

HH5 PUDIIC ACCESS

Author manuscript

Int J Tuberc Lung Dis. Author manuscript; available in PMC 2016 September 14.

Published in final edited form as:

Int J Tuberc Lung Dis. 2014 November; 18(11): 1340–1346. doi:10.5588/ijtld.14.0153.

Impact of three empirical tuberculosis treatment strategies for people initiating antiretroviral therapy

Annelies Van Rie¹, Daniel Westreich¹, and Ian Sanne, MD^{2,3}

¹Department of Epidemiology, University of North Carolina, Chapel Hill, USA

²Clinical HIV Research Unit, Department of Medicine, University of the Witwatersrand, Johannesburg, South Africa

³Right to Care, Johannesburg, South Africa

Abstract

Background—Early mortality in people initiating antiretroviral treatment (ART) in Africa remains high. Empiric TB treatment strategies aim to reduce early mortality by initiating TB treatment in individuals without clinical suspicion of TB who are at high-risk of death from undiagnosed TB.

Methods—Using data from 16,913 individuals starting ART under programmatic conditions, we simulated the impact of three empiric treatment strategies on mortality and incident TB: two randomized clinical trials (REMEMBER and PrOMPT) and a pragmatic approach. The main analysis assumed that 50% of early deaths and 100% of incident TB is averted in those eligible and ignored outcomes in those lost to follow up.

Results—The increase in individuals eligible for TB treatment under empirical TB treatment strategies ranged from 4.4% to 31.4% as compared to those started on clinical or mycobacteriological grounds. The proportion of deaths averted by empiric treatment strategies ranged from 5.5% to 25.4%. The proportion of incident TB cases averted ranged from 10.9% to 57.3%. The proportion receiving any TB treatment during the first six months of ART increased from the observed 24.0% to an estimated 27.5%, 40.4% and 51.3% under the PrOMPT, REMEMBER and pragmatic approach, respectively.

Conclusion—The impact of empiric TB treatment strategies depends greatly on the eligibility criteria chosen. The additional strain placed on TB treatment facilities and the relatively limited impact of some empirical TB strategies raise the question whether the benefits will outweigh the risks at population level.

Keywords

HIV; health systems; simulation; population impact; South Africa

INTRODUCTION

Mortality in people initiating combination antiretroviral treatment (cART) in sub-Saharan Africa remains high, especially in the first months of cART¹. Postmortem studies in Africa showed that TB is the cause of death in 32–45% of HIV-infected individuals in the pre-ART

era and 42–87% in the cART era^{2–4}, with the majority of cases not diagnosed before death or diagnosed too late to prevent death due to the poor sensitivity of smear microscopy and lack of symptoms suggestive of TB in up to 25% of individuals with culture-positive TB.^{5, 6}

Empirical TB treatment strategies to reduce early mortality are premised on the hypothesis that a subset of people living with HIV is at high risk of undiagnosed TB such that the benefit of empirical TB treatment outweighs the risks⁷. It is important to note that, where empirical or clinical TB treatment refers to TB treatment initiation *upon clinical suspicion*, empirical TB treatment strategies start TB treatment in high-risk individuals *without clinical suspicion* of TB. Two randomized controlled trials (RCTs) and one cluster-randomized trial of empirical TB treatment strategies have been registered.^{8–10}

The aim of this simulation study is to predict the population and health systems impact of empirical TB treatment strategies in an ART clinic population.

METHODS

Study site and clinical data

The Themba Lethu Clinic in Johannesburg, South Africa, is a public adult HIV clinic. Since 2004, over 21,000 people have initiated cART at the clinic¹¹. Clients receive care according to South African Guidelines. TB symptom screening is performed at all visits by asking patients about prolonged (> 2 weeks) cough or fever, night sweats, weight loss. During the study period, smear microscopy was the initial diagnostic, in some complemented by chest X-ray, culture, histopathology, or a clinical decision to prescribe TB treatment. The proportion of individuals started on treatment without bacteriological confirmation is about 40%.^{12, 13}

