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Abstract

Treatment effects, especially when comparing two or more therapeutic alternatives as in

comparative effectiveness research, are likely to be heterogeneous across age, gender, co-

morbidities, and co-medications. Propensity scores (PSs), an alternative to multivariable outcome

models to control for measured confounding, have specific advantages in the presence of

heterogeneous treatment effects. Implementing PSs using matching or weighting allows us to

estimate different overall treatment effects in differently defined populations. Heterogeneous

treatment effects can also be due to unmeasured confounding concentrated in those treated

contrary to prediction. Sensitivity analyses based on PSs can help to assess such unmeasured

confounding. PSs should be considered a primary or secondary analytic strategy in non-

experimental medical research, including pharmacoepidemiology and non-experimental

comparative effectiveness research.
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Randomized controlled trials (RCTs) are considered the gold standard for assessing the

efficacy of medical interventions, including medications, medical procedures, and clinical

strategies. Nevertheless, particularly for research on the prevention of chronic disease, RCTs

are often not feasible because of the size that would be required to address rare outcomes,

timeliness, budget requirements, and ethical constraints [1]. Non-experimental studies of

medical interventions are not subject to these limitations, but have frequently been criticized
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because of their potential for confounding bias [2, 3]. This concern reached a crescendo with

the disparity in estimated effects of postmenopausal hormone therapy on the risk for

cardiovascular events from RCTs and non-experimental studies.[4] These discrepancies

highlighted the need to develop and apply improved methods to reduce bias in non-

experimental studies in which confounding is likely [5].

Rosenbaum and Rubin [6] developed the method of the propensity score (PS) as an

alternative to multivariable outcome models for confounding control in cohort studies. PSs

have become increasingly popular to control for measured confounding in non-experimental

(epidemiologic or observational) studies that assess the outcomes of drugs and medical

interventions [7]. While not generally superior to conventional outcome models [8], PSs

focus on the design of non-experimental studies rather than the analysis [9]. Combined with

the new user design [10], PSs specifically focus on decisions related to initiation of

treatment and hypothetical interventions [11].

By comparing the distribution of PSs between the treated and untreated cohorts, PSs permit

ready assessment to determine whether or not the treated and untreated patients are fully

comparable [12, 13] and identification of patients treated contrary to prediction [14]. Based

on these recent developments, a re-analysis of the data from the Nurses’ Health Study [15]

and an analysis of the Women’s Health Initiative observational study [4] on the effects of

estrogen and progestin therapy on coronary heart disease in postmenopausal women that

followed a new user design and dealt with selection bias after initiation showed results

compatible with the ones from RCTs.

Herein we review the concept of PSs, the implementation of PSs, and specific issues

relevant to non-experimental studies of medical interventions. The aim of the review was to

help clinical researchers understand specific advantages of PSs, to appropriately implement

PSs in research, and to evaluate the studies using PSs from the medical literature. Our focus

was on issues that are relevant for making valid treatment comparisons, and we therefore

start with some general topics that are important to understand the specific benefits of PSs

for medical research.

Variability in treatment decisions

Medical decision making is complex and influenced by many factors. While patient

characteristics (e.g., disease progression, unrelated co-morbidities, co-medications, and life

expectancy) are important determinants of treatment choice, treatment decisions are also

influenced by a wide variety of factors that are largely independent of the patient’s health,

including calendar time, physician training, healthcare setting (including financial

pressures), detailing on the physicians’ side, and various forms of direct-to-consumer

advertising, beliefs (including religion), family, and others (e.g., household help).[16] Note

that some of thesefactors can be measured, while many are either unmeasured or even

unknown.

