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Abstract
If a vaccine does not protect individuals completely against infection, it could still reduce
infectiousness of infected vaccinated individuals to others. Typically, vaccine efficacy for
infectiousness is estimated based on contrasts between the transmission risk to susceptible
individuals from infected vaccinated individuals compared with that from infected unvaccinated
individuals. Such estimates are problematic, however, because they are subject to selection bias
and do not have a causal interpretation. Here, we develop causal estimands for vaccine efficacy for
infectiousness for four different scenarios of populations of transmission units of size two. These
causal estimands incorporate both principal stratification, based on the joint potential infection
outcomes under vaccine and control, and interference between individuals within transmission
units. In the most general scenario, both individuals can be exposed to infection outside the
transmission unit and both can be assigned either vaccine or control. The three other scenarios are
special cases of the general scenario where only one individual is exposed outside the transmission
unit or can be assigned vaccine. The causal estimands for vaccine efficacy for infectiousness are
well defined only within certain principal strata and, in general, are identifiable only with strong
unverifiable assumptions. Nonetheless, the observed data do provide some information, and we
derive large sample bounds on the causal vaccine efficacy for infectiousness estimands. An
example of the type of data observed in a study to estimate vaccine efficacy for infectiousness is
analyzed in the causal inference framework we developed.
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1 Introduction
1.1 Background

Evaluating the effect of vaccination on reducing infectiousness has important public health
consequences. If a vaccine does not protect well against infection, it could still substantially
reduce the total number of cases if transmission from infected vaccinated individuals is
reduced compared to if those individuals were not vaccinated. Interest in such effects is
increasing. For instance, estimates of aspects of vaccine efficacy, including the efficacy in
reducing secondary transmission, are important inputs into dynamic transmission models
that evaluate the effectiveness of different intervention measures. Such models are playing a
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growing role in vaccination policy. Thus, sound methods are needed to estimate the effects
of vaccines and other interventions on infectiousness.

Typically, estimates of vaccine efficacy for infectiousness are based on contrasts between
the estimated transmission risk from infected vaccinated individuals compared with the
estimated transmission risk from infected unvaccinated individuals to susceptible individuals
exposed within small transmission units, such as households or partnerships (Halloran et al.
1997; Halloran et al. 2003). Our goal in this paper is to develop methods to estimate the
causal vaccine effects on infectiousness. Unfortunately, contrasts that condition on an event,
such as infection, that occurs subsequent to receipt of vaccine or control may result in
selection bias. Moreover, because the set of individuals who would become infected if
vaccinated is likely not identical to those who would become infected if given control,
comparisons that condition on infection, e.g., the estimated transmission risk from infected
vaccinated individuals compared with the transmission risk from infected unvaccinated
individuals, do not necessarily have a causal interpretation.

In this paper, we adapt the approach of principal stratification for comparing treatments
adjusting for posttreatment variables (Frangakis and Rubin 2002). In the setting we consider,
the treatments compared are vaccine and control, and the posttreatment variable is being
infected or not. We stratify on the joint potential posttreatment infection outcomes of certain
individuals in the transmission unit when vaccinated and not vaccinated. Because
membership in a basic principal stratum is not a effected by whether an individual is actually
assigned vaccine or control, the strata can be used in the same way as pretreatment
covariates. A number of papers have adapted principal stratification to assess effects of
vaccination on postinfection outcomes (Gilbert et al. 2003; Shepherd et al. 2006; Hudgens
and Halloran 2006; Jemiai et al. 2007).

However, to date little has been done to develop methods of causal inference for estimating
vaccine efficacy for infectiousness. The situation is further complicated, because the
treatment (vaccination) status of one person in a transmission unit may affect the infection
outcome in other individuals in the transmission unit, so that interference (Cox 1958;
Halloran and Struchiner 1991, Hudgens and Halloran 2008; Tchetgen and VanderWeele
2010) may be present in the setting of estimating vaccine efficacy for infectiousness. Thus
causal methods for estimating vaccine efficacy for infectiousness combine principal
stratification with elements of interference between individuals within the transmission
units. Hudgens and Halloran (2006) briefly discussed the problem of developing causal
methods for estimating vaccine efficacy for infectiousness. Recently, VanderWeele and
Tchetgen (2011) proposed causal estimands and bounds for vaccine effects on
infectiousness.

1.2 Traditional method
Here we review a traditional method for estimating the vaccine effects on infectiousness
before introducing the proposed causal estimands in the following sections. The standard
method for estimating vaccine efficacy for infectiousness is based on the secondary attack
rate (SAR) within small transmission units (Halloran et al. 2003). The conventional
approach to estimate various vaccine effects based on the secondary attack rate assumes that
the primary, i.e., first case in the transmission unit is exposed from outside the transmission
unit, and the others in the transmission unit are then exposed only by the primary case
during the period of observation. The proportion of exposed individuals within the
transmission unit who become infected is used to estimate the secondary attack rate. If
another case occurs temporally too close to the primary case to have been infected by the
primary case, it is considered a co-primary, and is excluded from the analysis. To determine
whether secondary transmission may have occurred, assumptions are needed about the
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natural history of infection, such as the latent, incubation, and infectious periods, depending
on the infectious agent under study and the ascertainment method. Genetic sequencing of the
infecting pathogens can also provide information on whether secondary transmission
occurred.

The SAR is defined as the observed proportion of persons within the transmission unit
exposed to the primary case who become infected. Define the observed SAR from primary
cases with vaccine status r to susceptible individuals with vaccine status s, with r, s ∈ {0, 1}
where 0 denotes control and 1 denotes vaccine, as

(1)

For example, SAR01 denotes the observed proportion of vaccinated persons who became
infected after exposure to a primary case who received control, and SAR10 denotes the
observed proportion of persons who received control who became infected after exposure to
a vaccinated primary case.

Halloran et al. (2003) defined three estimators of the vaccine effect on infectiousness, two
stratified by the vaccine status of the exposed individuals and one not stratified by the
vaccine status of the exposed individuals. The unstratified estimator is not considered further
here. In general, in this paper VE denotes vaccine efficacy, VEI denotes vaccine efficacy for
infectiousness, and VES denotes vaccine efficacy for susceptibility. The two stratified
estimators of the vaccine effect on infectiousness are based on contrasts of the secondary
attack rates, SARrs, r, s ∈ {0, 1}. Because the secondary attack rates are estimated in
transmission units where an initial person becomes infected, the contrasts are analogous to
the “net” effect of Frangakis and Rubin (2002) of an assignment on the observed outcome
adjusting for a posttreatment variable. The net effect compares the outcomes under two
treatments in individuals with a common observed value of a posttreatment variable. In our
case, the net effect of an assignment (vaccine versus control) compares the observed
infection outcome in individuals exposed to individuals who actually became infected under
vaccine or control. In particular, the two stratified net estimators of the vaccine effect on
infectiousness are

(2)

where  denotes the estimated stratified net vaccine efficacy for infectiousness when
the exposed individuals have vaccine status z. The set of individuals who would become the
primary case if vaccinated is likely not identical to those who would become the primary

case if given control, so  and  could be subject to selection bias and do not
necessarily have a causal interpretation.