Empirical TB treatment strategies

We identified the key characteristics of the REMEMBER (Reducing Early Mortality and Early Morbidity by Empiric Tuberculosis Treatment Regimens)⁸ and PrOMPT (Prevention of Early Mortality by Presumptive Tuberculosis Treatment)⁹ trials, and a pragmatic strategy suggested by Lawn.⁷ Key eligibility differences between strategies relate to the level of immunosuppression (CD4 count <50 cells/mm³ for REMEMBER and PrOMPT; < 100 cells/mm³ for the pragmatic strategy) and body mass index (BMI <18 for PrOMPT, any BMI for REMEMBER and pragmatic strategy). All strategies limit eligibility to those not diagnosed (bacteriologically or clinically) with active TB, those without a TB treatment history (to avoid first line TB treatment in people at high risk of drug-resistant TB), and individuals without known liver disease (to reduce the risk of hepatotoxicity). In addition, each strategy has unique inclusion and exclusion criteria (Table 1).

For simulation of the REMEMBER trial, we made three modifications; (1) limit to individuals age 18 years, (2) not exclude individuals in contact with MDR-TB as this information is not routinely collected, (3) exclude individuals with documented baseline peripheral neuropathy assuming that only grade 2¹⁴ or higher is routinely recorded. Modifications to the eligibility criteria for simulation of the PrOMPT trial were: (1) operationalize "no breastfeeding" as no recorded pregnancy in last 12 months, (2) assume

that absence of documentation of cryptococcal disease, Kaposi sarcoma, lymphoma, or toxoplasmosis indicates absence of disease, and (3) pragmatically assume absence of danger signs in clients initiating cART at an ambulatory clinic. To simulate the impact of the pragmatic approach, we selected the cut-off of CD4<100 cells/mm³, defined liver disease as documented liver function test (ALT) 2.5 times upper normal limit, and excluded pregnant women (in line with the other strategies).

Assumptions and sensitivity analyses

We applied two key assumptions for the main analysis. First, all individuals receiving empiric TB treatment strategy are adherent to TB treatment such that 100% of incident TB is prevented. Second, 50% of early deaths (first 6 months of cART) are preventable by empirical TB treatment strategies.^{2–4} In sensitivity analyses, we explored assumptions that 30% and 70% of early deaths are preventable by empirical TB treatment strategies.

In these simulations, we ignored potential deaths and incident TB in individuals lost to follow up. In a "best-case scenario" sensitivity analysis, we assumed that empirical TB treatment strategies prevent 50% of deaths in those lost to follow up (LTFU) under standard of care (SOC) and 100% of incident TB as people lost to HIV care may still continue TB treatment at their primary care clinic. We based the risk of death among people LTFU on a study performed at the same clinic, which observed the following 6-month risk of death among those LTFU: 33.0% if CD4 0 to 50 cells/mm³, 6.4% if CD4 count 51 to 100 cells/mm³, and 8.6% if CD4 count 101 and 200 cells/mm³, and 24% among those with missing CD4 count¹⁵. The 6-month risk of incident TB among those LTFU was assumed to be 10%.

Simulation of population and health systems impact of empirical TB treatment strategies

Using data on all adults initiating cART at TLC between 1 April 2004 and 30 September 2011, we first estimated the proportion of individuals starting cART eligible for empirical TB treatment strategies according to the strategy-specific inclusion and exclusion criteria. We then compared the proportion of deaths prevented (primary outcome of the RCTs) and proportion of incident TB cases prevented (secondary outcome of RCTs) by each empiric TB treatment strategy to what was observed under SOC. Next, we estimated the number of clients receiving any TB treatment during the first 6 months of cART, including prevalent TB cases (individuals on TB treatment at time of cART initiation), incident TB cases in the first 6 months of cART, and cases started on TB treatment under empiric TB treatment strategies. Finally, we calculated the number of people needed to treat (NNT) to prevent one case of incident TB or one death in the first 6 months of cART for each empiric TB treatment strategy.

Ethics statement

The study was approved by the Institutional Review Boards of the University of the Witwatersrand, South Africa, and University of North Carolina, USA. Patients gave written informed consent for use of routine data for research purposes.