For non-experimental research, however, the more important distinction is whether or not

factors influencing the treatment decision are independent of the risk for the outcome under

study. Only those factors affecting treatment decisions that also affect the risk for the
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outcome of interest are confounders, and if unaccounted for, lead to biased estimation of

treatment effects. Factors affecting treatment decisions that are unrelated to the outcome of

interest, measured or not, are the factors that allow us to do non-experimental research of

medical interventions. If all the variation in treatments is related to the risk for the outcome,

we are unable to estimate the treatment effect. This setting has been termed “structural

confounding.”[12] In medical research we are often confronted with something in between

these two extremes termed “confounding by indication;” some of the variability in

treatments, but not all of the variability is a function of disease severity (the indication).[5]

Because disease severity is difficult to measure, some have strongly argued against non-

experimental research for intended effects of medical interventions [1, 3, 17]. If all

physicians and their patients would make the same treatment decision based solely on

uniform and reliable measures of disease severity (indication), then we would indeed be

unable to study medical interventions outside of RCTs. When comparing treated to untreated

persons, confounding by indication is often intractable. Fortunately, in actual medical

practice, we often have a choice of interventions and a range of views among physicians and

patients about appropriateness of treatment and willingness to choose it. For example, there

are several long-acting insulins on the market. Guidelines for treatment of persistent asthma

offer a choice of treatments for most of the different stages of severity. Comparing

treatments that are indicated for the same stage of disease progression drastically limits the

potential for confounding by indication. A comparative study of two treatments also

eliminates confounding by frailty that results when comparing patients receiving preventive

treatments with untreated patients [16, 18, 19].

Confounding

Confounding is a mixing of effects (Figure 1).[20] This can be depicted using the following

causal diagram:

A classic example of confounding (by indication) is the estimation of the effects of beta

agonists on asthma mortality. Patients with more severe asthma are more likely to be treated

with beta agonists (at any point in time) and asthma severity is an independent predictor of

asthma mortality. To depict this confounding by indication using purely hypothetical

numbers we have dichotomized the treatment into yes (E=1) or no (E=0) and asthma

severity into severe asthma (X=1) and less severe asthma (X=0)(Figure 2).

Treatment effect heterogeneity

It is reasonable to assume that treatment effects (both intended and unintended) are not the

same in every patient. Good candidates for treatment effect heterogeneity are age (e.g.,

children and older adults), gender, disease severity, co-morbidity (e.g., diabetes), and

comedication (e.g., “polypharmacy”), which are relatively easy to study.

Examples of clinically relevant treatment effect heterogeneity include adjuvant

chemotherapy with oxaliplatin in patients with stage III colon cancer, which has been shown

to improve survival in patients with a median age of 60 years [21], but may not do so in
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patients above age 75 years [22], and the primary prevention of myocardial infarction with

low-dose aspirin in men [23], but not women [24].

Treatment effect heterogeneity has consequences for the estimation of overall treatment

effects. If the effect of treatment with beta agonists is more pronounced in those with severe

asthma, the proportion of patients with severe asthma in the study population will influence

the estimation of any overall treatment effect (Figure 3). The overall treatment effect in the

population will be a weighted average of the treatment effect in those patients with severe

asthma and those patients with less severe asthma. The ability to define the population

studied (e.g., a population in which the prevalence of severe asthma is 20%) becomes

essential, and is a critical component of principled “causal inference”.[25-27] Our focus

herein will be on the relative risk (RR). Homogeneous RRs generally imply treatment effect

heterogeneity on the risk difference scale if the treatment has an effect and vice versa.

Propensity Scores

Theory

The PS is a covariate summary score defined as the individual probability of treatment

(exposure) given (conditional on) all confounders [6]. In our example, 50% of those with

severe asthma receive beta agonists, so every patient with severe asthma will have a PS of

0.5 whether or not the patient was actually treated. While in practice there may be different

covariate patterns that lead to a PS of 0.5, Rosenbaum and Rubin [6] proved that treated and

untreated patients with the same PS value (e.g., treated patients with a PS of 0.5 and

untreated patients with a PS of 0.5) will, on average, have the same distribution of covariates

used to estimate the PS. Thus, by holding the PS constant (conditioning on the PS) treated

and untreated cohorts will tend to be “exchangeable” with respect to the covariates.

Exchangeability, in return, leads to unconfounded estimates of treatment effects because it

removes the arrow from the covariate(s) to the treatment (Figure 1 above). Note that

exchangeability is restricted to measured covariates whose relation with treatment is

correctly modeled in the PS. We therefore need to assume no unmeasured confounding,

which is much more plausible with randomization, another method to obtain

exchangeability.

