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The telomerase reverse transcriptase adds de novo

DNA repeats to chromosome termini. Here we define

Caenorhabditis elegans MRT-1 as a novel factor required

for telomerase-mediated telomere replication and the

DNA-damage response. MRT-1 is composed of an N-term-

inal domain homologous to the second OB-fold of POT1

telomere-binding proteins and a C-terminal SNM1 family

nuclease domain, which confer single-strand DNA-binding

and processive 30-to-50 exonuclease activity, respectively.

Furthermore, telomerase activity in vivo depends on a

functional MRT-1 OB-fold. We show that MRT-1 acts in

the same telomere replication pathway as telomerase

and the 9-1-1 DNA-damage response complex. MRT-1 is

dispensable for DNA double-strand break repair, but func-

tions with the 9-1-1 complex to promote DNA interstrand

cross-link (ICL) repair. Our data reveal MRT-1 as a dual-

domain protein required for telomerase function and

ICL repair, which raises the possibility that telomeres

and ICL lesions may share a common feature that plays a

critical role in de novo telomere repeat addition.
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Introduction

The ends of linear chromosomes, telomeres, pose two major

challenges to the maintenance of chromosome integrity and

overall genome stability: telomeres need to be adequately

replicated, to compensate for the inability of canonical DNA

polymerases to replicate the chromosome terminus, and they

need to be protected from being mistakenly sensed and

repaired as DNA double-strand breaks (DSBs).

Telomeric DNA is composed of simple, repetitive se-

quences. The 50-to-30 telomeric DNA strand is G-rich and

terminates as a 30 single-stranded overhang. Telomeric

repeats are replenished by telomerase, a ribonucleoprotein

composed of the telomerase reverse transcriptase (TERT) and

an RNA component (TR) containing the telomere-repeat

template (Greider and Blackburn, 1989; Collins, 2006).

The catalytic subunit of telomerase, TERT, and its RNA

component are sufficient to confer telomere-repeat addition

in vitro. Additional proteins, many of which are essential,

facilitate processing of TR and telomerase holoenzyme func-

tion (Collins, 2006; Fu and Collins, 2007; Venteicher et al,

2008). Mutations in the essential proteins dyskerin, NOP10,

NHP2, as well as in TR and TERT, confer shortened telomeres

and reduced in vitro telomerase activity in patients with

heritable forms of Dyskeratosis Congenita and Pulmonary

Fibrosis (reviewed by Vulliamy and Dokal, 2008). Thus,

telomere maintenance defects can limit proliferation of cells

in lymphatic or pulmonary systems in vivo, consistent with

evidence that telomerase can limit the proliferative lifespan of

human primary cells in vitro (Garcia et al, 2007).

Double mutants deficient for fission or budding yeast DNA-

damage sensor proteins ATM and ATR display progressive

telomere erosion, suggesting that DNA-damage signalling

may be required for telomerase-mediated telomere mainte-

nance in vivo (Naito et al, 1998; Ritchie et al, 1999;

Nakamura et al, 2002). Conceptually related results were

reported for Caenorhabditis elegans DNA-damage response

mutants, where telomerase-mediated telomere replication

was abolished in vivo by single mutations in subunits of

the Rad9-Rad1-Hus1 (9-1-1) PCNA-like sliding clamp, mrt-2

(the worm rad1) or hus-1, or its large RFC clamp loader

subunit, hpr-17 (Ahmed and Hodgkin, 2000; Hofmann et al,

2002; Boerckel et al, 2007). Further, subunits of the homo-

logous mammalian 9-1-1 complex, as well as its RFC clamp

loader, RAD17, were shown to physically interact with the

telomerase holoenzyme, to bind to telomeric DNA in vivo,

and to facilitate telomerase activity in vitro (Francia et al,

2006). However, knockdown of these mammalian DNA-da-

mage response proteins is cell-lethal and results in dramatic,

rapid effects on telomere length, precluding analysis of effects

on telomerase-mediated telomere length maintenance in vivo

(Francia et al, 2006). The former results suggest that DNA-

damage response proteins may function at chromosome ends

as a prerequisite for telomere repeat addition by telomerase.

These proteins can respond to DSBs (d’Adda di Fagagna et al,

2004), suggesting that telomeres may be sensed as ‘aberrant’

DSBs when they are replicated during S-phase and that the 9-

1-1 complex in conjunction with its clamp loader may facil-

itate recruitment of telomerase to chromosome termini.

Here we identify C. elegans MRT-1 as a novel factor

required for in vivo telomerase activity. MRT-1 encodes a

dual-domain protein with an N-terminus homologous to the

second OB DNA-binding fold found in POT1 (Protection Of

Telomeres 1) proteins and a C-terminus bearing homology to
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the SNM1 nuclease family. SNM1 proteins function in DNA

repair and checkpoint responses to interstrand cross-links

(ICLs), stalled replication forks and DSBs, as well as

in telomere protection (Henriques and Moustacchi, 1980;

Dronkert et al, 2000; Demuth et al, 2004; Jeggo and

Lobrich, 2005; Freibaum and Counter, 2006; Lenain et al,

2006; van Overbeek and de Lange, 2006; Bae et al, 2008;

Hazrati et al, 2008; Hemphill et al, 2008). Although pre-

viously described C. elegans DNA-damage response mutants

that are deficient for telomerase activity in vivo are hyper-

sensitive to DSBs and ICLs, mrt-1 mutants are only deficient

for ICL repair. Thus, MRT-1 defines a dual-domain ICL DNA-

damage response protein that may process and interact with

chromosome termini prior to telomerase-mediated telomere

repeat addition.