RESULTS

TLC cohort characteristics

Between 1 April 2004 and 30 September 2011, 16,913 individuals initiated cART, of which 2,856 (17%) received TB treatment at cART initiation (prevalent TB) (Table 2). The majority (62%) were women, median age was 36 (interquartile range [IQR] 31, 43), 52% had a CD4 count 100 cells/mm³ and median BMI was 21.6 (IQR 19.1, 24.9). In total, 1019 deaths were recorded in the first 6 months, corresponding to 6.0% of those initiating cART. The 6-month risk of death decreased with increasing CD4 count: 11.3% if CD4 count 0 to 50 cells/mm³, 5.7% if CD4 count 51 to 100, and 3.0% if CD4 count 101 to 200. Among the 14,057 individuals not receiving TB treatment at cART initiation, 1194 cases of incident TB were recorded, corresponding to an 8.5% 6-month risk. The risk of incident TB decreased with increasing CD4 count: 13.8% if CD4 count 0 to 50 cells/mm³, 9.6% if CD4 count 51 to 100, and 5.3% if CD4 count 101 to 200. Overall, 94.7% were retained in care during the first 6 months of cART, 95.2% of those with and 94.6% of those without prevalent TB at cART initiation.

Impact of empirical TB treatment strategies

Of the 16,913 individuals initiating cART, 5311 (31.4%) were eligible for empirical TB treatment when implementing the pragmatic strategy, 3205 (19.0%) according to the REMEMBER strategy, and 736 (4.4%) when using the PrOMPT strategy (Table 3).

Under SOC, 1019 deaths were recorded in the first 6 months of cART: 198 in those with and 821 among those without prevalent TB at start cART. Of these 1019 deaths, 518 (50.8%) occurred in those eligible for empirical TB treatment under the pragmatic strategy, 346 (34.0%) in those eligible for REMEMBER and 112 (11.8%) in those eligible for PrOMPT. Under the assumption that 50% of early deaths in those eligible are preventable by strategy-based empiric TB treatment, the proportion of all deaths observed among the 16,913 individuals initiating cART that are averted would be 25.4% for the pragmatic strategy, 17.0% for REMEMBER, and 5.5% for PrOMPT (figure 1). Consequently, 74.6% (n=760) of all 1019 deaths observed under SOC would still occur under the pragmatic strategy, 83.0% (n=846) under REMEMBER, and 94.5% (n=963) under PrOMPT. The proportion of deaths averted under the alternative assumption that 30% of early mortality can be prevented by empiric TB treatment strategies would be 15.3% for the pragmatic strategy, 10.2% for REMEMBER, and 3.3% for PrOMPT. When 70% of early mortality can be prevented by strategy-based empiric TB treatment, 35.6% of early deaths would be averted by the pragmatic strategy, 23.8% by REMEMBER, and 7.7% by PrOMPT.

Under SOC, 1194 incident TB cases were recorded in the first 6 months of cART among the 14,057 judged free of TB at start of cART (table 3), of which 684 (57.3%) occurred in those eligible for empirical TB treatment under the pragmatic strategy, 431 (36.1%) eligible for REMEMBER and 130 (10.9%) eligible for PrOMPT. Based on the assumption that 100% of all incident TB cases are prevented, the proportion of the 1194 incident TB cases recorded under SOC averted would be 57.3% for the pragmatic strategy, 36.1% for REMEMBER, 10.9% for PrOMPT strategy (Figure 2). Consequently, 42.7% (n=510) of all 1194 incident

Van Rie et al.

The proportion of clients receiving any TB treatment during the first 6 months of cART was lowest for SOC (24.0%), increased to 27.5% for PrOMPT, 40.4% for REMEMBER, and 51.3% for the pragmatic strategy (Figure 1).

For every 100 people started on strategy-based empiric treatment according to the pragmatic, REMEMBER or PrOMPT strategy, an estimated 4.9, 5.4 and 7.6, deaths would be averted, corresponding to a NNT of 20.5, 18.5 and 13.1 to avoid one death (table 3). For every 100 people started on strategy-based empiric treatment according to the pragmatic, REMEMBER or PrOMPT strategy, an estimated 12.9, 13.4, and 17.7 cases of incident TB would be averted, corresponding to a NNT of 7.8, 7.4 and 5.7 to avoid one case of incident TB.

In sensitivity analyses the proportion of deaths averted and NNT to prevent one death were highly sensitive to the alternative assumptions of effectiveness of the empirical TB treatment strategies (Table 2).

Among the 895 individuals LTFU, an estimated 215 deaths and 76 cases of incident TB occurred. Extending effectiveness of empiric TB treatment to individuals lost to cART under SOC slightly reduced the NNT to prevent one death (16.6, 15.2 and 11.4 for pragmatic, REMEMBER and PrOMPT, respectively) whereas the NNT to prevent one case of incident TB remained almost identical (7.4, 7.1 and 5.5 for pragmatic, REMEMBER and PrOMPT, respectively).