The ability to control for confounding using PSs is, in general, not different from what we

would achieve by using a more conventional multivariable outcome model [8], but the PS

has some specific advantages outlined below. The PS also allows us to clearly define the

study population in the presence of treatment effect heterogeneity, something that cannot be

achieved using a conventional multivariable outcome model [28]. We will now provide a

non-technical description of PS estimation and implementation.

Estimation

The PS is usually estimated using multivariable logistic regression. The few published direct

comparisons between logistic regression and other methods to estimate the PS (e.g., neural

networks [29]; boosted CART [30, 31]) found that PS performs well in most settings. More

recently, PS estimation methods based on optimizing balance have been proposed [32].
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These are promising, but their performance and causal implications have not yet been

thoroughly assessed. It is thus reasonable to use logistic regression to estimate PSs.

As with any model, mis-specification of the PS can lead to bias. An advantage of PSs is that

we can check the performance of the model by assessing covariate balance across treatment

groups after stratifying, matching, or weighting on the estimated PS (PS implementation

discussed below). If covariate imbalances remain, the PS model can be refined, e.g., by

using less restrictive terms for continuous covariates (e.g., squared or cubic terms, fractional

polynomials, and splines) or by adding interaction terms between covariates.

Although the ability to check covariate balance is a beneficial aspect of PS methods, there is

no agreed-upon best way to check or summarize covariate balance. The vast majority of the

current methods proposed to quantify covariate imbalances do not take the confounding

potential of the remaining imbalances into account. We therefore suggest using the approach

proposed by Lunt et al. [33] that assesses the confounding potential of remaining imbalances

by assessing the change in estimate after controlling for individual covariates in the outcome

model after PS implementation. A change in estimate indicates a remaining imbalance of the

covariate across treatment groups and that the covariate affects the risk for the outcome

independent of treatment. A graphical depiction of the spread of the changes in estimate can

then be used to compare different PS estimation or implementation methods [33].

As in any non-experimental study, the process of variable selection is also important for PS

models. The crux lies in the inability of the data to inform us about causal structures. In fact,

data cannot be analyzed without the researcher imposing a causal structure [34].

Thus far we have depicted the PS as a model predicting treatment based on covariates. We

now need to add an important distinction between the PS and a model intended to optimize

discrimination between treatment groups.[35] Consider in our hypothetical study of beta

agonists outlined above a random selection of the physicians treating patients with asthma

has recently been visited by a detailer making a very compelling argument to treat more

patients with beta agonists irrespective of asthma severity. So, we build the PS based on

asthma severity (and all potential risk factors for asthma mortality, the outcome of interest)

to control for confounding. Should we add the variable “recent detailer visit” to the PS

model? Because the detailer visit leads to increased prescribing irrespective of asthma

severity, it will clearly improve our prediction of treatment with beta agonists, but does this

help with respect to our aim (i.e., to estimate the unconfounded effect of beta agonists on

asthma mortality)? The answer is no, and even worse, to the contrary. Having had a detailer

visit is an “instrumental variable,” i.e., a variable associated with the treatment of interest,

but not affecting the outcome (asthma mortality) other than through its relation with the

treatment (beta agonists).

In medical research, instrumental variables are those that explain variation in treatments, but

are not directly related to the outcome of interest. As outlined above, this is the “good”

variability (e.g., the change in prescribing following the detailer visit). Without such

variability, we would not be able to conduct non-experimental research. By removing

“good” variability, we not only decrease the precision of the estimate [36], but also increase
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the contribution of “bad” variability, i.e., unaccounted for variability in treatments that

affects the risk for the outcome (also called unmeasured confounding) [16, 37]. This issue is

not just academic [38] and the crux lies in the fact that the data will not tell us whether or

not a variable is a confounder or an instrumental variable. Some have argued that it is safer

to err on the side of including variables in the PS [37] or to use automated procedures to

screen hundreds of potential covariates in studies using large automated healthcare databases

[39]. Automated procedures have been shown to improve confounding control in some [39],

but not all settings [40, 41]. They should be implemented with care and considering the

potential for inclusion of instrumental variables.