Although it is not our primary interest here, it is helpful to define the vaccine efficacy for
susceptibility when exposed to a primary case, i.e., a vaccine's ability to protect a vaccinated

individual from infection when exposed in the transmission unit. Let  be the
estimated stratified net vaccine efficacy for susceptibility when exposed to a primary case
with vaccine status z, where

(3)
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The two stratified  condition on the vaccine status of the primary case and are not

subject to the same potential selection bias as the stratified  estimators.

Using these methods, Préziosi and Halloran (2003) estimated the effects of pertussis
vaccination on infectiousness and susceptibility within transmission units from a study in

Niakhar, Senegal. The  and  (95% CI) were 0.63 (0.25,0.85) and 0.67

(0.29,0.87). The  and  (95% CI) were 0.31 (0.07,0.52) and 0.37 (0.09,0.60).
This analysis provided some of the first direct evidence that pertussis vaccination reduces
infectiousness of a clinical case of pertussis, with important policy implications. In the few
instances of which we know where vaccine efficacy for infectiousness was estimated for a
prophylactic vaccine, such as this pertussis vaccine example, (see also Cisse et al. (1999),
Millar et al. (2008)), it has usually been in the context of an observational, or partially
observational study.

The focus in this paper is the context of randomized controlled vaccine trials. Usually
vaccine trials are individually randomized, but group randomized trials are also possible
(Moulton et al. 2001). Vaccine trials can be quite large-scale. For example a randomized
trial of two cholera vaccines with one placebo arm enrolled over 89,596 individuals
(Clemens et al. 1986). A more recent pneumococcal vaccine trial enrolled 37,868 children
(Black et al. 2000). However, up to now, few, if any, randomized vaccine trials have been
conducted with the primary goal to estimate vaccine efficacy for infectiousness. A
randomized study of how antiviral therapy could limit transmission of human
immunodeficiency virus type 1 (HIV-1) in serodiscordant partners was recently conducted
(Cohen et al. 2011). In that trial, however, the individuals who were randomized were
already infected. Datta et al. (1999) compared the efficiency of three randomization schemes
for estimating the vaccine efficacy for infectiousness and the protective efficacy in
households of size two: (1) randomization by individual for a mixed allocation of vaccine
and control, (2) randomization by transmission unit for a concordant allocation, and (3)
randomization of only one individual in each transmission unit to either vaccine of placebo.
Other theoretical aspects of estimating vaccine effects on infectiousness have been explored
in several papers (Koopman and Little 1995; Rida 1996; Halloran et al. 1997; Datta et al.
1998; Becker et al. 2006).

Previous investigators have noted that studies based on pairs are well-suited to estimate
vaccine effects on infectiousness as well as susceptibility (PHLS Epidemiologic Research
Laboratory 1982; Koopman and Little 1995; Rida 1996; Datta et al. 1998; Becker et al.
2006). To develop methods for the causal effect of vaccination on infectiousness, in this
paper we begin with the case of transmission units of size two where one or both of the
individuals in the transmission unit are randomized to receive vaccine or control. As a
working example, consider a randomized study in 11,000 transmission units of size two
(Table 1). Individuals could be randomized to either vaccine or control, or transmission units
could be randomized to one of four assignment options, in which either both receive
vaccine, both receive control, or one receives vaccine and the other control, which can occur
two ways. Each of the four possible combinations of vaccine and control is assigned to one
quarter of the transmission units. In Table 1, 8500 transmission units have a primary case,
and secondary transmission occurs in 5825 of those transmission units. The distribution of
the vaccine status of the primary cases, the individuals exposed to the primary cases, and the
secondary cases as well as the secondary attack rates are shown in Table 1. For these data,
the two stratified net estimates of vaccine effect on infectiousness are
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(4)

The estimators  and  can also be computed from Table 1.

1.3 Outline
In this paper, we extend the methods of Hudgens and Halloran (2006) for causal vaccine
effects on binary postinfection outcomes within the same individual to the situation where
the binary postinfection outcome is transmission from the infected person to another
individual within a transmission unit. We develop causal vaccine efficacy for infectiousness
estimands for four different scenarios of populations of transmission units of size two. In
Section 2 we develop the most general scenario in which both individuals can be exposed to
infection outside the transmission unit and both can be assigned either vaccine or control. In
Section 3 identifiability arguments and large-sample bounds on the casual estimands for
vaccine efficacy for infectiousness are presented. In Sections 4 through 6, three special cases
of the general scenario are developed. For each scenario, we consider the basic principal
stratification, identifiability, and bounds on the causal vaccine efficacy for infectiousness
estimands. Section 7 discusses limitations of the approach and directions for future research.

2 Methods
2.1 Notation

Suppose we have a random sample of N transmission units of size two. Let Zij = 1 if
individual j in transmission unit i receives vaccine and 0 otherwise for i = 1, …, N and j = 1,
2. Let Zi = (Zi1, Zi2) denote the vaccination assignment vector for transmission unit i and
Zi(j) denote the vaccination assignment for the individual other than j in transmission unit i.
Let zi, zi(j), and zij denote possible values of Zi, Zi(j), and Zij. Let the potential outcome
Sij(zi) = 1 if individual j in transmission unit i would become a primary case under treatment
assignment zi and Sij(zi) = 0 otherwise. If Sij(zi) = 1, then for j ≠ k, let the potential outcome
Yik(zi) = 1 if, under treatment assignment zi, individual k would become a secondary case
infected by individual j, and Yik(zi) = 0 otherwise. On the other hand, if potential outcome
Sij(zi) = 0, then for k ≠ j we say potential outcome Yik(zi) is undefined and denoted by *.
That is, it does not make sense to ask whether individual k becomes a secondary case
infected by individual j if individual j does not become a primary case. Let Si1 = (Si1(00),
Si1(01), Si1(10), Si1(11)), Si2 = (Si2(00), Si2(01), Si2(10), Si2(11)), and Si = (Si1, Si2).
Similarly, let Yi1 = (Yi1(00), Yi1(01), Yi1(10), Yi1(11)), Yi2 = (Yi2(00), Yi2(01), Yi2(10),

Yi2(11)), and Yi = (Yi1, Yi2). Let  denote the observed infection outcome

depending on actual vaccine assignment, and analogously  for the observed
secondary transmission. Using this notation, for fixed r, s ∈ {0, 1}, the secondary attack rate
attack SARrs (1) can be written

where, in general, Σi denotes summation over i = 1, …, N, Σj≠k denotes summation over j, k
≠ {1, 2} with j ≠ k, and I(·) denotes the usual indicator, function which equals 1 if · is true
and 0 otherwise. In the sequel it will also be helpful to define the following secondary attack
rate where j, k ∈ {1, 2} with j ≠ k also fixed:
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2.2 Assumptions and principal strata
Throughout we make the following two assumptions. First, as in Hudgens and Halloran
(2008), we assume no interference across transmission units, the assumption of partial
interference (Sobel 2006). This assumption is typical in conventional estimation of vaccine
efficacy based on the SAR (Orenstein et al. 1988). Thus, the transmission units are assumed
to be embedded in a large population such that they are transmission dynamically separated
either geographically, in time, and/or socially (Halloran and Struchiner 1991). Second, we
assume perfect compliance, i.e., assignment to vaccine (control) is equivalent to receipt of
vaccine (control). Without this assumption, the causal estimands defined here would be
causal effects of assignment to vaccine. The ramifications of non-compliance on the
assessment of causal vaccine effects will not be considered here.

