NECA-induced AHR is mediated by the A3 adenosine receptor

Although activation of A1 receptors in smooth muscle cells can increase Ca2+ mobilization 

and enhance responses to Gq/11-coupled receptors,21,22 our ex vivo data do not support a role 

for A1 receptors on ASM cells in adenosine-induced AHR. To determine further whether A1 

adenosine receptors mediate adenosine-induced AHR indirectly (eg, via neural reflex as 

previously observed for adenosine-induced bronchoconstriction16), we examined the 

capacity of NECA to induce AHR in A1-deficient mice, as described for wt mice. NECA 

pretreatment significantly enhanced methacholine-induced RL increases (Fig 2, A; P = .

002), Cdyn decreases (see this article’s Fig E3, A, in the Online Repository at 

www.jacionline.org; P = .018), Raw increases (Fig 2, B; P = .002) and Gtissue increases (Fig 

E3, B; P = .046) in A1
−/− mice to a degree similar to that observed in wt animals (P = .93 in 

Fig 2, A; P = .46 in Fig 2, B), suggesting that an adenosine receptor other than A1 mediates 

the induction of AHR by adenosine. In addition, we observed that the potentiating effects of 

NECA on methacholine-induced increase in RL and Raw in A1
−/− mice were more robust 

than the effects on methacholine-induced changes in Cdyn and Gtissue, again supporting the 

development of hyperresponsiveness of the major conducting airways.

Next, we examined the capacity of NECA to induce AHR in A3-deficient mice. As shown in 

Fig 3, A and B, and this article’s Fig E4, A and B, in the Online Repository at 

www.jacionline.org, NECA-induced changes in RL, Cdyn, Raw, and Gtissue were abolished in 

mice lacking the A3 receptor (P >.2). As a positive control, wt animals were examined 

concurrently with A3-deficient mice, and robust AHR, similar to our findings in Fig 1 and 

Fig E1, was observed (P <.0001). These results demonstrate that NECA-induced AHR is 

mediated by activation of A3 adenosine receptors.
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NECA-induced AHR is abolished in mast cell–deficient mice

We and others have previously shown that adenosine can activate mast cells through the A3 

receptor;12,26 therefore, NECA-induced AHR was examined in mast cell–deficient mice 

(WBB6F1/J-KitW/KitW-v). As shown in Fig 4, A and B, and this article’s Fig E5, A and B, 

in the Online Repository at http://www. jacionline.org, NECA-induced AHR was abolished 

in mast cell–deficient animals, similar to our findings in A3-deficient mice. These data 

suggest that NECA induced AHR is the result of activation of A3 receptors on mast cells.

NECA-induced AHR is repaired in wt but not A3
−/− mast cell–reconstituted mice

To establish that NECA-induced AHR occurs indirectly as a result of activation A3 

adenosine receptors on mast cells, we repeated the described in vivo experiments in mast 

cell–deficient mice reconstituted with wt and A3
−/− BMMCs. For these studies, we used a 

second mast cell–deficient strain that is inbred on the C57BL/6 background (C57BL/

6KitW-sh/KitW-sh mice) to facilitate the reconstitution of mast cells derived from C57BL/6-

A3
−/− and C57BL/6-wt mice. Successful reconstitution of mast cells in these mice was 

determined by toluidine blue staining of the lungs (see this article’s Fig E6, A–F, in the 

Online Repository at http://www.jacionline.org), and mast cell numbers in the lungs did not 

differ between mice reconstituted with wt or A3
−/−BMMCs (Fig E6, G). As shown in Fig 5, 

A and B, NECA pretreatment robustly potentiated methacholine-induced increases in Raw in 

C57BL/6KitW-sh/KitW-sh mice reconstituted with wt but not A3
−/− BMMCs (P = .026). 

These data establish that that NECA-induced AHR is the result of activation of A3 

adenosine receptors on mast cells. We failed to observe a significant effect of NECA on 

methacholine-induced Gtissue increase in wt and A3
−/− mast cell–reconstituted mice (see this 

article’s Fig E7 in the Online Repository at http://www.jacionline.org), further suggesting 

that mast cell activation by adenosine acts predominantly on proximal airways to produce 

AHR in mice.