Implementation

Once the PS is estimated, we can control for this covariate summary score as for any other

continuous covariate using standard epidemiologic techniques, including stratification,

matching, standardization (weighting), and outcome regression modeling. Modeling (adding

the PS to a multivariable outcome model) is the least appealing of these implementation

methods because its validity is dependent on correctly specifying two models (the PS and

the outcome model) and it also does not offer specific advantages of other PS

implementations, as outlined below. We therefore do not recommend implementing the PS

as a continuous covariate in an outcome regression model.

One of the main advantages of the PS is that it provides an easy way to check whether or not

there are some patient characteristics (covariate patterns) that define groups of patients in

whom there is no variability in treatments (i.e., everyone treated or no one treated;Figure 4).

It might be that, following our beta agonists and asthma example, within the group of

patients with mild asthma there is a group of patients with very mild asthma in which no one

is treated with beta agonists. It is easy to see that there are no data to estimate any treatment

effect in this group, unless we make the strong, and likely incorrect assumption that risk of

death and treatment effects in these patients with very mild would be identical to those in the

group of treated patients with mild asthma. While extrapolation of treatment effects to

groups for whom we have no data to estimate the treatment effect may be very sensible in

practice, researchers should at least be aware of such extrapolations. PSs allow us to limit

model extrapolation by excluding patient groups from the analysis in whom no treatment

effect can be estimated because all patients are either never (untreated with PS lower than

the lowest PS in the treated) or always treated (treated with higher PS than the highest PS in

the untreated). Trimming (excluding) non-overlap regions of PS should be the default prior

to any PS implementation. The untrimmed and trimmed populations need to be compared;

however, because trimming patients with very mild asthma (our example) leads to a focused

inference that is not generalizable to all asthmatics.

Stratification of continuous covariates into equal-sized strata (percentiles), estimation of the

treatment effect within these percentiles, and combining the stratum-specific estimates using

a weighted average (e.g., Mantel-Haenszel; MH [42]) is a well-established method to control

for confounding by any continuous covariate, including the PS. Trimming of non-overlap

should be done before creating percentiles. Depending on the number and distribution of

outcomes, it is often possible to use 10 strata (deciles) rather than the “usual” five strata
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(quintiles), thus reducing residual confounding within strata. Because most methods to

average stratum-specific estimates assume uniform treatment effects across strata, it is

important to estimate and evaluate the stratum-specific treatment effect estimates before

combining the stratum-specific treatment effect estimates into an overall estimate. Using our

numerical example above (Figure 2), stratifying on the PS will be the same as stratifying on

asthma severity; there are only two distinct PS values (PS=0.5 for all those with X=1 and

PS=0.1 for all those with X=0). Because the treatment effect is uniform (RR=0.5 in both PS

strata) we know that any weighted average, including the MH estimate, of the unconfounded

effect of beta agonists on asthma mortality in our cohort will yield a RR=0.5.

Matching on specific covariates in cohort studies removes confounding by the matching

variable(s) and has been used extensively in epidemiologic research prior to the widespread

availability of multivariable models [43]. Matching on a large number of covariates quickly

becomes intractable; however, and summary scores, including the PS, were originally

proposed to overcome this limitation [44, 45]. In theory, the implementation is

straightforward; for every treated patient we find a single or multiple untreated patients with

the same PS (or nearly the same PS, based on a pre-determined caliper) and put the matched

pair aside. We then repeat this step until we acquire all of the treated patients matched to the

same number of untreated patients (a selection of all the untreated patients). In practice,

however, this is more complicated because we may not find an untreated match for every

treated patient. The ability to find matches for all treated patients is a complex function of

the overall prevalence of the treatment in the population, the separation of the PS

distribution in treated and untreated patients, and the width of the PS caliper used [33, 46].

There is a general trade-off between residual confounding (minimized by narrow calipers)

and finding matches (maximized by wide calipers). Various matching algorithms are

available and the comparative performance has been assessed using simulations [47]. We

have often used a greedy matching algorithm [48] and this has been shown to perform well

in both actual studies and simulations [47]. It is important to report the number or proportion

of treated patients that could be matched. Higher proportions are preferred. Note that the

proportion of untreated patients that could be matched, and therefore the overall number of

patients matched, is not relevant here.