Results

MRT-1 is required for telomerase activity in vivo

To identify non-essential mutations that compromise telomer-

ase activity in vivo in C. elegans, genetic screens for ethyl-

methanesulphonate (EMS)-induced mortal germline (mrt)

mutations that resulted in progressive telomere shortening

and progressive sterility, accompanied by telomere–telomere

fusions, were performed. Two alleles of mrt-1, e2661 and yp2,

were identified in such screens (Y Liu and S Ahmed, unpub-

lished data) (Ahmed and Hodgkin, 2000). mrt-1 mutants

showed progressive reduction in progeny and eventual steri-

lity comparable to mrt-2 mutants and mutants defective for

the C. elegans catalytic subunit of telomerase, trt-1, (Table I)

accompanied by progressive telomere shortening over suc-

cessive generations (Figure 1A and Figure 5). Although

telomere length does fluctuate as N2 wild-type strains are

propagated for multiple generations (Ahmed et al, 2001),

wild-type telomeres appeared as diffuse bands on Southern

blots, whereas telomeres of all mrt-1 alleles appeared as

discrete bands that shorten progressively (Figure 1A, right

panel), as previously observed for C. elegans mutants that are

deficient for telomerase mediated-telomere replication such

as trt-1, mrt-2, hus-1 and hpr-17 (Ahmed and Hodgkin, 2000;

Hofmann et al, 2002; Meier et al, 2006; Boerckel et al, 2007).

In crosses between mrt-1(e2661) and wild-type, mrt-1�/� F2

siblings displayed telomere erosion accompanied by progres-

sive sterility, whereas wild-type F2 siblings displayed neither

phenotype, but did possess discrete telomeric restriction

fragments inherited from the mrt-1 background (Figure 1A,

left panel, and data not shown). In addition, mrt-1 strains

displayed late-onset chromosome fusions, as indicated by

reduced numbers of metaphase-arrested meiotic chromo-

somes in late-generation mrt-1 mutants (Figure 1B and

Supplementary Figure 1). The presence of end-to-end chro-

mosome fusions was verified by isolation of X-autosome

fusions from three independent mrt-1 strains (Figure 1C).

Genetic mapping of the dominant-chromosome-loss phenotype

Table I Progressive brood size reduction and loss of viability in late generation mrt-1, mrt-2 and trt-1 mutants

Generation

F2 F4 F6 F8 F10 F12 F14 F16 F18 F20 F22 F24 F26

Wild-type
1 W W W W W W W W W W W W W
2 W W W W W W W W W W W W W
3 W W W W W W W W W W W W W
4 W W W W W W W W W W W W W

mrt-1(e2661)
1 W W W M M F VF S
2 W W W W W M M M F S
3 W W W W W M W M F VF S
4 W W W M W M M M F VF S

mrt-1(yp2)
1 W W W W W M W M F F F VF S
2 W W W W W W W W M M M F VF
3 W W W W W W M M M M M M F

mrt-1(tm1354)
1 W W W W W M W M F S
2 W W W W W M M F F F VF S

mrt-2(e2663)
1 W W W W M M F M F VF VF S
2 W W M M M M M M F VF S
3 W W M W M M F F VF S
4 W W M F S

trt-1(ok410)
1 W W W W M M M M F F VF S
2 W W W W W W M F VF S
3 W W W W W W W M M F F VF

W, wild-type, B250 progeny per animal; M, medium, B80 progeny per animal; F, few, B20 progeny per animal; VF, very few, B3–5 progeny
per animal; S, sterile.
Mutants were backcrossed twice against wild-type to restore telomere length and two to four homozygous lines of the indicated genotype were
followed by picking six L1s each line every two generations, as described previously (Ahmed and Hodgkin, 2000), for 26 generations. Brood
size and sterility are indicated.
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Figure 1 Characterization and genetic mapping of mrt-1. (A) mrt-1 mutants display progressive telomere shortening. Southern blotting of
genomic DNA with a telomere repeat-specific probe was performed as described previously (Ahmed and Hodgkin, 2000; Meier et al, 2006).
F4 and F12 generations of three homozygous mrt-1(e2661) mutant and three homozygous wild-type siblings from a single outcross are shown
in the left panel and three progressive generations of wild-type, mrt-1(yp2), two lines of mrt-1(e2661) and mrt-1(tm1354) each are shown in
the right panel. Internal-repeat signals (Wicky et al, 1996) and telomere signals are indicated. (B) DAPI staining of late-generation wild-type or
mrt-1 worms. Representative oocyte nuclei, indicated by dashed circles, are shown. (C) X-autosome fusions, eT3, eT7 and 9u, isolated from
independent mrt-1(e2661) strains. Visible markers used for mapping are indicated. (D) Map position of mrt-1 as determined by three-factor
crosses. The number of recombination events scored between mrt-1 and unc-29 is indicated in brackets. Cosmids covering the approximate
genetic position of mrt-1 are shown. (E) mrt-1 gene structure and mutations. Point mutations are indicated in bold italics. Solid black boxes
depict exons that are not translated due to the e2661 premature stop codon or are missing as a consequence of altered mrt-1 splicing in tm1354.
In tm1354, the deletion within introns 3 and 5 leads to two alternatively spliced mRNAs indicated as (a) and (b) (see Supplementary Figure
2B), resulting in downstream exons to be out of frame (indicated in grey). (F) Western blot of protein extracts from wild-type and mrt-1 mutant
strains. The arrow indicates MRT-1 protein, asterisks indicate nonspecific bands.
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of these independent fusions, which occurs when an

X-autosome chromosome fusion is in trans to unfused chro-

mosomes during meiosis, revealed tight genetic linkage of

one end of the X chromosome with an end of an autosome in

each case, confirming the formation of covalent end-to-end

chromosome fusions (Figure 1C; see Supplementary data)

(Ahmed and Hodgkin, 2000; Meier et al, 2006; Boerckel et al,

2007; Lowden et al, 2008). The former mrt-1 phenotypes

resemble C. elegans strains that are deficient in telomerase

activity in vivo (Ahmed and Hodgkin, 2000; Hofmann et al,

2002; Meier et al, 2006; Boerckel et al, 2007).