The potency of adenosine to elicit lung mast cell degranulation

Our results show that aerosolized NECA can induce robust AHR through a mast cell–

dependent mechanism, but cannot produce bronchoconstriction directly in anesthetized 

mice. In contrast, we and others have found that antigen-induced mast cell degranulation can 

produce bronchoconstriction in naive mice under anesthesia (data not shown). To determine 

whether differences in the magnitude of mast cell degranulation in response to each stimulus 

might be responsible for these differential effects on airway physiology, we examined the 

capacity of adenosine and antigen to degranulate murine lung mast cells acutely in vitro. As 

shown in Fig 6, adenosine induced modest degranulation of lung mast cells. In contrast, the 

magnitude of degranulation was much greater after stimulation with antigen. These findings 

support the hypothesis that the magnitude of adenosine-induced degranulation is insufficient 

to produce direct bronchoconstriction, but sufficient to prime the airway to become 

hyperresponsive to subsequent stimulation.

DISCUSSION

Airway hyperresponsiveness is a cardinal feature of asthma, characterized by 

bronchoconstriction after exposure to numerous nonantigenic stimuli, including cold air, 
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perfumes, and exercise. In this report, we describe a previously unrecognized role for 

adenosine as an inducer of AHR. Because it is well established that adenosine levels are 

elevated in the asthmatic lung,8,9 there is a strong implication that adenosine may contribute 

to the development of AHR in patients with asthma.

Modulatory effects of adenosine on airway physiology have long been observed.28 Previous 

studies have focused on the pathways mediating exogenous adenosine-induced 

bronchoconstriction.29,30 However, it remains unclear whether endogenous adenosine 

produces direct bronchoconstriction in patients with asthma. Adenosine inhalation–induced 

bronchoconstriction in patients with asthma can be largely (80%) relieved by pretreatment 

with either mast cell membrane stabilizers or antihistamines.31,32 However, these 

interventions are largely ineffective for the control of airflow obstruction during asthma 

attacks or status asthmaticus, in which endogenous levels of adenosine should be markedly 

increased. In addition, although A1 receptors have also been shown to partially mediate 

adenosine-induced bronchoconstriction through a mast cell–independent pathway, targeting 

the A1 receptor gene in human beings with asthma has been largely ineffective.16,19,33,34 

These observations suggest that endogenous adenosine may affect airway pathophysiology 

in ways other than eliciting bronchoconstriction. In this study, we have discovered that 

adensosine produces AHR in mice. On the basis of these findings, we propose that the 

pathophysiological role of adenosine in the asthmatic lung may be to prime the airway and 

produce AHR through activation of mast cells, rather than by serving as a direct 

bronchospastic mediator.

We used 2 different methodologies, the single compartment model (RL and Cdyn) and the 

constant phase model (Raw and Gtissue) of lung mechanics, to evaluate adenosine-induced 

AHR in vivo in mice. Both methods have demonstrated that acute NECA exposure renders 

the airways hyperresponsive, significantly increasing the response to methacholine 

challenge 20 minutes later. One limitation of our study is that we do not know how long 

these effects of NECA on airway physiology persist. Although the natural cognant ligand 

adenosine is subject to rapid metabolism in vivo, it is elevated in the bronchoalveolar lavage 

fluid from patients with asthma, suggesting that continuous generation of adenosine in the 

human lung, likely a function of elevated metabolism associated with inflammation, 

provides a persistent stimulus that could possibly contribute to a sustained effect on AHR. In 

addition, we observed that the changes in RL and Raw were greater than those in Cdyn and 

Gtissue. Because increases in Raw reflect narrowing of the proximal airways, these data 

initially suggested that NECA may be acting on ASM in vivo to produce AHR.