DISCUSSION

The high burden of TB and HIV in sub-Saharan Africa demands innovative interventions. Empirical TB treatment strategies aim to start TB treatment without diagnostic delay in people initiating cART who are at high risk of dying from undiagnosed TB. While awaiting results of RCTs, we simulated the population level effect of such strategies using data from a large cohort of individuals starting cART under programmatic conditions.

Our results demonstrate that eligibility criteria greatly determine the impact of empirical TB treatment strategies at population level, with the proportion of deaths averted ranging from 6% to 25%, and the proportion of incident TB cases averted ranging from 11% to 57%. Different strategies also have variable health care system effects, with the proportion of ART clinic clients receiving any TB treatment during the first six months of ART being similar to more than doubling compared to the standard of care.

The proportion of deaths averted by empirical treatment strategies will remain unknown until the publication of RCT results. Enrollment in the REMEMBER trial was completed in May 2014. The PrOMPT trial was prematurely closed due to insufficient enrolment, in line with our results that only 4.4% of people initiating ART are eligible for this strategy. We therefore performed a sensitivity analysis exploring plausible effectiveness estimates. As expected, the proportion of deaths averted increases and number needed to treat decreases

Van Rie et al.

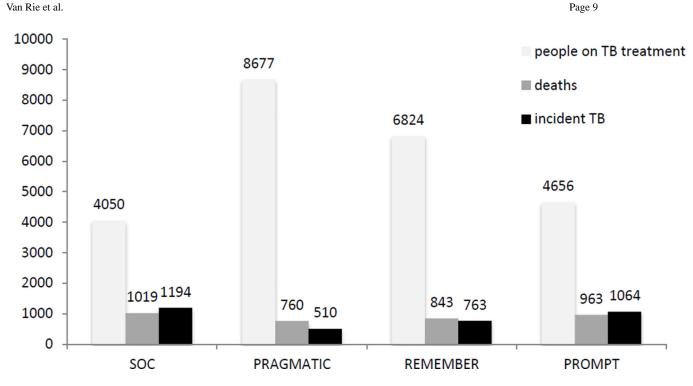
with increased effectiveness of empiric TB treatment strategies. However, even if 70% of early deaths in those eligible can be averted, 64 to 92% of all deaths still occur and all strategies result in high numbers of people placed on "unnecessary" TB treatment as most individuals would not have died or developed incident TB under standard of care.

We simulated a "best case scenario" of empirical treatment strategies, with 100% of incident TB prevented. Our assessment of effects on the health care system was limited to the single measure of the number of people receiving TB treatment. Available data did not allow simulating the risk of other potential adverse effect such as increased rates of drug toxicity, adverse effects on adherence due to high pill burden, failure to diagnose other infections, and delay in cART initiation when first starting TB treatment, factors that could result in less favorable outcomes of empirical TB treatment strategies. We also did not explore potential operational challenges, effects on the quality of care for HIV-negative TB patients, or impact of isoniazid preventive therapy. We could not simulate the rapidly changing landscape of TB diagnostics. The Xpert MTB/RIF assay on a sputum sample can detect all sputum smearpositive TB, about 70% of sputum smear-negative TB, rifampicin resistance, and when used on a blood sample, about 20% of blood-culture positive cases^{16, 17}. The point-of-care urine Determine TB-LAM, which is not yet endorsed by the WHO, has high sensitivity in those with low CD4 count¹⁸. Implementation of Xpert MTB/RIF, Determine TB-LAM and future novel TB diagnostics have the potential to reduce the impact of empiric TB treatment strategies. A cluster-randomized trial, TB Fast Track¹⁰, which uses low BMI and anemia as criteria for empiric TB treatment in cART-naïve individuals will be the first "second generation empirical treatment strategy", evaluating the use of empiric TB treatment in the setting where Determine TB-LAM is available for same-day decision-making and Xpert for assessment of sputum at centralized laboratories.