Two- and three-factor crosses were used to map mrt-1 to

approximately þ 2.92 on Chromosome I (Figure 1D).

Although trt-1 is located nearby at þ 3.08, mrt-1 mutations

complemented trt-1(ok410) for progressive sterility when

propagated as trans-heterozygotes, whereas failure to com-

plement was observed between the mrt-1 mutations e2661

and yp2, indicating that these mutations correspond to a

single gene that is distinct from trt-1 (Table II; and data

not shown). Failure to complement trt-1(ok410) was pre-

viously reported for three independent alleles of

trt-1 (e2727, yp1 and tm899), thereby clearly defining the

C. elegans telomerase reverse transcriptase (Meier et al,

2006). BLAST searches of predicted proteins to the left of

trt-1 revealed an open reading frame, F39H2.5, encoding

a protein with an N-terminal domain homologous to the

second OB-fold of POT1 telomere-binding proteins and

a C-terminal domain containing the metallo-b-lactamase

and b-CASP motifs characteristic of the SNM1 family of

nucleic acid processing factors (Figures 1E and 2, see

below). Isolation and sequencing of the mrt-1 cDNA con-

firmed the predicted 608-amino-acid POT1 OB-fold/SNM1

dual-domain protein (Figure 1E and Supplementary Figure

2). Sequencing of F39H2.5 from wild-type, mrt-1(e2661) and

mrt-1(yp2) revealed independent C-to-T transition mutations

in e2661 and yp2, predicted to create stop codon and mis-

sense mutations, respectively (Figure 1E). The mrt-1(yp2)

missense mutation results in an H127Y amino-acid change,

thus altering an amino acid whose charge is conserved in the

OB2-fold of most POT1 proteins (Figure 2A).

Upon identification of the mrt-1 gene based on our forward

genetic experiments, a deletion of this locus, tm1354, was

kindly generated by Shohei Mitani. The tm1354 deletion

eliminates several exons of the C-terminal SNM1 nuclease

domain, including conserved amino-acid motifs that are

relevant for ICL repair in yeast Pso2p (Niegemann and

Brendel, 1994; Li and Moses, 2003 and Figure 1E). RT–PCR

of mrt-1 cDNA from tm1354 animals revealed two mRNAs

predicted to result in truncated, out-of-frame proteins

(Figure 1E and Supplementary Figure 2B). The tm1354 dele-

tion was isolated under conditions that generate many addi-

tional lesions in a strain’s genome (Gengyo-Ando and Mitani,

2000). Therefore, two- and three-factor crosses were per-

formed to show that a locus tightly linked to the tm1354

deletion conferred progressive telomere erosion phenotypes

characteristic of C. elegans telomerase mutants (Figure 1A

and B and Table I, and data not shown). Further, the tm1354

deletion failed to complement the mrt-1 alleles e2661 and yp2

for progressive sterility and late-onset end-to-end chromo-

some fusion phenotypes, but complemented trt-1(ok410)

(Table II). Although a strain containing the tm1354 deletion

was previously mentioned to display progressive telomere

shortening (Raices et al, 2008), the identification of indepen-

dent alleles of this locus, as well as the genetic mapping and

complementation tests described here, indicate that the telo-

mere shortening observed in the tm1354 strain is caused by a

defect in the mrt-1/F39H2.5 gene.

A polyclonal antibody raised against full-length MRT-1

detected equivalent levels of full-length MRT-1 and MRT-

1(H127Y) in wild-type and mrt-1(yp2) worm extracts, respec-

tively (Figure 1F). Thus, the POT1-related OB2 domain of

MRT-1 is required for telomerase activity in vivo. In contrast,

no MRT-1 protein was detected in the e2661 nonsense muta-

tion and tm1354 deletion extracts (Figure 1F and data not

shown), indicating that these mutations are likely to be null

alleles of mrt-1/F39H2.5, a non-essential gene required for de

novo telomere repeat addition in C. elegans.