We consider first the general scenario for transmission units of size two where either
individual in the transmission unit can be (i) vaccinated and (ii) exposed to infection from
outside the transmission unit. Condition (i) allows for both, neither, or just one of the two
individuals within a transmission unit to be vaccinated. Furthermore, the positivity
assumption states that each individual has a nonzero probability of being assigned vaccine or
control:

(5)

Condition (ii) allows either of the two individuals to be a primary case. To begin, we assume
the individual labels 1 and 2 are randomly assigned, thus there is no information in the labels
1 and 2. Alternatively labels 1 and 2 could indicate a covariate, such as younger versus older
sibling in a household, or male versus female in partnerships. The implications of this case
are considered in Section 3.7.

We define a basic principal stratification of transmission units according to the joint
potential infection outcomes indicating who is a primary case under the four possible
allocations of vaccine and control in the transmission unit. The vector of potential outcomes
Si indicating who is a primary case in transmission unit i can take on 28 = 256 possible
values. The number of feasible values for this vector can be decreased substantially by
introducing additional assumptions. In particular, the five realistic exclusion restriction
assumptions described below reduce the number of feasible values to 11. First, we assume
there can be no more than one primary case for any vector of vaccination assignments zi,
such that

(6)

This assumption implies there are no co-primary cases, where a co-primary case is an
infection that occurs temporally so close to the primary case that secondary transmission
could not have occurred, indicating both individuals were infected from outside the
transmission unit. Assumption (6) implies that if Sij(zi) = 1, the other person k ≠ j cannot be
the primary case, and thus Sik(zi) = 0. Note if person k becomes infected from outside the
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transmission unit after person j becomes the primary case, then Yik(zi) = 0 because person k
did not become infected from person j and thus would not be considered a secondary case.

Second, we assume

(7)

i.e., if individual j becomes the primary case when vaccinated, then s/he will become the
primary case when unvaccinated all other things being equal. Similarly, we assume

(8)

We also assume

(9)

That is, if there are no infections in a transmission unit when neither individuals is
vaccinated, there cannot be any infections when one or both individuals are vaccinated.
Assumptions (7) and (9) can be viewed as generalizations of the usual monotonicity
assumption in the vaccine setting that the protective effect of vaccination is nonnegative
(Gilbert, et al. 2003). Finally, we assume

(10)

That is, if individual j is never the primary case, then this individual does not interfere with
others.

Determining which of the 256 possible vectors of potential outcomes Si are feasible under
(6) – (10) is simple by computer. The resulting feasible 11 vectors of potential outcomes Si
are given in Table 2. In stratum 1, there are no primary cases in the transmission units under
any of the four possible vaccination assignments. The remaining ten strata have five pairs,
(2,3), (4,5), (6,9), (7,8), and (10,11), that are symmetric between individual j = 1 and j = 2.
The proportion of transmission units in each stratum, denoted by a, b, …, f, are given in
Table 2. Because the labels 1 and 2 are assumed to be assigned arbitrarily to individuals, the
proportion of transmission units in stratum 2 equals the proportion of transmission units in
stratum 3. Similarly, the proportions of units in the symmetric pairs of strata (4,5), (6,9),
(7,8), and (10,11) are equal. Because the 11 principal strata in Table 2 are exhaustive and
mutually exclusive, it follows a + 2b + 2c + 2d + 2e + 2f = 1.

2.3 Monotonicity of Y
Each of the 11 feasible principal strata in Table 2 has an associated set of Yi vectors of
potential outcomes. We make an exclusion restriction assumption that vaccination has a
nonnegative effect in an individual exposed within the transmission unit, analogous to the
usual monotonicity assumption:

(11)

Table 2 shows the feasible Yi2 potential outcome vectors for the feasible Si1 potential
outcome vectors. In stratum 11 in which Si1(zi) = 1 for all zi, the monotonicity assumption
(11) reduces the types of Yi2 potential outcome vectors from 24 = 16 to nine. In stratum 8,
(11) reduces the number of types of transmission units from 23 = 8 to six. In strata 3, 5, and
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6, (11) reduces the number of types of transmission units from 22 = 4 to three. The
corresponding feasible Yi1 for the feasible Si2 are not shown due to space considerations.

Assumption (11) does not imply the individual causal effect of vaccination on infectiousness
is non-negative. Rather, we allow that vaccination could have a negative, that is harmful,
causal effect on infectiousness. As an example consider stratum 11. In one type of
transmission unit, no transmission takes place regardless of vaccine allocation, and in one
type, transmission always takes place. In three types of transmission unit, vaccination in the
primary case enhances transmission, indicated by ↑ in Table 2. In summary, the vaccine can
make an individual more infectious, but not more susceptible.

2.4 VEI causal estimands
To define VEI causal estimands in this setting, first consider secondary transmission events
from individual 1 to individual 2. In this case, we desire a contrast of potential infection
outcomes in individual 2 when (i) individual 1 is the primary case if vaccinated compared
with when (ii) individual 1 is the primary case if not vaccinated. For the estimand to
incorporate aspects only of VEI, the vaccination status of individual 2 should be held fixed.
These considerations suggest two estimands, one where individual 2 is not vaccinated and
one where individual 2 is vaccinated. From Table 2, we see that only in stratum 11 is
individual 1 the primary case under both vaccine and control when individual 2 is not
vaccinated. Thus, the contrast in Yi2(10) and Yi2(00) is defined only in stratum 11. If
individual 2 is vaccinated, the contrast in Yi2(11) and Yi2(01) is defined in strata 8, 9, and
11.

Let  denote the causal VEI estimand when individual j is the primary case
exposing individual k with vaccine status zk. The first causal estimand is defined as

(12)

The causal estimand is defined in the principal stratum 11 in which person j = 1 would
become the primary case whether vaccinated or unvaccinated, and person j = 2 is

unvaccinated. The interpretation is that the causal estimand  is the relative
reduction in the probability of secondary transmission from individual j = 1 to individual j =
2 due to vaccinating only individual j = 1 in the principal stratum in which person j = 1
would become the primary case whether vaccinated or unvaccinated. Similarly, the second
estimand is

(13)

The causal estimand is defined in the three principal strata in which person j = 1 would
become the primary case whether vaccinated or unvaccinated, and person j = 2 is

vaccinated. The interpretation is that the causal estimand  is the relative reduction
in the probability of secondary transmission from individual j = 1 to individual j = 2 due to
vaccinating individual j = 1 when individual j = 2 is vaccinated. Alternatively, we could
define the causal estimands as differences.