In conclusion, the important advances in rapid diagnostics, the strain empirical TB treatment strategies is likely to place on already overburdened health centers, and the relatively limited impact of some empirical TB strategies on the total mortality and TB incidence at an ART clinic population level raise the question whether the benefits of empirical TB treatment strategies will outweigh its risks at population level. If the RCTs demonstrate high efficacy, then Departments of Health will need to carefully consider inclusion and exclusion criteria in order to maximize risk reduction at individual level, limit the effects of potential unnecessary exposure to TB drugs in a substantial proportion of the ART clinic population, and limit the negative impact an empirical treatment strategy may have on already overburdened TB treatment services.

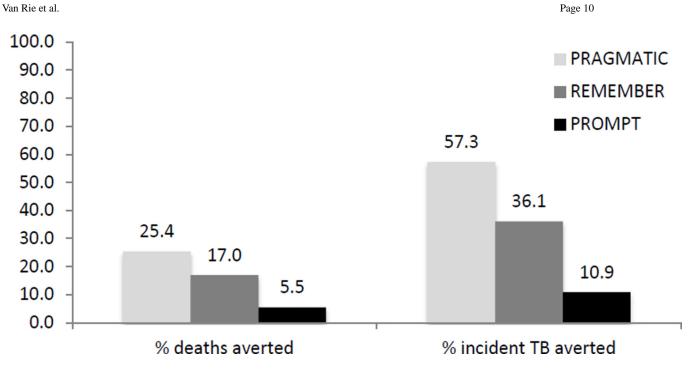
Acknowledgments

FUNDING


Clinical activities at the Themba Lethu Clinic are supported by the South African National and Gauteng provincial Department of Health, with additional funding support from the United States President's Emergency Plan for AIDS Relief (PEPFAR) in a grant by USAID to Right to Care and the Institution (674-A-00-08-00007-00).

The authors gratefully acknowledge the dedicated staff of the Themba Lethu Clinic and all clinic patients for allowing us to use their clinic data for research purposes.

REFERENCES


- 1. Braitstein P, Brinkhof MW, Dabis F, Schechter M, Boulle A, Miotti P, et al. Mortality of HIV-1infected patients in the first year of antiretroviral therapy: comparison between low-income and high-income countries. Lancet. 2006; 367(9513):817–824. [PubMed: 16530575]
- Wong EB, Omar T, Setlhako GJ, Osih R, Feldman C, Murdoch DM, et al. Causes of death on antiretroviral therapy: a post-mortem study from South Africa. PLoS One. 2012; 7(10):e47542. [PubMed: 23094059]
- Cohen T, Murray M, Wallengren K, Alvarez GG, Samuel EY, Wilson D. The prevalence and drug sensitivity of tuberculosis among patients dying in hospital in KwaZulu-Natal, South Africa: a postmortem study. PLoS Med. 2010; 7(6):e1000296. [PubMed: 20582324]
- Cox JA, Lukande RL, Lucas S, Nelson AM, Van Marck E, Colebunders R. Autopsy causes of death in HIV-positive individuals in sub-Saharan Africa and correlation with clinical diagnoses. AIDS reviews. 2010; 12(4):183–194. [PubMed: 21179183]
- 5. Reid MJ, Shah NS. Approaches to tuberculosis screening and diagnosis in people with HIV in resource-limited settings. Lancet Infect Dis. 2009; 9(3):173–184. [PubMed: 19246021]
- Lawn SD, Brooks SV, Kranzer K, Nicol MP, Whitelaw A, Vogt M, et al. Screening for HIVassociated tuberculosis and rifampicin resistance before antiretroviral therapy using the Xpert MTB/RIF assay: a prospective study. PLoS Med. 2011; 8(7):e1001067. [PubMed: 21818180]
- Lawn SD, Ayles H, Egwaga S, Williams B, Mukadi YD, Santos Filho ED, et al. Potential utility of empirical tuberculosis treatment for HIV-infected patients with advanced immunodeficiency in high TB-HIV burden settings. Int J Tuberc Lung Dis. 2011; 15(3):287–295. [PubMed: 21333094]
- ClinicalTrials.gov. REMEMBER: Reducing Early Mortality & Morbidity by Empiric Tuberculosis (TB) Treatment. cited; Available from: http://clinicaltrials.gov/ct2/show/NCT01380080?term=NCT +01380080&rank=1
- 9. ClinicalTrials.gov. Prevention of Early Mortality by Presumptive Tuberculosis (TB) Treatment (PrOMPT). cited; Available from: http://clinicaltrials.gov/ct2/show/NCT01417988? term=NCT01417988&rank=1
- 10. Register ISRCTN. TB Fast Track, number 35344604. [cited 2013 December 8] Available from: http://www.controlled-trials.com/ISRCTN35344604.
- Fox MP, Maskew M, Macphail AP, Long L, Brennan AT, Westreich D, et al. Cohort Profile: The Themba Lethu Clinical Cohort, Johannesburg, South Africa. International journal of epidemiology. 2012
- Gupta RK, Lawn SD, Bekker LG, Caldwell J, Kaplan R, Wood R. Impact of human immunodeficiency virus and CD4 count on tuberculosis diagnosis: analysis of city-wide data from Cape Town, South Africa. Int J Tuberc Lung Dis. 2013; 17(8):1014–1022. [PubMed: 23827024]
- Hanrahan CF, Selibas K, Deery CB, Dansey H, Clouse K, Bassett J, et al. Time to treatment and patient outcomes among TB suspects screened by a single point-of-care xpert MTB/RIF at a primary care clinic in Johannesburg, South Africa. PLoS One. 2013; 8(6):e65421. [PubMed: 23762367]
- 14. DAIDS. Division of AIDS table for grading teh severity of adult and pediatric adeverse events. 2004
- 15. Fox MP, Brennan A, Maskew M, MacPhail P, Sanne I. Using vital registration data to update mortality among patients lost to follow-up from ART programmes: evidence from the Themba Lethu Clinic, South Africa. Trop Med Int Health. 2010; 15(4):405–413. [PubMed: 20180931]
- Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, et al. Rapid molecular detection of tuberculosis and rifampin resistance. The New England journal of medicine. 2010; 363(11):1005–1015. [PubMed: 20825313]
- Feasey NA, Banada PP, Howson W, Sloan DJ, Mdolo A, Boehme C, et al. Evaluation of Xpert MTB/RIF for detection of tuberculosis from blood samples of HIV-infected adults confirms Mycobacterium tuberculosis bacteremia as an indicator of poor prognosis. Journal of clinical microbiology. 2013; 51(7):2311–2316. [PubMed: 23678061]