mrt-1 encodes a dual-domain protein

The N-terminal domain of C. elegans MRT-1 shares sequence

homology with the second OB-fold of POT1 proteins

(Figure 2A and Supplementary Figure 3). Single-stranded

telomeric DNA-binding proteins commonly contain two ad-

jacent N-terminal OB-folds, OB1 and OB2 (Horvath et al,

1998; Lei et al, 2003, 2004; Theobald and Wuttke, 2004). In

addition to MRT-1, the C. elegans genome encodes two short

proteins with homology to the second OB2-fold of POT1,

F57C2.3 (CeOB1) and 3R5.1 (Figure 2A and Callebaut et al,

2002; Raices et al, 2008). The OB2-folds of MRT-1, F57C2.3

(CeOB1) and 3R5.1 are closely related and likely evolved

from a single ancestral OB2-fold gene. A fourth C. elegans

gene, B0280.10 (CeOB2), is homologous to the first OB-fold of

POT1, OB1 (Figure 2A and Raices et al, 2008). The tandem

OB-fold structure typical of POT1 proteins has been subjected

to fission and duplication in C. elegans. Thus, we originally

identified mrt-1/F39H2.5 based on the genetic map position

of the mrt-1(e2661) telomerase-deficient mutant, and three

additional C. elegans genes were identified based on their

homology to POT1: B0280.10, F57C2.3 and 3R5.1. While this

study was in progress, these genes were independently

identified as POT1 homologues (Raices et al, 2008). We

designate the C. elegans gene name for these genes as ‘pot’, for

‘homologous to Protection of Telomeres 1(Pot1)’, where pot-1 is

B0280.10 (CeOB2) pot-2 is F57C2.3 (CeOB1) and pot-3 is 3R5.1

(Figure 2A) (Raices et al, 2008; Lowden et al, 2008). These

genes display sequence similarity to, and evolved from, POT1,

Table II mrt-1 complementation

Strain Lines Sterility

trt-1(ok410) unc-29/++ 3 No*
trt-1(ok410) unc-29/trt-1(ok410) unc-29 6 Yes
mrt-1(e2661) dpy-5/++ 4 No*
mrt-1(yp2) dpy-5/++ 3 No*
++trt-1(ok410) unc-29/dpy-5 mrt-1(e2661)++ 4 No*
++trt-1(ok410) unc-29/dpy-5 mrt-1(yp2)++ 4 No*
+trt-1(ok410) unc-29/mrt-1(tm1354)++ 3 No*
dpy-5 mrt-1(e2661)/+mrt-1(tm1354) 4 Yes
dpy-5 mrt-1(yp2)/+mrt-1(tm1354) 4 Yes

Trans-heterozygous analysis of mrt-1 alleles with trt-1. mrt-1 alleles
were placed in trans to trt-1 or to a different mrt-1 allele (as shown)
and progeny of several independent F1s were propagated as trans-
heterozygotes (see Supplementary data) until sterility, while lines
marked with an asterisk did not show any visible reduction in
viability when propagated up to 15–20 generations.
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and their functions may reflect (1) one or more functions of

ancestral POT1, including but not limited to ‘protection of

telomeres’, or (2) derived functions that may be unrelated to

the ancestral protein. Since F39H2.5/mrt-1 contains homology

to two conserved proteins, POT1 and SNM1, the gene name

mrt-1 is used, based on the Mortal Germline phenotype of mrt-1

mutants (Ahmed and Hodgkin, 2000). MRT-1 is the only C.

elegans POT1-like OB-fold protein that is required for telomerase

activity in vivo (Figure 1), whereas the pot-1(CeOB2) and pot-

2(CeOB1) genes may repress telomerase activity or recombina-

tion at telomeres (Raices et al, 2008; M Lowden and S Ahmed,

unpublished data).

The C-terminus of MRT-1 corresponds to the sole

C. elegans homologue of SNM1 proteins (Figure 1E and

Figure 2B), which are members of the nucleolytic DNA- and

RNA-processing b-CASP (metallo-b-lactamase-associated

CPSF-Artemis-SNM1/PSO2) protein family (Aravind, 1999;

Callebaut et al, 2002; Dominski, 2007). Saccharomyces

C.e. MRT-1 608 AAOB2
27 201 557 608

hPOT1V1 634 AAOB2
1471

OB1
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26 171 200 251
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C.e.POT-2     97 LLIEIDVYDDHRDGLKN-LNSGDFVAIQNVHAASTR 131
C.e.POT-3     98 YLIEINVYDEHRADLVS-LNSGNFVAIQNVHAASTP 132
S.p.POT1     261 FSIRCILWDEHDFYCRNYIKEGDYVVMKNVRTKIDH 296

H.s.SNM1A     729 YFLTHFHSDHYAGLS 743      810 ILHTGDFRAD 819
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Figure 2 MRT-1 shares sequence homology with POT1 and SNM1 proteins. (A) Protein domain structure of hPOT1, MRT-1 and the three
additional C. elegans OB-fold domain proteins with homology to POT1. The conserved histidine H127Y (asterisk) mutated in the MRT-1 protein
of mrt-1(yp2) is indicated. The region of homology around H127Y of the three C. elegans (C.e.) OB2-fold proteins aligned with the respective
POT1 domains of Homo sapiens (H.s.), Xenopus laevis (X.l) and Saccharomyces pombe (S.p.) is shown. No clear alignment could be obtained
for Arabidopsis thaliana POT1 within this region. Sequence alignments were generated using Pole BioInformatique Lyonnais ClustalW (http://
pbil.ibcp.fr/htm/index.php). Red shading reflects sequence identity, green strong and blue weak similarity. (B) Protein domain structure of C.e.
MRT-1, S. cerevisiae (S.c.) Pso2p and human SNM1A, SNM1B/Apollo and SNM1C/Artemis. A multiple sequence alignment of the HxHxDH and
b-CASP motif-4 nuclease domains is shown below. Amino acids depicted on top of the alignment indicate amino-acid changes introduced into
MRT-1 to generate MRT-1(4mut) (see Figure 3 and Supplementary data).
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cerevisiae Pso2p, and mammalian SNM1A and SNM1B/

Apollo promote ICL repair (Henriques and Moustacchi,

1980; Demuth et al, 2004; Bae et al, 2008; Hazrati et al,

2008; Hemphill et al, 2008). In addition, SNM1B/Apollo and

SNM1C/Artemis contribute to telomere end protection

(Rooney et al, 2003; Freibaum and Counter, 2006; Lenain

et al, 2006; van Overbeek and de Lange, 2006).