By symmetry analogous causal estimands can be defined for transmission from individual 2
to individual 1. Analogous to estimand (12), in stratum 10 in which individual 2 becomes
infected whether vaccinated or unvaccinated and individual 1 receives control, we define
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(14)

i.e., the relative change in the probability of secondary transmission from individual 2 to
individual 1 when individual 1 receives control. Analogous to estimand (13), in the three
strata in which individual 2 becomes infected whether vaccinated or not and individual 1 is
vaccinated, we define

(15)

When individuals in a transmission unit are arbitrarily labeled 1 and 2, a single composite
vaccine efficacy for infectiousness estimand can be defined. First define two new variables

(16)

In words, for units in strata 10 and 11,  indicates whether secondary transmission
occurred from a vaccinated to unvaccinated individual, whereas  indicates whether
secondary transmission occurred between two unvaccinated individuals. Note in the
definition of  for z ∈ {0, 1} given in (16) that z denotes the vaccination status of the
primary case. In contrast, in the definition of Yij(z0) the z denotes the vaccination status of
the individual with label 1. Using these composite variables we can define the combined
estimand

(17)

i.e., the relative reduction in the probability of secondary transmission to an unvaccinated
individual due to vaccination of the primary case in strata 10 and 11. Similar composite
variables  and  can be defined. Then the combined estimand is

(18)

i.e., the relative reduction in the risk of secondary transmission to a vaccinated individual
due to vaccination.

2.5 Other estimands
The traditional estimators of vaccine efficacy for infectiousness will not in general be
unbiased or consistent for the causal estimands defined in the previous section. To
demonstrate this, it will be helpful to define the following estimands. The estimand for the
net vaccine effect on the probability of secondary transmission from individual 1 to
individual 2 when individual 2 receives control is
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(19)

The estimand for the net vaccine effect on the probability of secondary transmission from
individual 1 to individual 2 when individual 2 is assigned vaccine is

(20)

Analogous  and  can be defined. In settings where individuals within a
transmission unit are arbitrarily labeled 1 and 2, a single composite net vaccine efficacy for
infectiousness can be defined. Similar to (16), first define the new variable

(21)

The combined estimand for the net vaccine effect on the risk of secondary transmission if
the exposed individual receives control is

(22)

The combined estimand for the net vaccine effect on the risk of secondary transmission if
the exposed individual receives vaccine is

(23)

In general, the  estimands do not have a causal interpretation. For example, considering
(19), as can be seen from Table 2, the set of individuals with Si1(10) = 1 is not necessarily
identical to the set of individuals with Si1(00) = 1.

Although it is not our primary interest here, for completeness we define six analogous 
estimands, the net vaccine effect on protecting against infection when exposed in the
transmission unit. For example, the net protective effect of vaccine in individual 2 when
individual 1 receives control is

(24)

The definitions of the five , , , , and 
estimands follow by analogy to (20), (22), and (23).

Finally, we define the causal protective effect of vaccination on infection from outside the
transmission unit. We define the causal vaccine effect on infection in individual 1 by
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(25)

the relative average causal effect of vaccination on infection in individual 1 exposed outside
the transmission unit, the first when individual 2 is not vaccinated, the second, when
individual 2 is vaccinated. Four further estimands, VES,2(0), VES,2(1), VES,c(0) and
VES,c(1), can be defined. These estimands are analogous to the vaccine efficacy for
susceptibility, VES, defined by Hudgens and Halloran (2006). However, now the estimands
depend on the vaccination status of the other individual in the transmission unit.

3 Identifiability

Table 3 shows the relation of the observed combinations of ( ,  Zi) and the principal

strata. Most combinations of ( , , Zi) can belong to two or more principal strata.
None of the six causal estimands (12) through (18) are identifiable from the observable data
without further assumptions. We now make the assumption that vaccine assignment Zi is
independent of the potential outcome vector (Si, Yi) for all i, thus vaccine assignment is
strongly ignorable. Formally,

(26)

Randomization is one such assignment mechanism. Assignment to vaccine and control
could be randomized individually or by transmission unit. For example, if randomized
individually, then the assignments Z11, …, ZN1, Z12, …, ZN2 could be made independently
with Pr[Zij = 11] = 0.50 for all i, j. If randomized by transmission unit, then the assignments
Z1, …, ZN could be made independently with Pr[Zi = 11] = Pr[Zi = 01] = Pr[Zi = 10] =
Pr[Zi = 00] = 0.25 for all i. Under both assignment mechanisms in large samples, within
each principal stratum each of the four possible Zi would be assigned to one quarter of the
transmission units. Other randomization probabilities would be possible.

3.1 Identifiability of  and 

We consider first identifying . The numerator of (12) is identifiable because

transmission units assigned Zi = (10) where  must be members of principal stratum
11. Therefore, under the assumptions above,

(27)

where, in large samples, . In the following, even when not
explicitly noted, we are assuming large samples.

Next we show that the denominator of (12), E[Yi2(00)|Si1 = (1111)], is not identifiable
without further assumptions. From Table 2, it can be seen that transmission units with

, Zi = (00) may be members of one of five principal strata, in particular strata 3, 5, 6,
8 and 11. Fortunately, assuming strongly ignorable vaccination assignment (26), the
observable data do provide information about the proportion of such transmission units that
can be expected to belong to the principal stratum 11 with Si1 = (1111) such that large-
sample bounds can be derived (Section 3.4).

Halloran and Hudgens Page 11

Int J Biostat. Author manuscript; available in PMC 2013 January 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We show the proportion of units with Zi = (00),  in stratum 11 is identifiable. From
assumption (26), it follows we can identify f from the transmission units with Zi = (10),

 because these transmission units must be in principal stratum 11 with Si1 = (1111).
Thus, in large samples

(28)

Similarly, in large samples,

(29)

By assumption (5), the denominators in (28) and (29) will be nonzero.

The proportion of transmission units in principal stratum 11 of those observed with Zi =

(00),  from the five principal strata 3, 5, 6, 8, and 11 is identified from (28) and (29),
giving

(30)

Though we can identify the proportion of transmission units in the principal stratum of

interest, we do not know which of the transmission units with Zi = (00),  they are. If
the strata 3, 5, 6, 8 are empty, (and by symmetry, 2, 4, 7, and 9 are empty), then δ = 1.

Analogous arguments hold for the identifiability of  in (14).

3.2 Identifiability of  and 

We now consider identifying . The numerator of (13) is identifiable because, as

seen in Table 2, transmission units with Z = (11),  must be members of one of the
three principal strata 8, 9, and 11, with Si1 ∈ {(0101), (1101), (1111)}. Under the
assumptions above,

(31)

where in large samples, .

Next we show that the denominator of (13), E[Yi2(01)|Si1 ∈ {(0101), (1101), (1111)}], is
not identifiable without further assumptions. From Table 2, it can be seen that transmission

units with  when assigned Zi = (01) may be members of one of eight principal strata,
in particular strata 3 through 9 and 11. We cannot identify which of the transmission units

with Zi = (01),  are in the three principal strata 8, 9, and 11, of interest. However, we

can identify the proportion of the transmission units with Zi = (01),  who are in the
three principal strata of interest. In large samples,
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(32)

Similarly,

(33)

By assumption (5), the denominators in (32) and (33) will be nonzero. Therefore, the

proportion of transmission units with Zi = 01,  in the three principal strata of interest
8, 9, and 11 that make up the denominator of the causal estimand (13) is identified from (32)
and (33):

(34)

Though we can identify the proportion of transmission units in the three principal strata, we
do not know which transmission units they are. When strata 3 through 9 are empty (and by

symmetry stratum 2 is empty), γ = 1. Similar arguments hold for the identification of 
in (15).

3.3 Identifiability of other estimands

The identifiability of  and  follow from the definitions of  and

 in (17) and (18) and the arguments in Sections 3.1 and 3.2. The numerators in both
causal estimands are identifiable from the observable data, but the denominators are not.