Standardization is a way to validly summarize treatment effects in the presence of treatment

effect heterogeneity. Note that matching implicitly standardizes the estimate to the treated

population. “Standardizing” to the treated population can also be achieved using

standardized mortality/morbidity ratio (SMR) weights [49] (the quotes around

“standardizing” are due to a technicality: we can only standardize on categories of variables,

whereas weighting actually allows us to include continuous variables and is thus more

flexible). These weights create a pseudo-population of the untreated, which has the same

covariate distribution as the treated. While every treated person receives a weight of 1 (i.e.,

the observed), every untreated person is weighted by the PS odds [PS/(1-PS)]:
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We now use our numerical examples presented in Figures 2 and 3 to illustrate PS

implementation to estimate the average treatment effect in the treated. For clarity, we retain

the single, dichotomous covariate example in which there is no difference between

controlling for this single covariate and the PS. In practice, however, the PS will be a

summary score of multiple covariates reduced into a single covariate, which allows us to

efficiently implement all that follows rather than doing this for each and every covariate

separately. PS matching (in expectation) and SMR weighting will lead to the numbers

presented in Figure 5 and an unconfounded RR=0.5 in the collapsed table. The prevalence of

treatment, and thus the estimated PS, is 0.1 in those with X=0 and 0.5 in those with X=1.

Another typical standard is the overall population of the treated and untreated. This can be

achieved by implementing the PS using inverse probability of treatment weights (IPTW). In

settings with an active comparator, estimating the treatment effect in the entire population

obviates the need to determine which treatment to identify as treated and untreated in PS

matching and SMR weighting. IPTW creates a pseudo-population of both the treated and the

untreated, which has the same covariate distribution as the overall population of treated and

untreated. Every person is weighted by the inverse of the probability of receiving the

treatment actually received [the PS in the treated and (1-PS) in the untreated]. Stabilizing

these weights by the marginal overall prevalence of the treatment actually received has

specific advantages that are beyond the scope of this review.[27] The actual stabilized IPTW

weights are easily implemented based on the estimated PS, as follows:

In our numerical example, the marginal prevalence of treatment, PE, is 0.18 (Figure 2).

Using our estimated PS values would lead to the weights, and on average, the numbers

presented in Figure 6 and again to an unconfounded RR=0.5 in the collapsed table.

In our above numerical example, all PS implementation methods led to the same

unconfounded treatment effect estimate (RR=0.5) because the treatment effect is uniform.

The results for our numerical example with heterogeneous treatment effects, as introduced in

Figure 3, are shown below in Figure 7. As can be seen, the treatment effect in the treated (PS

matching or SMR) is more pronounced than the treatment effect in the population (IPTW).

Note that all estimates are unconfounded. The difference between the estimates from MH,

PS matching or SMR, and IPTW is due to the fact that the prevalence of severe asthma, in

which the treatment is effective, is higher in treated patients (55%) than the entire population

of treated and untreated (20%). The MH estimate is not valid in this setting because it

assumes uniform effects and the MH weighted average does not pertain to any defined

population; the weights are entirely chosen to minimize variance and result in relying

heavily on the stratum with severe asthma (X=1) because most of the events are observed in

this stratum (w=0.93).

PS matching, the SMR, and IPTW result in so-called causal contrasts because the population

of interest is clearly defined. The data (Figs. 3, 7) suggest that there is no value to use of

beta agonists in those with mild asthma (X=0). With such marked heterogeneity, presenting
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treatment effects stratified by asthma severity would be essential and any average treatment

effect would have uncertain utility for treatment decisions in practice.[50]

PS matching and SMR weights allow us to estimate the average treatment effect in the

treated, i.e., in patients with the same distribution of covariates as the one actually observed

in the treated. The average treatment effect in the treated answers the question, “What would

have happened if those actually treated had not received treatment?” In our experience,

matching or SMR weighting are preferable when the comparator group is either untreated or

not well-defined, as is often the case in pharmacoepidemiology (although active referent

groups are increasingly used in settings, such as evaluation of comparative effectiveness).