The OB-fold/SNM1 dual-domain structure of MRT-1 is

observed for the closely related Caenorhabditis species

remanei and briggsae, but was not predicted from genome

sequences of the distantly related parasitic nematodes Brugia

malayi and Trichinella spiralis (data not shown). Thus, fusion

of POT1 OB2 and SNM1 domains to create the mrt-1 gene

may have occurred within the Nematode phylum.
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MRT-1 acts as a nuclease in vitro

To determine whether MRT-1 harbours nucleolytic activity as

implied by its sequence homology to SNM1 proteins, we

purified wild-type, the MRT-1(H127Y) OB-fold mutant,

and two putative nuclease-dead mutant versions of MRT-1,

MRT-1(D245A) and MRT-1(4mut), from Escherichia coli

(Supplementary Figure 4A). The MRT-1(D245A) protein con-

tains an aspartate to alanine mutation in the conserved

HxHxDH signature motif, which comprises residues predicted

to participate in zinc coordination (histidines) and hydrolysis

(aspartate) at the active site (Figure 2B and Carfi et al, 1995).

In budding yeast, this mutation diminishes the in vitro 50-to-30

nuclease activity of Pso2p and leads to an ICL-repair defect

in vivo (Li et al, 2005). The corresponding mutation abolishes

the in vitro 50 exonuclease activity of mammalian SNM1A

(Hejna et al, 2007) and reduces the endonucleolytic activity

of SNM1C/Artemis that is observed in the presence of DNA-

PK (Pannicke et al, 2004). However, as this single amino-acid

change does not abolish SNM1 nuclease activity in all cases

(Pannicke et al, 2004), we also disrupted the putative cataly-

tic core of MRT-1 with four mutations (4mut): a HxHxDH-to-

AxAxAH triple mutation and a D335A substitution in motif-4

(Figure 2B and Poinsignon et al, 2004). Wild-type and mutant

versions of recombinant MBP-6�His–TEV–MRT-1 were pur-

ified over a TALON column resulting in a B120-kDa MBP-

6�His–TEV–MRT-1 band (Supplementary Figure 4A).

Cleavage with TEV protease followed by a second purification

step yielded untagged full-length MRT-1 (Supplementary

Figure 4A and Supplementary data). Cleaved and purified

MRT-1 protein exhibited 30 nuclease activity as revealed by

complete removal of one or more 30 nucleotides from a 50-

end-labelled substrate (Figure 3A, arrow, and Figure 3B,

arrow), accompanied by a smear of additional degradation

products, which includes minor stalling points and release of

the terminal 50 nucleotide. This activity was not observed for

TEV protease alone (Figure 3A, lane 11). Importantly, no

nuclease activity was observed with MRT-1(D245A) or MRT-

1(4mut) mutants, indicating that this activity requires con-

served residues in the MRT-1 nuclease domain (Figure 3A,

lanes 5–10; Figure 3B). A time-course experiment using MRT-

1 and MRT-1 (H127Y), which contains the POT1 OB-fold

substitution that abolishes telomerase activity in vivo, indi-

cated that the nuclease activity of MRT-1, apparent by the

complete removal of one or more 30 nucleotides (arrow), as

well as a smear of degradation products, is not affected by the

OB-fold mutation (Figure 3B). Removal of the N-terminal

epitope tags from MRT-1 promoted degradation of 50-end-

labelled substrates, accompanied by release of a small

amount of 50 mononucleotide, which might correspond to

either a weak 50 nuclease activity or a processive 30 nuclease

activity that completely degrades the oligonucleotide sub-

strate (Figure 3A and B). To distinguish between these

possibilities, MRT-1 was incubated with a 30-end-labelled

substrate. A single 30 mononucleotide was released from

30-end-labelled substrate in Figure 3C, in a nuclease do-

main-dependent manner. Thus, MRT-1 functions as a 30–50

nuclease, similar to the 30–50 exonuclease ExoI control

(Figure 3C). If MRT-1 were a processive 50-to-30 nuclease,

then a ladder of products would have been observed for the

30-end-labelled substrate in Figure 3C. Consistently, incuba-

tion of various dilutions of MRT-1 protein with 30-end-labelled

G-strand substrate failed to reveal any cleavage intermediates

expected for 50-to-30 exonuclease activity (Supplementary

Figure 4E). We considered the possibility that the 50 phos-

phate of 50-end-labelled substrates might elicit 50-to-30 nucle-

ase activity by MRT-1, as has been observed for SNM1 (Hejna

et al, 2007), but addition of a cold 50 phosphate to 30-end-

labelled ssDNA substrate did not promote the formation of an

n-1 product by MRT-1, and resulted exclusively in release of

the terminal 30 nucleotide (data not shown). While MRT-1

and MRT-1(H127Y) showed comparable efficiency in cleaving

the terminal 30-labelled substrate, MRT-1(D245A) and MRT-

1(4mut) exhibited strongly reduced kinetics and absence of

activity, respectively (Figure 3C). Thus, our results indicate

that MRT-1 functions as a 30-to-50 nuclease in vitro.

Use of n-1, n-2 and n-3 C. elegans G-strand oligonucleotide

size markers revealed that an n-3 molecule is the major

product of the MRT-1 nuclease for the 50-end-labelled

C. elegans G-strand substrate (Supplementary Figure 4C).

Dilutions of MRT-1 protein revealed a smear of n-1, n-2 and

n-3 degradation products, which occur during the rapid

generation of the n-3 product (Supplementary Figure 4D).