The  and  estimands in Section 2.5 are defined in terms of the expectations of the

observed data. In large samples, the , and the

, r, s ∈ {0, 1}, j, k ∈ {1, 2}, identifying all of the
estimands. For example, equivalent to the standard method for estimating vaccine efficacy
for infectiousness in (2),

(35)

Under assumption (26), the causal protective effect of vaccination against infection from
outside the transmission unit is identifiable. For example, from (26) it follows

(36)

Analogous expressions hold for VES,2(0), VES,2(1), VES,c(0), and VES,c(1). From (30) and
(34), δ and γ are identifiable and, in large samples, equal the ratios of the two expectations
of the right and left equations in (36). Thus in large samples,
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When δ = 1, then , k ∈ {1, 2, c} and the vaccine has no protective effect on

infection from outside the transmission unit. Similarly, when γ = 1, then , k ∈
{1, 2, c}.

3.4 Large-sample bounds
We have shown that the proportion in sets of principal strata in Table 2 can be identified
from the observed data under the given assumptions. We can use these proportions to derive
large-sample bounds on the various CVEI estimands similar to Zhang and Rubin (2003).

Considering first  (12), the proportion δ = f/(b + c + d + e + f) of the transmission

units with Zi = (00),  from the five principal strata 3, 5, 6, 8, and 11 in principal
stratum 11 is identified. Depending on the observed data, we can determine the minimum

and maximum number of these transmission units with  that could be in principal

stratum 11, setting bounds on the causal . The proof is in Appendix A. The results

assume (26). The upper and lower bounds on the causal  are

(37)

(38)

From (37) and (38), if δ = 1, then  The upper and

lower bounds on the estimate of the causal  are

(39)

(40)

From (39) and (40), if γ = 1, then . The upper and

lower bounds for the estimates of  and  are analogous.

If the labels j = 1 and j = 2 have been arbitrarily assigned, then

(41)
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(42)

From (41) and (42), if δ = 1, then . Also,

(43)

(44)

From (43) and (44), if γ = 1, then . We conjecture
these bounds are sharp, however a formal proof along the of Imai (2008) is beyond the scope
of this paper.

3.5 Identification under assumption of no selection bias
The assumption of no selection bias is one selection model that identifies the causal
estimands from the observed data. The strongest assumption of no selection bias is that the
expected secondary transmission outcome is the same across all strata where there is a
primary case for a particular zi, i.e., E[Yik(zi)∣Sij(zi) = 1, Si] = E[Yik(zi)∣Sij(zi) = 1] for all zi.
However, weaker assumptions of no selection bias are su cient to identify the causal
estimands. We consider first the denominator of (12). Extrapolating from Hudgens and
Halloran (2006), the weaker assumption of no selection bias with respect to (12) is

(45)

Making this assumption for the four strata 3, 5, 6, and 8 identifies the denominator of (12)

from the observed data, thus . Then

 is a consistent estimator of the causal .

Considering the denominator of (13), the weaker assumption of no selection bias is that the
E[Yi2(01)∣Si1 ∈ {(1100), (0100), (1100), (1100), (1100)}] in the five principal strata 3
through 7 with Si1(01) = 1 not in (13) equals the E[Yi2(01)∣Si1 ∈ {(1101), (0101), (1111)}]
in the three principal strata 8, 9, and 11 in (13). This assumption identifies the denominator
of (13) from the observed data, and

. Then  is a

consistent estimator of the causal . Similar arguments hold for identifying the other
causal CVEI estimands under the assumption of no selection bias.

3.6 Example
Here we demonstrate identifiability and estimation of bounds of the causal estimands in
Section 2.4 from data observable in a vaccine study. We continue the example begun in
Table 1, a randomized, controlled vaccine study in N = 11, 000 transmission units of size
two. The assignments Z11, …, ZN1, Z12, …, ZN2 are independent with Pr[Zij = 1] = 0.50 for
all i, j. Within each principal stratum, each of the four possible Zi are assigned to one quarter
of the transmission units. We assume the labels 1 and 2 were arbitrarily assigned, and for

brevity, we focus on the combined estimands  and . In the combined
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estimands and estimators, the two people in the transmission unit are ordered such that j = 1
is the primary case and j = 2 is the exposed person if there is a primary case in the
household. This design would also allow inference about the causal estimands (12)–(15)
through the large sample bounds described in Section 3.4.

Table 4 contains the observed distribution of the transmission units by status of the primary
case of Table 1, including also transmission units with no primary case. The data in Table 4
were generated with knowledge of the underlying principal strata (Appendix B, Table 8), but
that knowledge is not necessary for the results here.

From Table 1 and (35),  and , equal to the traditional
estimates in (4). Under the assumption of no selection bias, these would be consistent

estimators of the causal estimands  and . However, this is an unverifiable

assumption. From the data on ( , , Zi) in Table 4, the principal strata in Table 2, and
the assumptions above, we can identify δ and γ for this example. Transmission units with Zi

= (00) and  must be in stratum 1, so the proportion α = 250/2750 = 1/11.

All other transmission units with Zi = (00) have , so 2(b + c + d + e + f) =
2500/2750. From either of these, (b + c + d + e + f) = 5/11 is identified. All of the 500
transmission units with Zi = (01) or Zi = (10) with a vaccinated primary case must be in
stratum 10 or 11, so f = 500/5500 = 1/11. Thus δ = f/(b + c + d + e + f) = 0.2.

Similarly, transmission units with Zi = (11) and  must be in one of strata 6
through 11, thus 2(d + e + f) = 1500/2750, and (d + e + f) = 3/11. Those transmission units
with Zi such that the primary case is unvaccinated and the exposed person is vaccinated
must be in strata 2 through 11, whereby strata 4 through 9 are represented twice when
collapsing over Zi = (01) and Zi = (10). Thus, (b+2c+2d+2e+f) = 4000/5500 = 8/11, and γ =
(d + e + f)/(b + 2c + 2d + 2e + f) = 3/8 = 0.375. Thus we have illustrated that δ and γ can be
identified from the observed data under the assumptions without knowledge of the
underlying principal strata.

The bounds depend on the relation of the distributions of the basic principal strata and the

Yi. From (41) and (42), the bounds on  depend on the relation of SAR00 to δ, and

from (43) and (44), the bounds on  depend on the relation of SAR01 to δ. Based on
Table 1, SAR00 = 0.90, so δ < SAR00, (1 − δ) < SAR00, and SAR01 = 0.70, so γ < SAR01
and 1 − γ < SAR01. Thus,
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In summary, from (35), the two stratified net estimates of vaccine effect on infectiousness

are  and . Under the assumption

of no selection bias,  is a consistent estimator of . Without this

assumption, the large sample bounds provide a range of estimates of . For these data

the bounds on  are wide (−4.25, 0.65), however the bounds on  are
narrower (0.1, 0.55) and are informative in the sense that the null value of no vaccine effect
on infectiousness is excluded.