Previous studies have shown that adenosine can elicit calcium mobilization through 

activation of A1 adenosine receptors in cultured human ASM cells, suggesting that 

adenosine acts through A1 receptors to modulate the contractility of ASM.21,22 However, 

our studies with ex vivo isolated tracheal rings showed that pretreatment with NECA failed 

to change methacholine-induced tension development. Furthermore, our in vivo studies 

showed that mice deficient in A1 receptors developed AHR of similar magnitude as wt 

animals in response to NECA. Collectively, these experiments demonstrate that adenosine-

induced AHR is not the result of activation of A1 adenosine receptors on ASM, or A1 

receptors on any other cell type.
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Our study has identified a critical role for mast cells in the development of adenosine-

induced AHR. Adenosine-induced AHR was abolished by genetic deletion of mast cells in 

mice and was restored by the reconstitution of mast cells in mast cell–deficient mice, 

indicating that mast cells are critical intermediaries in the induction of AHR by adenosine. 

The potential role of mast cells in AHR development has been proposed in several previous 

studies. Mast cell infiltration in ASM bundles has been reported to be the major difference 

between asthma and eosinophilic bronchitis (a disease that has asthmalike airway 

inflammation but lacks AHR), where the ASM is devoid of mast cells.35 In patients with 

asthma, anti–TNF-α therapy can simultaneously reduce AHR and sputum histamine levels 

but has no effect on airway inflammation, suggesting that there may be a special link 

between AHR and mast cells.36 In mice, mast cells can promote the formation of multiple 

features of chronic asthma including AHR.37 However, it remains unclear how mast cells 

are activated in the asthmatic lung and subsequently contribute to AHR development.

It has long been held that mast cells either exist at resting state or become transiently 

activated to induce mediator release via degranulation and de novo synthesis of lipids and 

cytokines. Mast cell degranulation, which is usually triggered by antigen-induced cross-

linking of IgE/FcεRI receptors, is responsible for the acute and sometimes life-threatening 

manifestations of asthma and other allergic disorders. Recently, however, mounting 

evidence has revealed that mast cells can be modestly and differentially activated by other 

stimuli, which differs from classic IgE/antigen-induced “ anaphylactic degranulation,” both 

in kinetics and in amounts and/or spectrum of secreted mediators.38–42 These 

nonanaphylactoid activation pathways, including so-called piecemeal degranulation, may 

not trigger the acute clinical manifestations of an anaphylactic response, but nevertheless 

contribute to the formation of chronic features of asthma such as AHR.37,43 In the mouse, 

Martin et al44 demonstrated that degranulation of mast cells at modest magnitude by antigen 

primed the airway to be more responsive to methacholine, rather than directly producing 

bronchoconstriciton. Our data show that although adenosine can degranulate mast cells, it 

causes only modest degranulation compared with that associated with antigen/IgE, a finding 

consistent with previous observations.26 In addition, anti-IgE therapy improves airway 

inflammation but not AHR in patients with asthma, suggesting that alternative activation 

pathways, such as adenosine-induced degranulation, may perhaps play a more important role 

in AHR development.45

Extensive mast cell degranulation results in the release of numerous mediators capable of 

stimulating ASM contraction. These mediators include histamine, serotonin, tryptase, 

prostaglandin D2, leukotriene C4/leukotriene D4, tryptase, major basic protein, thromboxane 

A2, platelet-activating factor, and angiotensin II. Our data suggest that levels of mast cell 

mediators achieved by A3 activation in vivo are insufficient to produce bronchoconstriction 

by themselves but render the airway hyperresponsive to methacholine. One possible 

mechanism includes alteration of smooth muscle dynamics. Although an attractive 

hypothesis, preliminary studies from our laboratory have been unable to replicate this 

phenomenon convincingly ex vivo, because pretreatment of murine tracheal rings with 

subthreshold concentrations of serotonin or leukotriene D4 produced only modest increases 

in methacholine-induced contraction (data not shown). Other potential mechanisms include 
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changes in airway geometry or luminal patency as the result of mucosal edema or mucus 

secretion. Because the naive mouse airway has few goblet cells, this latter mechanism, that 

NECA pretreatment causes changes in airway geometry via acting on goblet cells, seems 

less likely. We failed to detect any effects of NECA on lung mechanics before methacholine 

challenge, suggesting that major changes in luminal diameter are not occurring. We cannot 

exclude the possibility that AHR results from subtle changes in luminal diameter that are 

insufficient to alter airway resistance, or mucosal edema that does not change luminal 

diameter.