Thus, MRT-1 does not act as an endonuclease that chops off

three 30 nucleotides at the 30 end of the C. elegans G-strand

substrate, but rather as a processive 30-to-50 exonuclease that

stalls at the n-3 position. Various 50-end-labelled substrates,

including telomeric G-strand and C-strand oligonucleotides

and (dT)35, were efficiently processed by MRT-1, although

different patterns of nucleolytic activity were observed

(Figure 3D). The oligo(dT) substrate was more severely

degraded, suggesting that the activity of MRT-1 may depend

on the sequence or structure of its substrates. In an attempt to

address the various nucleolytic patterns of MRT-1 on different

oligonucleotides (Figure 3D), we examined the effect of

Figure 3 MRT-1 acts as a 30 nuclease in vitro. (A) 70 nM of MRT-1, MRT-1(D245A) and MRT-1(4mut) from different purification steps were
incubated with 5 nM of a C. elegans telomeric G-strand oligonucleotide labelled at the 50 end (asterisk). The line before the oligonucleotide
sequence shown depicts an invariant linker sequence (see Supplementary data). 6�His–TEV1 extracts were tested for contaminating nuclease
activity (lane 11). The 50-to-30 nuclease RecJf and the 30-to-50 nuclease ExoI were used as controls (lanes 12 and 13, respectively). 1-nt products
generated by RecJf and 2- to 4-nt products generated by ExoI are indicated. The arrow indicates the reduced size oligonucleotide band due to
nuclease activity. For panel A, lane 2, it is difficult to assess the degree of nucleolytic activity for uncleaved MRT-1 due to a gel-running artefact.
(B) Time-course experiment of MRT-1, MRT-1(H127Y), MRT-1(D245A) and MRT-1(4mut) nuclease activity on a 50 labelled (asterisk) C. elegans
telomeric G-strand oligonucleotide. 70 nM of protein were incubated with 5 nM of 50 labelled oligonucleotide and aliquots were taken at the
time points indicated. 2- to 4-nt products generated by ExoI and 1-nt products are indicated. The line drawn before the oligonucleotide
sequence depicts an invariant linker sequence (see Supplementary data). The arrow indicates the reduced size band due to nuclease activity.
(C) Time-course of MRT-1, MRT-1(H127Y), MRT-1(D245A) and MRT-1(4mut) nuclease activity on a 30 labelled (asterisk) C. elegans telomeric
G-strand oligonucleotide performed as described in panel B. (D) 70 nM MRT-1 and MRT-1(4mut) were incubated with 5 nM of various 50

labelled single-stranded oligonucleotides for 1 h. (E) 70 nM MRT-1 and MRT-1(4mut) proteins were incubated with 1 nM of single- or double-
stranded 50 labelled DNA substrates as indicated (see Supplementary data). 1-nt products as generated by RecJf are indicated. The arrow
indicates the reduced size band due to nuclease activity. (F) MRT-1 and MRT-1(4mut) proteins were incubated with single- or double-stranded
30 labelled (asterisk) DNA substrates as described in panel E. 1-nt products as generated by ExoI are indicated.
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MRT-1 on n-1, n-2 and n-3 C. elegans G-strand substrate

molecules, where the major product of the full-length G-

strand substrate is an n-3 molecule. The n-1 or n-2 substrates

were rapidly cleaved to yield an n-3 product, whereas the n-3

substrate was resistant to the strong 30-to-50 exonuclease

activity of MRT-1, which rapidly removes 30 nucleotides

from full-length, n-1 and n-2 G-strand substrate molecules

(Supplementary Figure 4F). Note that MRT-1 created a weak

smear of degradation products for all single-stranded

G-strand oligonucleotides, including the n-3 substrate.

A major n-3-mer product was also generated when MRT-1

was incubated with double-stranded C. elegans G-strand sub-

strate, where the G-strand was 50-end-labelled (Figure 3E and

data not shown). Thus, when three nucleotides are removed
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from the C. elegans G-strand substrate terminating in

GGCTTA to yield an n-3 molecule terminating in TTAGGC,

the processive 30-to-50 nuclease activity of MRT-1 is inhibited.

Raising the incubation temperature of the MRT-1 cleavage

reaction from 20 to 371C resulted in uniform laddering of a

C. elegans telomeric G-strand substrate (Supplementary

Figure 4B), analogous to the oligo(dT) substrate at 201C.

This temperature-sensitive effect may reflect altered structure

of the 30 end of the n-3-mer, or perhaps increased processivity

of MRT-1 protein, at 371C. Formal proof that MRT-1 harbours

a 30-to-50 exonuclease activity that may possess a degree of

structure or sequence specificity awaits detailed characteriza-

tion of various substrate molecules and how they are pro-

cessed by MRT-1.

Analysis of the activity of MRT-1 on 50-end-labelled, blunt,

double-stranded DNA substrates or on a substrate with a

30 telomeric overhang resulted in release of both 30 and 50

nucleotides (Figure 3E). To test whether release of the

50 nucleotide from either substrate was due to 50–30 nuclease

activity, analogous 30-end-labelled substrates were examined,

but only the 30 nucleotide was released, and no n-1 band or

additional banding pattern was observed (Figure 3F). n-1, n-2

and n-3 size markers indicated that an n-1 product could

have been detected for 30-end-labelled substrates if it

occurred as a consequence of a non-processive 50 nuclease

activity (Supplementary Figure 4C, D and F). Thus, the

relatively strong release of the 50 terminal nucleotide from

50-end-labelled dsDNA substrates occurs as a consequence of

the 30-to-50 polarity of the MRT-1 nuclease.