3.7 Non-random labels
If the labels 1 and 2 are not randomly assigned, but represent a covariate, say 1 was the
younger sibling and 2 was the older sibling, then we might be interested in the causal

estimands  and  separately from  and  rather than the
composite causal estimands. In Table 2, we could no longer assume that the proportions of
the population in the symmetric pairs of principal strata, such as (2,3), (4,5) and so forth,
were equal. We would need to allow for proportions b1, b2, c1, c2, d1, d2, e1, e2, f1, and f2.
Identifiability arguments analogous to those in Sections 3.1 and 3.2 would still hold with the
expanded notation, and yield different proportions δ1, δ2, γ1 and γ2 for estimating the
different bounds on the two pairs of causal estimands.

4 The Simple Scenario
We now consider the simplest scenario by making two key assumptions. This simple
scenario is the most straightforward extension of Hudgens and Halloran (2006) to the
situation where the postinfection outcome is secondary transmission to another individual.
First, we assume individuals within the transmission unit can be ordered such that only the
first individual (j = 1) is exposed to infection from outside the transmission unit. This
assumption implies individual j = 1 can never be the secondary case and individual j = 2 can
never be the primary case. Formally,

(46)

The second key assumption is that only individual j = 1 can be assigned to vaccine or
control, and individual j = 2 is not vaccinated, assumed equivalent to control:

(47)

Under assumption (47) individual j = 2 is never vaccinated, such that the potential outcomes
depend only on the vaccination assignment of individual j = 1, and thus can be written more
simply as Yij(zi1) and Sij(zi1). However, we maintain the notation that explicitly shows
individual j = 2 is never vaccinated, so we write Yij(zi1, 0) and Sij(zi1, 0). Under assumptions
(46) and (47), we define the basic principal stratification according to the joint potential
infection outcomes Si1 = (Si1(00), Si1(10)) in individual j = 1 only. There are just four
possible combinations of (Si1(00), Si1(10)). We make the usual monotonicity assumption
that the protective effect of vaccination is nonnegative. In this scenario, this is a special case
of assumption (7) with j = 1, (j) = 2, and z = 0. Thus, there are three feasible basic principal
strata (Table 5), called immune (Si1 = (00)), protected (Si1 = (10)), and doomed (Si1 = (11)).
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We assume as in (26) that vaccination assignment is independent of the potential outcomes.
Formally,

(48)

As an example of this simple scenario the transmission unit could be defined as a man and
woman engaged in a monogamous sexual relationship with only the man exposed to HIV
outside the partnership through injecting drug use (Longini et al. 1999). A vaccine trial
might randomize only the injecting drug users to vaccine or control (Datta et al. 1998).

4.1 Estimands
In Table 5, the doomed basic principal stratum is the only stratum in which both potential
postinfection transmission endpoints, Yi = (Yi2(00), Yi2(10)), and thus their joint
distribution, are defined. In other words, the causal effect of the vaccine on infectiousness
must be defined by contrasts between [Yi2(00)|Si1 = (11)] and [Yi2(10)|Si1 = 11]. Analogous
to (12), we define the causal estimand

(49)

i.e., the relative reduction in the probability of secondary transmission due to vaccination in
the principal stratum of transmission units where individual j = 1 becomes infected
regardless of vaccination status.

Under (46) and (47), the estimand for the net vaccine effect on infectiousness is

with the second equality following from (48). Again, in general,  does not have a
causal interpretation because the set of individuals with Si1(10) = 1 is not necessarily
identical to the set of individuals with Si1(00) = 1.

Under assumptions (46) and (47), we can define another estimand for the effect of
vaccination on the outcome Y in individual j = 2 that does not condition on the transmission
unit having a primary case:

(50)

where we adopt the convention Yi2(zi)Si1(zi) = 0 when Si1(zi) = 0 and Yi2(zi) = *, zi ∈ {(10),
(00)}. We consider such an estimand intent-to-treat (ITT) because it does not condition on

the post-treatment variable , i.e., it incorporates all individuals j = 2 according to the
vaccination assignment of the individual j = 1 in their transmission unit. VEITT (0) does
have a causal interpretation. Estimand (50) is not an estimand for the vaccine effect on
infectiousness, but rather it captures an indirect effect of vaccination (Halloran and
Struchiner 1991) because it describes the indirect effect of treatment (vaccine) on an
individual of the treatment received in others in the same group where interference can
occur. The indirect effect does not condition on the infection status of the others in the
group. The VEITT (0) estimand is a special case of the population average indirect effect
causal estimand defined by Hudgens and Halloran (2008). In the scenario in this paper, the
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population of groups is the population of transmission units of size two. This type of study is
called a mini-community design (Halloran et al. 2010). Examples include a study of indirect
effects of pneumococcal vaccination on unvaccinated household members (Millar et al.
2008) and a study of indirect effects of pertussis vaccination on unvaccinated siblings
(Trollfors et al. 1998).

Similar to (25), we define the causal vaccine effect on infection by

(51)

i.e., the relative average causal effect of vaccination on infection in individual j = 1 exposed
outside the transmission unit when j = 2 is not vaccinated.

4.2 Identifiability and large-sample bounds

The causal  in (49) is not identifiable without further assumptions. The numerator

of (49) is identifiable because transmission units with , Zi = (10) must be members of
the Si1 = (11) doomed principal stratum. Under the assumptions made above, then

(52)

The denominator of (49), E[Yi2(00)|Si1 = (11)], is not identifiable without further

assumptions, because from Table 5 it can be seen that transmission units with  , Zi =
(00) may be members of either the protected or doomed principal stratum. Assuming
independent vaccination assignment (48), the observable data provide information about the
proportion of such transmission units that can be expected to belong to the Si1 = (11)
doomed principal stratum, such that large-sample bounds can be derived. Using arguments
as in Section 3, the proportion f in the doomed principal strata and the proportion d + f in the
combined protected and doomed strata are identifiable. Thus, the proportion of the

transmission units with , Zi = (00) in the doomed principal stratum, say ρ = f/(d + f), is

identifiable. The upper and lower bounds for the causal  estimand (49) are similar
to those in (37) and (38) with ρ replacing δ. These bounds are analogous to (23) and (26) in

Hudgens and Halloran (2006), with  in that paper replaced by 1 − ρ here and other
appropriate adjustments in notation.

The estimands , VEITT = (0), and VES,1(0) are identifiable without further
assumptions. Under assumption (48), it follows

where we adopt the convention that  when  and . Define the attack
rate AR1,(rs) as the observed proportion of transmission units with vaccination status Zi =

(rs) with . Define the attack rate AR2,(rs) as the observed proportion of transmission

units with vaccination status Zi = (rs) with . Formally, for r, s ∈ {0, 1},
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(53)

In large samples,  and . Thus,

(54)

The assumption of no selection bias is .

, is a consistent estimator of  under the assumption of no selection bias.

When ρ = 1, the protected principal stratum in Table 5 is empty, , and

 is a consistent estimator of .

5 Both Assigned Treatment, One Exposed Outside
Next we assume as in (5) of the general scenario (Section 2) both individuals have a non-
zero probability of being assigned to vaccine or control, but as in (46) only individual j = 1
is exposed to infection outside the transmission unit. An extension of the HIV vaccine trial
described in Section 4 in which the monogamous sexual partners are assigned to vaccine or
control would be an example of this scenario. As in the simple scenario in Section 4, under
the modified monotonicity assumption (7), there are three basic principal strata defined by
the joint potential infection outcomes of individual j = 1 under vaccine and control.
Interference does not affect the potential outcomes of individual j = 1 since we are assuming
(46), i.e., only individual j = 1 is exposed from outside the transmission unit. There are now
four possible postinfection strata in the protected basic principal stratum, and 16 in the
doomed basic principal stratum. However, making the monotonicity assumption (11), the
possibilities are reduced to three and nine (Table 6). We further assume that vaccine
assignment is independent of their potential outcomes as in (26).