 Lawn SD. Point-of-care detection of lipoarabinomannan (LAM) in urine for diagnosis of HIVassociated tuberculosis: a state of the art review. BMC infectious diseases. 2012; 12:103. [PubMed: 22536883]

Figure 1.

Number people receiving any TB treatment (for prevalent TB, incident TB or initiation per empirical treatment strategy) experiencing death, and developing incident TB in the first six months of cART, observed under standard of care (SOC) and predicted for three empiric TB treatment strategies (pragmatic, REMEMBER, PrOMPT)

Figure 2.

Proportion of deaths and incident TB cases occurring under standard of care (SOC) in the first 6 months of antiretroviral treatment that are averted by implementation of three empirical TB treatment strategies.

Table 1

Inclusion and exclusion criteria for three empirical TB treatment strategies

	REMEMBER ⁸	PrOMPT ⁹	Lawn et al. ⁷
INCLUSION CRITERIA			
Age	13 years	18 years	
CD4+ cell count	< 50	< 50	< 100 or < 50 ²
Body mass index		<18	
EXCLUSION CRITERIA			
Diagnosis of active TB	\checkmark	\checkmark	\checkmark
History of TB treatment	Within 96 weeks	Ever	Ever
IPT for >30 days in last 48 weeks	\checkmark	\checkmark	
Exposure to MDR TB	\checkmark	\checkmark	
Renal insufficiency	Creat. clearance <30 mL/min		
Abnormal liver function	> 2.5 ULN	5 ULN	Known acute liver disease
Hepatitis B	Surface Ag neg.		
Pregnant	\checkmark	\checkmark	
Breastfeeding		\checkmark	
Seriously ill: - Karnofsky performance score < 30	\checkmark		
 Severe illness (disseminated KS; malignant lymphoma; toxoplasmosis) 		\checkmark	
- Danger signs (respiratory rate $> 30/min,$ pulse $> 120/min,$ temp $> 39^{\circ}C)$		\checkmark	
Current Grade 2 peripheral neuropathy	\checkmark		
Cryptococcal meningitis (CrAG positive)		\checkmark	

*In the simulation study, we used $<100 \text{ cells/mm}^3$

Author Manuscript

Author Manuscript

Table 2

Baseline characteristics of 16,913 individuals initiating ART, overall and by outcomes of death and incident TB in first 6 months of ART.