We conclude that MRT-1 is a processive 30-to-50 exonu-

clease, which can degrade single-stranded substrates, which

can be repressed by specific substrate configurations, and

which can act to release the terminal 50 nucleotides of

substrates that are degraded with 30-to-50 polarity. The nucle-

ase activity of MRT-1 is dependent on its SNM1 nuclease

domain, but this activity is not affected by the H127Y POT1

OB-fold mutation. Note that the nuclease activities displayed

by MRT-1 in vitro may be affected by protein modification or

protein–protein interactions, and could be substrate depen-

dent. The strong activity of MRT-1 on non-telomeric sub-

strates is significant and not unexpected, as MRT-1 is not

telomere-specific but also functions a general ICL-repair

protein (see Figure 6, below).

MRT-1 binds single-stranded DNA in vitro

Although two adjacent N-terminal OB-folds in human POT1

are required for POT1 to bind single-stranded telomeric DNA

in vitro (Lei et al, 2004), the sequence homology of MRT-1 is

restricted to the second OB-fold of POT1 (Figure 2A).

Electrophoretic mobility-shift assays revealed that 6�His–

MRT-1 bound to a radiolabelled single-stranded (GGCTTA)4

C. elegans telomeric G-strand oligonucleotide (Figure 4A,

lane 9). Furthermore, MRT-1 bound to various single-

stranded oligonucleotides, including a C. elegans C-strand,

an inverse C-strand and a human G-strand, with comparable

affinity (Figure 4A, lanes 3, 6 and 12). DNA competition

experiments revealed that an unlabelled C. elegans telomeric

G-strand oligonucleotide was consistently able to compete

with an MRT-1 complex bound to a radiolabelled G-strand

oligonucleotide with at least 10-fold greater affinity than an

unlabelled C. elegans telomeric C-strand oligonucleotide

(Figure 4B and Supplementary Figure 5A). For reasons that

are unclear, epitope-tagged MRT-1 band shifts were resolved

as either single or double bands in different experiments,

even when MRT-1 protein from the same protein purification

was used (Figure 4B and Supplementary Figure 5A).

The mrt-1(yp2) allele deficient for telomerase activity

in vivo encodes an H127Y protein mutation that affects a

conserved charged residue in its OB-fold (Figures 1E and 2A)

and thus may affect DNA binding. In comparison to 6�His–

MRT-1, an equivalent concentration of 6�His–MRT-

1(H127Y) had strongly diminished affinity for all single-

stranded oligonucleotides tested, including C. elegans

G-strand telomere repeats (Figure 4A, lanes 4, 7, 10 and

13). To assess the DNA-binding activity of untagged MRT-1,

MBP-6 � His–TEV–MRT-1 fusion proteins were purified and

cleaved with TEV protease. Similar to 6�His-tagged MRT-1,

binding of TEV-cleaved MRT-1(H127Y) to a G-strand oligo-

nucleotide was reduced five- to eight-fold in comparison with

wild-type MRT-1 (Figure 4C). Untagged MRT-1 protein does

not show the crisp band shifts observed for epitope-tagged

MRT-1 (Figure 4 and Supplementary Figure 5). We hypothe-

sized that the smeary band shifts might occur as a conse-

quence of the nuclease activity of MRT-1, but they remained

smeary for nuclease-dead versions of MRT-1, which bound C.

elegans G-strand substrate with an affinity similar as MRT-1

(Figure 4C). Smeary band shifts were consistently observed

Figure 4 MRT-1 binds single-stranded DNA in vitro. (A) Gel-shift analysis of 200 nM purified 6�His–MRT-1 or 6�His–MRT-1(H127Y) with
5 nM of the indicated oligonucleotide substrates (top; also listed in Supplementary data) in the presence of poly(dI–dC). The position of
radioactive labels is indicated by asterisks and the invariant linker sequence of each oligonucleotide is indicated as described for Figure 3. DNA-
binding activities of a bacterial in vitro translation extract were used as a DNA-binding control (see lane 2, ‘positive control’). DNA–protein
complexes and free oligonucleotides are indicated. Percentages shown on the bottom of the gel indicate relative intensities of the shifted DNA–
protein complexes (the shift of lane 6 being set to 100%). (B) Competition experiments of 6�His–MRT-1 bound to a 50 labelled (asterisk)
single-stranded G-strand oligonucleotide followed by addition of increasing amounts of the indicated unlabelled oligonucleotides. Note that an
inverse C-strand oligonucleotide is used for competition with the labelled G-strand oligonucleotide to avoid formation of double-stranded DNA.
In this experiment, MRT-1 protein shifts as two different complexes with the radiolabelled oligonucleotide, which are equally competed by
addition of unlabelled competitor oligonucleotides. Percentages shown on the bottom indicate relative amounts of free radiolabelled
oligonucleotide with the unbound oligonucleotide (lane 1) set to 100%. (C) Gel-shift analysis of TEV-cleaved and dialysed MRT-1 wild-type
and mutant proteins. Wild-type and mutant proteins were incubated with 5 nM 50 labelled single-stranded G-strand oligonucleotide using
increasing protein concentrations of 17 nM, 50 nM, 150 nM, 450 nM in the presence of poly(dI–dC) as described in panel A. (D) Gel-shift
analysis of TEV-cleaved and dialysed MRT-1 wild-type with single-stranded and double-stranded substrates. TEV-cleaved and dialysed wild-
type MRT-1 protein (50, 150 and 450 nM) was incubated with 5 nM 50 labelled single-stranded or double-stranded DNA substrates (see
Supplementary data) in the presence of poly(dI–dC). Single-stranded and double-stranded DNA and protein–DNA complexes are indicated on
the right. Note that single-stranded and double-stranded DNA run differently in native gels. Relative intensities of DNA–protein complexes
were measured between lanes for single-stranded and double-stranded DNA containing identical protein concentrations after subtraction of the
background signal. The intensities of the DNA–protein complexes formed with double-stranded DNA were 9 and 7% of that formed with single-
stranded DNA for 150 and 450 nM MRT-1 (lane 7 compared to lane 3 and lane 8 compared to 4), respectively.
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using several different protein purification protocols to purify