We now have two causal VEI estimands analogous to  in (12) and  in

(13) whereby now  is defined in just the doomed principal stratum:

(55)

Identifiability arguments proceed as previously. The large-sample bounds on the estimates

of  and  are as in (37)–(38) and (39)–(40) with both δ and γ replaced by
ρ = f/(d + f), as in Section 4.

In this scenario, we can define the further estimands , , ,

, and VES,1(0) as in Section 2.5, and estimate the corresponding ,

, , , and . We can now define two ITT estimands,
one in which j = 2 is not vaccinated, VEITT (0) as in (50), and one in which j = 2 is
vaccinated, VEITT (1). Both are again special cases of the population average indirect effect
causal estimand. The two ITT estimands are identifiable from the data as

 and .
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6 Non-Unique Primary Cases, One Assigned Vaccine
Next we assume as in Section 2, either individual may be the primary case, and as in (47),
only individual j = 1 may be assigned vaccine or control. In this scenario, the vector Si =
(Si1(00), Si1(10), Si2(00), Si2(10)) can take on 24 = 16 possible values. We make three
realistic exclusion restriction assumptions similar to those previously which decrease the
number of Si that are feasible. First, we assume as in (6) there is a unique primary case and

no co-primary cases. This assumption implies . Second, we assume as in
(7) if Si1(10) = 1, then Si1(00) = 1. That is, if individual j = 1 becomes the primary case
when vaccinated, s/he will also become the primary case when not vaccinated. Third, similar
to (8), we assume if Si2(00) = 1, then Si2(10) = 1. That is, if individual j = 2 becomes the
primary case when individual j = 1 is not vaccinated, then individual j = 2 will also become
the primary case when individual j = 1 is vaccinated. Under these three exclusion
restrictions, only six values of Si are feasible, shown in Table 7. The right side of Table 7
displays the possible values of the potential secondary transmission outcomes Yij(zi10) for
each of the six feasible values of Si.

There are two basic principal strata within which causal estimands regarding secondary
transmission to the same individual are well-defined, {i : Si = (1100)} and {i : Si = (0011)}.
Under assumption (47), only individual j = 1 may be vaccinated, implying only the former
principal stratum provides information about the vaccine effect on infectiousness. Because
(Si1(00), Si1(10)) = (11) implies Si = (1100) under the assumed exclusion restrictions, the

causal estimand of interest is again  as in the simplest scenario in (49).
Identifiability and large-sample bounds arguments proceed as previously. We assume

independent vaccination assignment (48). Because  given Zi = (01) implies
membership in the {i : Si = (1100)} basic principal stratum, one can identify the numerator

of  and the proportion f in Table 7. However  given Zi = (00) implies only
that membership must be in one of three basic principal strata, namely {i : Si = (1100)}, {i :

Si = (1001)}, or {i : Si = (1000)}. That is, the denominator of  is not identifiable,

but the proportion d+e+f is. We define θ = f/(c+d+f). The bounds on  are given in

(37) and (38) with δ replaced by θ. Under the assumption of no selection bias,  is

a consistent estimator of . One can also estimate  in this scenario.

7 Discussion
In this paper, we have defined causal estimands for vaccine efficacy for infectiousness for
four different scenarios of transmission units of size two. The causal estimands are defined
within principal strata or unions of principal strata determined by the joint potential infection
outcomes indicating who is a primary case under the four possible allocations of vaccine and
control in the transmission unit. A series of exclusion restriction assumptions for each of the
four scenarios enabled restriction of the number of feasible principal strata. Identifiability of
the causal estimands for vaccine efficacy for infectiousness under the assumption that
vaccine assignment was independent of the potential outcomes was considered and bounds
for each estimand derived. An example demonstrated the use of the methods to analyze data
that would be available in a study such as the general scenario.

Although our focus here was on causal estimands for vaccine efficacy for infectiousness,
several other estimands were defined. Two different levels of protective effects of
vaccination have been defined, one for protective effects of vaccination when exposed
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outside the transmission unit, and one for protective effects of vaccination when exposed
within the transmission unit. It is not uncommon that vaccination studies present two
analyses, one that does not condition on known exposure to infection and one that does (see
Kendrick and Eldering (1939) for an early example). However, their relation has never been
studied in a causal inference setting and is deserving of further research. We defined two
intent-to-treat causal estimands,VEITT (0) and VEITT (1) that are special cases of causal
estimands for indirect effects in the setting of causal inference in the presence of
interference (Halloran and Hudgens 2008).

The large sample bounds on the causal vaccine efficacy for infectiousness estimands assume
extreme selection models. Future research could develop sensitivity analyses that explore
potentially more realistic selection models. For the simple scenario in Section 4, the three
approaches to sensitivity analysis for binary postinfection outcomes in Hudgens and
Halloran (2006) immediately apply.

VanderWeele and Tchetgen (2011) also proposed causal estimands of vaccine efficacy for
infectiousness. Considering the simplest case in Section 4, and stated in terms of our
development, they derive a lower bound on the causal vaccine efficacy for infectiousness by
assuming the probability of secondary transmission from unvaccinated primary cases in the
protected stratum is not greater than that in the doomed principal stratum. The intuition
behind this assumption is that people in the protected principal stratum are likely healthier
than those in the doomed principal stratum, and thus less apt to transmit the infection to

others. Thus, the observed  provides a lower bound on the causal CVE12(0) in (49).
However, this improvement in the lower bound is based on an assumption which is not
verifiable from the observable data.

Several other avenues of future research could be pursued. In this paper we have assumed
there is no interference across transmission units. This assumption might hold, if as stated in
Section 2.2, the transmission units are transmission dynamically separated, geographically
and/or socially. However, if there is interference between individuals from different
transmission units, then one could re-define the transmission units to include all individuals
between whom there is interference. For instance, if there is interference between
individuals in different households that are geographically adjacent, then the transmission
unit can be defined as a collection of adjacent households rather than as the individual
households. For example, Préziosi and Halloran (2003) define as the transmission unit the
compound, a collection of several small houses containing an extended family, to estimate
vaccine efficacy for infectiousness. In that study, the number of exposed susceptible
individuals ranged from 1 to 32 (interquartile range 2–8). For such a setting, the methods of
this paper would need to be extended to allow for transmission units to have more than two
individuals. Another approach to estimating vaccine efficacy based on the secondary attack
rate models the interference among people across transmission units (Halloran et al. 2010,
Chapter 11). Future research could develop methods for causal inference for this setting.