	ЧI		Early death n=1019	death 019	Incident TB n=1194	nt TB 194
	Z	%	Z	%	Z	%
Gender						
Male	6385	38	473	46	584	49
Female – not pregnant	9852	58	535	53	596	50
Female - pregnant	474	4	11	-	14	-
${ m Age}^{\ddagger}$	36 (31, 43)	43)	38 (32,	2, 45)	36 (31, 42)	l, 42)
CD4 count						
50 cells/mm3	5066	32	572	59	540	49
51 - 100	3133	20	179	19	235	21
101 - 200	5545	35	166	17	254	23
> 200	1971	13	49	5	69	9
Missing	1198		53		96	
Body mass index						
< 18.0 kg/m2	2487	16	288	35	266	26
18.0 kg/m2	13228	84	537	65	776	74
Missing	1198		194		152	
Hemoglobin						
Normal $\dot{ au}$	7400	47	198	21	263	24
Low	7329	46	601	62	696	63
Very low (<8g/dl)	1069	٢	163	17	147	13
Missing	1115		57		88	
WHO stage						
I or II	8149	56	317	36	329	32
Ш	4375	30	328	37	444	4
IV	1963	14	242	27	247	24
Missing	2426		132			
Prevalent TB						
Yes	2856	17	198	19	0	0

Author Manuscript

Author Manuscript

Van Rie et al.

		%	Z	%
N %	2	•		
No 14057 83	3 821	81	1194	100
History of TB treatment				
Yes 1945 12	2 110	11	118	10
No 14968 88	906 8	89	1076	90
IPT in past year				
Yes Unknown*				
No				
Liver function				
Normal or missing 16177 95	606 5	89	1089	91
LFT > 2.5× UNL 736 4	109	11	105	6
$LFT > 5 \times UNL$ 129 1	18	2	19	7
Renal function				
Normal or missing 16875 100	0 1015	100	1189	100
Creatinine clearance < 38 0 30ml/min	4	0	5	0
Peripheral neuropathy				
Yes 100 1	14	1	٢	-
No 16813 99) 1005	66	1187	66
Severe illness present **				
Yes 29 0	4	0	3	0
No 16884 100	0 1015	100	1191	100

Int J Tuberc Lung Dis. Author manuscript; available in PMC 2016 September 14.

** Defined as documented of cryptococcal disease, Karopsi sarc, lymphoma, or toxoplasmosis.

Author Manuscript

A+-+PO

Table 3

Predicted population and health systems impact of empiric TB treatment strategies in the first 6 months of antiretroviral treatment (cART) among 16913 individuals starting ART at a clinic in Johannesburg, South Africa