Airway hyperresponsiveness is a defining feature of asthma, but the mechanisms underlying 

its origins remain poorly understood. For many years, adenosine has been suspected to 

contribute to the pathogenesis of asthma, but a role for this ubiquitous biological mediator in 

AHR development has not been previously described. Our data have revealed a new role for 

adenosine as an inducer of AHR, through its capacity to degranulate mast cells by binding to 

the A3 adenosine receptors. Limiting adenosine-induced mast cell degranulation may 

represent a novel means for controlling this important feature of asthma.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key messages

• Adenosine can induce AHR in mice indirectly via activation of A3 adenosine 

receptors on mast cells.

• Because adenosine levels are elevated in the lungs of patients with asthma, these 

studies suggest that endogenous adenosine may contribute to the development of 

AHR in asthma.
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FIG 1. 
Adenosine analogue NECA induces AHR in mice. Methacholine (MCh)–induced changes in 

resistance of lung (RL) and resistance of airway (Raw) were measured in mice pretreated 

with aerosolized NECA (3 mg/mL; n = 13) or vehicle (n = 11). Data are expressed as 

percent of baseline ± SEMs. A and C, respective changes in RL and Raw over time; B and D, 

peak RL and Raw after each MCh exposure. P <.01 in A and B; P <.05 in C and D; NECA vs 

vehicle groups by repeated-measures ANOVA.
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FIG 2. 
NECA-induced AHR in A1

−/− mice. Data represent the peak RL (A) and Raw (B) after 

methacholine (MCh) exposure and are expressed as percent of baseline ± SEMs. P <.01 in A 

and B, for A1
−/− NECA (n = 17) vs A1

−/− vehicle (n = 11) groups; P = .92 in A, 0.46 in B for 

wt NECA (n = 5) vs A1
−/− NECA groups by repeated-measures ANOVA.
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FIG 3. 
NECA-induced AHR is A3 receptor-dependent. Data represent the peak RL (A) and Raw (B) 

after each methacholine (MCh) exposure and are expressed as percent of baseline ± SEMs. P 

<.01 in both A and B, wt NECA (n = 4) vs both A3
−/− vehicle (n = 6) and A3

−/− NECA (n = 

7); P > .2 in A and B, A3
−/− NECA vs A3

−/− vehicle, by repeated-measures ANOVA and 

least significant difference test.
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FIG 4. 
NECA-induced AHR is mast cell–dependent. Data represent the peak RL (A) and Raw (B) 

after each methacholine (MCh) exposure and are expressed as percent of baseline ± SEMs. P 

> .18 in A and B, NECA (n = 8) vs vehicle (n = 7) groups by repeated-measures ANOVA.
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FIG 5. 
NECA-induced AHR in mast cell–reconstituted mice. Mast cell–deficient mice were 

reconstituted (→) with wild-type (A) or A3
−/− (B) mast cells. Data represent the peak Raw 

after each methacholine (MCh) exposure and are expressed as percent change from baseline 

± SEMs. P = .026 in A (n = 8/group) and .187 in B (n = 4–5/group); NECA vs vehicle 

groups by repeated-measures ANOVA.
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FIG 6. 
Adenosine-induced degranulation of primary lung mast cells. Murine primary lung mast 

cells were cultured in vitro in the presence of stem cell factor and IL-3 for 5 weeks. Cells 

then were loaded with IgE for 12 hours. Antigen (DNP-HSA) and adenosine-induced mast 

cell degranulation was determined by measuring hexosaminidase release. #P <.05 by t test 

vs PBS-treated cells.
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