Throughout we have assumed that vaccine assignment was independent of potential
outcomes. One could extend the methods in this paper to partially randomized or wholly
observational studies. In the absence of randomized vaccination assignment, various
methods could be adapted to address possible violations of the ignorable treatment
assignment assumption. For example, one could relax this assumption by instead assuming
independent vaccination assignment conditional on some set of baseline covariates
(VanderWeele and Tchetgen 2011). Methods for sensitivity analysis to violation of the
assumption of independent assignment mechanism could also be developed. For instance,
following Rosenbaum (2010, Chapter 3), one could explore explore how inference about
vaccine efficacy for infectiousness changes according to the strength of association assumed
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between treatment assignment and some unmeasured confounder. Another issue in
observational studies could be that transmission units would be ascertained only if they have
a primary case. In this situation, the proportion of transmission units under each vaccine
assignment with no primary cases would not be known. Further research is needed to draw
inference about vaccine effects for infectiousness for this scenario.

Future research could also consider in more detail the consequences of the different
exclusion restriction assumptions made in the different scenarios. We have not used
information on Si to inform exclusion restriction assumptions on Yi. Such exclusion
restriction assumptions and their potential consequences for assumptions about selection
bias need further research.

Here we have begun to set estimation of the effects of vaccination on reducing
infectiousness of one person for another on the sound footing of causal inference. Much
research remains to be done on this topic of considerable public health importance.

A Proof of Upper and Lower Bounds
Here we derive the upper and lower bounds for the denominator of the estimator of the

causal estimand  in (12). In Section 3.1, we show

is identifiable. Next, note

where the first and second equalities follow from the independence assumption (26) and
Yi2(00) being binary. Therefore,

(56)

where , δ, and 1 − δ are identifiable, and Pr[Yi2(00) = 1|Si1 =
(1111)] is the estimand of interest. Following Hudgens and Halloran (2006), the upper
bound on Pr[Yi2(00) = 1|Si1 = (1111)] would be achieved if either
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If δ < Pr[Yi2(00) = 1|Zi = (00), ], then Pr[Yi2(00) = 1|Si1 = (1111)] = 1. Otherwise,
Pr[Yi2(00) = 1|Si1 ≠ (1111)] = 0, which implies

Thus, the upper bound on Pr[Yi2(00) = 1|Si1 = (1111)] equals

(57)

Similarly, the lower bound on Pr[Yi2(00) = 1|Si1 = (1111)] equals

(58)

Thus, the upper and lower bounds of  are (37) and (38). Proofs of the upper and
lower bounds of the other causal CVEI estimands proceed similarly.

B Relation of Principal Strata to Usually Observed Data
Here we develop an example to illustrate the relation between the principal strata in Table 2
and the observed primary cases. Table 8 contains an example of the observed primary cases
given the underlying principal strata. The study population has N = 11, 000 transmission
units of size two assumed to be equally distributed among the 11 principal strata, with 1000
transmission units in each. The labels 1 and 2 are assumed arbitrarily assigned. The
assumption of equally distributed principal strata is not necessary for the results to hold. We
have assumed the Z11, …, ZN1, Z12, …, ZN2 are independent with Pr[Zij = 1] = 0.50 for all i,
j. Thus, in large samples, in each principal stratum, one quarter of the transmission units
would be assigned each of the four possible Zi to vaccine or control. For each transmission
unit i assigned Zi, whether there will be a primary case and which it will be is determined by
the vector of potential outcomes Si in Table 2.

For example, in principal stratum 2, in the 250 transmission units with Zi = (00), individual j
= 2 is the primary case. In principal stratum 9, in the 250 transmission units with Zi = (01),
individual j = 1 is the primary case. In general, we cannot determine which transmission
units are in which principal stratum. However, the boldfaced numbers are those where it can
be determined. In particular, the 250 transmission units with Zi = (00) in which no one gets
infected are known to be in stratum 1 under the assumptions. The 250 transmission units
with Zi = (01) in which the vaccinated individual j = 2 is the primary case are in stratum 10.
Similarly, the 250 transmission units with Zi = (10) in which the vaccinated individual j = 1
is the primary case are in stratum 11.

In the lower part of Table 8, the observed data on the primary cases are presented, first, in
the situation that we distinguish individual j = 1 and individual j = 2, then below, if we did
not distinguish them. For example, in the former case, in transmission units with Zi = (01),
there are 500 with no primary case, 2000 with an unvaccinated primary case, and 250 with a
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vaccinated primary case. If the two individuals are not distinguished and one person in the
transmission unit is vaccinated, and the other not, the central two columns are collapsed. In
this case, with discordantly randomized transmission units, 1000 transmission units do not
have a primary case, 4000 have an unvaccinated primary case, and 500 have a vaccinated
primary case. Altogether, 2500 of the transmission units have no primary case. Of those that
have a primary case, 2500 + 4000 = 6500 have an unvaccinated primary case and 500 +
1500 = 2000 have a vaccinated primary case. The data at the bottom of Table 8 are
presented in Table 4 in the main text. The values of δ = f/(b + c + d + e + f) = 0.20 and γ =
(d + e + f)/(b + 2c + 2d + 2e + f) = 3/8 = 0.375 are easily computed from Table 8 when we
know who is in each basic principal stratum. However, as demonstrated in the main text, δ
and γ can be computed from the observed data under the assumptions.
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Table 1

Motivating example of observed data from a randomized study of 11,000 transmission units with primary case
of vaccine status r and exposed individual with vaccine status s, where 0 denotes control and 1 denotes
vaccine. In one quarter of the transmission units, both individuals received vaccine, in one quarter, both
received control, and in one half of the transmission units, one received vaccine, the other control. In 2500
transmission units, no one was infected.

Primary case with vaccine
status r

Exposed individual with vaccine
status s

No. of primary cases No. of secondary transmissions SARrs

0 0 2500 2250 0.90

1 0 500 250 0.45

0 1 4000 2800 0.70

1 1 1500 525 0.35
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Table 3

The relation of observed combinations of ( , ) and assignment vector Zi and the basic principal strata in
Table 2.

Zi (Si1
obs, Si2

obs) Y i1
obs Y i2

obs Principal Strata

(00) (0,0) * * 1

(00) (1,0) * 0/1 3,5,6,8,11

(00) (0,1) 0/1 * 2,4,7,9,10

(01) (0,0) * * 1,2

(01) (1,0) * 0/1 3,4,5,6,7,8,9,11

(01) (0,1) 0/1 * 10

(10) (0,0) * * 1,3

(10) (1,0) * 0/1 11

(10) (0,1) 0/1 * 2,4,5,6,7,8,9,10

(11) (0,0) * * 1,2,3,4,5

(11) (1,0) * 0/1 8,9,11

(11) (0,1) 0/1 * 6,7,10
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Table 4

Example of observed number of transmission units by vaccine status and by status of primary case in a study
of 11,000 transmission units of size two assuming the Z11,…, ZN1, Z12,…, ZN2 are independent with Pr[Zij =
1] = 0.50 for all i,j. The j = 1 and j = 2 are ordered such that if there is a primary case transmission unit, it is j
= 1.

Number of Transmission Units Zi

Zi = (00) (Si1
obs

,Si2
obs

) Zi = (01) or Zi = (10) (Si1
obs

,Si2
obs

) Zi = (11) (Si1
obs

,Si2
obs

)

No primary case 250 (0,0) 1000 (0,0) 1250 (0,0)

With primary case 2500 (1,0) 4000, unvac index 1500 (1,0)

500, vac index

Total 2750 5500 2750

The boldface indicates direct information about the proportion in principal strata under the assumptions.
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