Estimating the treatment effect in a population with a reasonably high prevalence of the

indication for treatment reduces the potential for violations of positivity that we would likely

encounter with IPTW in such a setting.

With an active comparator (a treatment alternative rather than untreated), the indication can

often be assumed to be equally prevalent in both treatment groups, thus limiting the potential

for violations of positivity. IPTW will often make sense with an active comparator, allowing

us to estimate the average treatment effect in the entire population. This answers the

question of what would have happened if everyone had been treated with “A” versus what

would have happened if everyone had been treated with “B,” the same question that is asked

in an RCT [51]. Note that being able to make these causal contrasts is dependent on

predicting treatment based on relevant covariates, i.e., the estimation of the PS [6].

In practice, the distribution of weights needs to be carefully checked for both SMR

weighting and IPTW because some patients, i.e., those treated contrary to prediction, receive

large weights (are “replicated” or “cloned” many times), and thus can become highly

influential. For IPTW a rule of thumb for well-behaved weights (“no problem”) would be a

mean stabilized weight close to 1.0 and a maximum stabilized weight of < 10 [52]. Thus far,

no similar rule of thumb has been evaluated for SMR weighting, but in the meantime it

would seem reasonable to also use weights ≥ 10 as a sign for concern. If weights > 10 are

observed, researchers should check whether or not instrumental variables can be excluded

from the PS model and perform sensitivity analyses involving additional trimming (see

below).

Trimming

Thus far we have assumed no unmeasured confounding. While this assumption is necessary

to estimate treatment effects using any adjustment method, in reality the assumption of no

unmeasured confounding will often be violated to some extent. Some patients that have the

indication for treatment (e.g., because they have severe asthma) may be too frail to receive

the treatment. Because frailty is a concept that is difficult to measure, it can lead to

substantial bias in non-experimental studies of medical interventions compared with no

intervention [19, 53]. Because the PS focuses on treatment decisions, it allows us to identify

patients treated contrary to prediction in whom confounding, e.g., by frailty, may be most

pronounced. These are the untreated patients with the highest PS and the treated patients

with the lowest PS (Figure 8). Under this assumption, trimming increasing proportions of

those at both ends of the overlapping PS distribution has been shown to reduce unmeasured
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confounding [14]. It is important to use a percentage (e.g., 1%, 2.5%, and 5%) of those

treated contrary to prediction to derive cut-points for trimming only. Once these cut-point

have been established, both treated and untreated below the lower and above the higher cut-

points need to be excluded from the analysis to avoid introducing bias. The choice of cut-

points will depend on the specific setting and the change in the treatment effect estimate

across various cut-points will be more informative than any specific value, and thus results

from the whole range of trimming should be reported (in addition to the number of patients

and events trimmed by treatment group). According to our experience, trimming may be

especially important with IPTW, but we recommend routinely performing a sensitivity

analysis based on trimming for any PS implementation method. As with any sensitivity

analysis, transparency is important and untrimmed results need to always be presented

together with trimmed results. As with trimming non-overlap, as described above, additional

trimming within the overlap population leads to a more focused inference that is no longer

generalizable to the treated or the entire population.

Recommendations

PSs are an alternative to multivariable outcome models to control for measured

confounding. Compared with multivariable outcome models, PSs have specific advantages,

including identification of barriers for treatment (e.g., older adults), the implicit

consideration of relative timing of covariates and treatment (covariate should precede

treatment initiation), the ability to present the resulting balance of covariates which is

needed to remove confounding (exchangeability), the trimming of patients outside of a

common range of covariates in whom we have no data to estimate the treatment effect, the

ability to estimate causal contrasts in the presence of treatment effect heterogeneity, and the

ability to control for many covariates in settings with many treated and rare outcomes.[11]