LearthsDearthsDearthsNNT toIncideDearthsDearthsNNT toIncideIncideavertedtotal clinicaverted inpreventTBamongpopulationclinicaverted inpreventTBamong(uclal clinicaverted inpreventTBamongpopulationclinicideathpreventEligibleamong505076025.420.510050559635.513.110050569635.513.110050569635.513.110063015586415.230.9100703010491510.230.91007036365633.614.61007070789417.79.410070789417.79.410070789417.79.410070789417.79.4100717310347.79.410070707023.813.210070789417.79.410070789417.79.41007173737.79.410071737.79.41007173														
d of care alysis c 5311 c 5311 ficacy of empi ficacy of empi for prevention	E	ligible				Deat	ų			Incident TB	nt TB			
d of care alysis c 5311 c 5311 ty analysis 1 ficacy of empi c 5311 c 5311 c 5311 ty analysis 2 ficacy of emp ty analysis 3 for prevention			Deat aver amo eligil	ths ted ng ble	Deaths in total clinic population (n=16913)	Deaths averted in clinic population	NNT to prevent 1 death	Incid TB avert eligit	lent ed in yle	Incident TB in clinic population free of TB at start cART (n=14057)	Incident TB averted in clinic population free of TB at start cART	NNT to prevent 1 case of TB	People on any TB treatment in 1 st 6 months of cART	on any atment of
d of care alysis c 5311 BER 3205 by analysis 1 ficacy of empi c 5311 bER 3205 ty analysis 2 fifcacy of empi ficacy of empi ty analysis 3 for prevention			Z	%	Z	%	Z	%	Z	Z	%	Z		%
alysis c 5311 BER 3205 ber 736 ty analysis 1 ficacy of empi c 5311 c 5311 c 5311 c 736 ty analysis 2 fifeacy of empi ky analysis 3 for prevention	dard of care				1019					1194			4050	24.0
c 5311 BER 3205 ty analysis 1 ficacy of empi c 5311 c 5311 ty analysis 2 fiftacy of empi c 5311 bER 3205 ty analysis 3 for prevention	ı analysis													
BER 320 ty analysis 1 736 ty analysis 1 736 ficacy of empi 730 c 5311 c 5313 ty analysis 2 736 ficacy of empi 736 ty analysis 2 736 ty analysis 2 736 for prevention 736		5311	50	259	760	25.4	20.5	100	684	510	57.3	7.8	8677	51.3
736 ty analysis 1 ficacy of empi c 5311 c 5313 bER 3205 ty analysis 2 736 fiftcacy of empi 736 fiftcacy of empi 736 fiftcacy of empi 736 fiftcacy of empi 736 for prevention 6 for prevention 6		3205	50	173	846	17.0	18.5	100	431	763	36.1	7.4	6824	40.4
ty analysis 1 ficacy of empi c 5311 c 5311 BER 3205 ty analysis 2 ficacy of empi ficacy of empi		736	50	56	963	5.5	13.1	100	130	1064	10.9	5.6	4656	27.5
BER 3205 T36 736 ty analysis 2 5311 tricacy of emp 736 fifcacy of emp 736 ty analysis 3 736 ty analysis 3 107 for prevention 6	natic	5311	30	155	864	15.2	34.2	100	684	510	57.3	7.8	8677	51.3
736 ty analysis 2 fficacy of empi bER 3205 BER 3205 ty analysis 3 for prevention	ER	3205	30	104	915	10.2	30.9	100	431	763	36.1	7.4	6824	40.4
ty analysis 2 fficacy of emp c 5311 BER 3205 BER 3205 ty analysis 3 for prevention		736	30	34	985	3.3	21.9	100	130	1064	10.9	5.6	4656	27.5
c 5311 BER 3205 736 ty analysis 3 for prevention	itivity analysi : er efficacy of ε	s 2 empiric	TB trea	atment 1	for prevention	of early death,	no change	in effic	acy for	prevention of inciden	nt TB			
BER 320 ⁵ 736 ty analysis 3 for prevention		5311	70	363	656	35.6	14.6	100	684	510	57.3	7.8	8677	51.3
736 ty analysis 3 for prevention		3205	70	242	LTT	23.8	13.2	100	431	763	36.1	7.4	6824	40.4
ty analysis 3 for prevention		736	70	78	941	T.T	9.4	100	130	1064	10.9	5.6	4656	27.5
for prevention	itivity analysi:	s 3												
1234 6 5311 50 319 1074 25.9 16.6 100	acy for preven	tion of (early de	eath and	l prevention o	f incident TB e.	xtended to i	individı	uals lost	to follow up under 5	soc *			
ر. 166 1074 550 166 100	**				1234					1270			4126	24.4
		5311	50	319	1074	25.9	16.6	100	720	550	56.7	7.4	8717	51.5

Death

Eligible

Author Manuscript

	TB
	Incident TB

on any atment s of	%	40.7	27.9
People on any TB treatment in 1 st 6 months of cART		6877	4727 2
NNT to prevent 1 case of TB	Z	7.1	5.5
Incident TB averted in clinic population free of TB at start cART	%	35.8	10.6
Incident TB in clinic population free of TB at start cART (n=14057)	Z	816	1135
Incident TB averted in eligible	Z	454	100 135
	%	100	100
NNT to prevent 1 death	Z	15.2 100	11.4
Deaths averted in clinic population	%	15.2	5.3
Deaths in total clinic population (n=16913)	Z	1182	1329
Deaths werted mong sligible	%	212	65
Dea avei amc eligi	Z	50	50
		3205	736
		REMEMBER 3	PrOMPT

* Conservative assumption that individuals lost to follow up under SOC experience the same protective effect of empiric treatment as those remaining in care for 6 months under SOC, those lost to follow up but not eligible for empiric TB treatment do not initiate TB treatment.

** Number for SOC includes estimated deaths and cases of incident TB among those LTFU under SOC