We have focused on causal contrasts in the presence of heterogeneous treatment effects

because we think that this issue is not well-recognized by clinical researchers. Treatment

effects are likely to be heterogeneous across age, gender, co-morbidities, and co-

medications, and PSs as implemented using matching or weighting allow us to estimate

valid overall treatment effects in such settings. With strong treatment effect heterogeneity

across the PS, research should attempt to pinpoint actual covariates leading to heterogeneity

because identification of such patient groups might be relevant for clinical practice. For

example, the data in Figures 3 and 7 raise the possibility that treatment has no benefit in

those with X=0, but has an even greater benefit in those with X=1 than the estimated overall

treatment effect. This might spur further evaluation of subgroup-specific effects and

consideration of shifts in the population targeted for treatment. With an unexposed

comparison group, estimating the treatment effect in the treated (PS matching or SMR

weighting) will often be preferred because we would rarely want to treat everyone who is

currently not treated. In the setting of an active comparator (e.g., comparative effectiveness

research), estimating the treatment effect in the entire population (IPTW) will often make

most sense because we are focusing on treatment choice after the treatment decision per se

has been made. Heterogeneous treatment effects can also be due to unmeasured confounding

concentrated in those treated contrary to prediction. Sensitivity analyses based on PSs allow

us to assess the potential for and reduce such unmeasured confounding.
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Figure 1. Causal Diagram for Confounding
Both arrows need to be present to cause confounding. Removing one of the arrows removes

confounding. This leads to essentially two general ways to control for confounding; we can

remove the effect of the confounder on treatment (PS methods) or we can condition on the

effect of the confounder on the outcome (outcome modeling). Both are dependent on having

a good measure of the confounder available to the researcher.
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Figure 2. Numerical Example for Confounding and Uniform Treatment Effects
The treatment with beta agonists (E) reduces asthma mortality (Y) in both patients with

severe (X=1; RR=0.5) and less severe (X=0; RR=0.5) asthma, but the crude relative risk
shows that beta agonists are associated with increased mortality (RR=1.74). Note that

patients with severe asthma (X=1) are more likely to be treated with beta agonists and more

likely to die, which leads to the confounding in the crude (unadjusted) table.
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Figure 3. Numerical Example for Confounding and Treatment Effect Heterogeneity
Hypothetical example of beta agonists and asthma mortality with treatment effect

heterogeneity (in addition to confounding, it is possible to construct scenarios without

confounding [28], but such a scenario would be implausible for our asthma example); the

treatment is not effective in preventing asthma mortality in those with less severe asthma

(X=0; RR=1), while being very effective in those with severe asthma (X=1; RR=0.25).
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Figure 4.
Schematic for Non-Overlap in Propensity Score Distributions – Exclusion (Trimming) of

Non-Overlap (Shaded Areas) Reduces Model Extrapolation to Covariate Patterns in Which

No Treatment Comparison Can Be Made (“Non-Positivity”)
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Figure 5. Numerical Example for PS Matching and SMR Weighting
We present the SMR weights (w) separately for all exposure (E) and covariate (X) patterns;

in a real study, they would be calculated based on exposure status and the estimated PS.

Note that in our numerical example we can match all those treated and for matching and

SMR weighting, the prevalence of severe asthma (X=1) in the untreated (1000/1800=0.55)

is the same as the prevalence of severe asthma in the treated (1000/1800 – see Figure 2). The

fact that the size of the study population is reduced only affects the precision of the estimate,

but not its validity nor its causal interpretation.
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Figure 6. Numerical Example for Inverse Probability of Treatment Weighting
All observed N and numbers of events (Y=1) in Figure 2 are multiplied by the (stabilized)

IPTW weights leading to the pseudo-populations depicted in the stratified tables above,

which are then collapsed into the table on the right without matching. Note that those treated

contrary to prediction (E=1 when X=0) are up-weighted (weight > 1), while those treated

according to prediction (E=0 when X=0 and E=1 when X=1) are down-weighted to achieve

covariate balance across treatment groups. The distribution of severe asthma (X=1) in

treated and untreated is now the same as in the total population (prevalence of 20%; Figure

2).
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Figure 7.
Numerical Example for Mantel Haenszel (Invalid, for Comparison Only), Standardized

Mortality/Morbidity Ratio (SMR), PS Matching, and SMR Weighting, and Inverse

Probability of Treatment Weighting in the Presence of Treatment Effect Heterogeneity
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Figure 8.
Schematic for Trimming at the Ends of the (Overlapping) Propensity Score Distribution
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