MRT-1, and for many electrophoresis conditions, suggesting

that non-static DNA–protein interactions may be an inherent

biophysical property of MRT-1. The positively charged

6�His-tag may non-specifically stabilize the interaction of

MRT-1 with DNA (Figure 4A and B). Using concentrated

untagged MRT-1 we found that 1.8 mM MRT-1 was required

to fully shift the oligonucleotide substrate, whereas 600 nM

MRT-1 shifted approximately 50% of the substrate (Supple-

mentary Figure 5B). MRT-1 binding to double-stranded DNA

substrates generated by annealing telomeric G-strand and C-

strand oligonucleotides was reduced at least 10-fold in com-

parison with binding to single-stranded DNA (Figure 4D, and

data not shown). Thus, MRT-1 can interact with various DNA

substrates in vitro, and this biochemical property may be

biologically meaningful as it is disrupted by an OB-fold

mutation that abolishes telomerase activity in vivo.

Efforts to determine MRT-1 localization in vivo by

indirect immunofluorescence using an anti-MRT-1 antibody

(Figure 1F) were unsuccessful (B Meier, T Lee, S Ahmed,

A Gartner, unpublished data), consistent with other reports

that have failed to detect endogenous mammalian SNM1

proteins by immunofluorescence (Dronkert et al, 2000;

Lenain et al, 2006; van Overbeek and de Lange, 2006).

Further, the MRT-1 antibody was not effective for chromatin

immunoprecipitation of telomeric DNA (J Hall and S Ahmed,

unpublished data). Introduction of the wild-type mrt-1(þ )

genomic DNA locus or MRT-1::GFP constructs in the mrt-1

(tm1354) mutant backgrounds using either complex extra-

chromosomal arrays or microparticle bombardment resulted

in undetectable or low expression of MRT-1 protein as

assessed by western blotting and failed to rescue the mrt-1

mutant ICL hypersensitivity phenotype (B Meier, L Barber,

S Boulton, S Ahmed, A Gartner, unpublished data).

MRT-1 acts in the same pathway as MRT-2 and TRT-1

for telomere replication

To determine whether mrt-1, telomerase and mrt-2 act in the

same genetic pathway of telomere elongation, mrt-1 trt-1 and

mrt-1; mrt-2 double mutants were generated for comparison

with the respective single mutants. Mutants were grown to

sterility, which occurred at approximately the same genera-

tion (data not shown), and the rate of telomere shortening

was analysed by Southern blotting (Figure 5A and B).

The rates of telomere shortening in mrt-1(yp2) trt-1 or

mrt-1(e2661); mrt-2 double mutants, 106±42 and 128±

30 bp per generation, respectively, were not significantly dif-

ferent from those of the single mutants, mrt-1(yp2)

(106±35 bp); mrt-1(e2661) (114±26 bp); trt-1 (125±22 bp)

and mrt-2 (129±30 bp) (Figure 5C). Therefore, these three

genes appear to act in a single pathway to facilitate telomere

repeat addition by telomerase in vivo.

MRT-1 defines an ICL-damage response pathway

Subunits of the 9-1-1 DNA-damage response complex and its

RFC clamp loader hpr-17 orchestrate DNA-damage signal-

ling and repair of ionizing radiation (IR)-induced DSBs.

Additionally, they are required for telomerase-mediated

telomere length maintenance (Ahmed and Hodgkin, 2000;

Hofmann et al, 2002; Boerckel et al, 2007). This dual func-

tion, coupled with observations that many additional

proteins that interact with DSBs also function at normal

telomeres (d’Adda di Fagagna et al, 2004), suggested that

the DSB-repair function of the 9-1-1 complex may be relevant

to telomerase-dependent telomere replication. Given that

mrt-1 and mrt-2 act in a single telomere replication pathway

(Figure 5A and C), we asked whether mrt-1 shares the DSB-

repair functions of the 9-1-1 complex by testing their sensi-

tivity to ionizing radiation. DNA DSBs in germ cells are

predominately repaired by homologous recombination in a

manner that is dependent on the 9-1-1 DNA-damage response

complex (Clejan et al, 2006). Quantification of the survival

rates of progeny derived from g-irradiated L4 larvae revealed

that mrt-2 was hypersensitive to IR-induced DSBs (Ahmed

and Hodgkin, 2000), whereas mrt-1 displayed a dose–re-

sponse survival curve that was not significantly different

from that of the wild-type (Figure 6A).

The mammalian SNM1C/Artemis protein is known to facil-

itate telomere capping and plays a role in non-homologous

end-joining (NHEJ)-mediated DSB repair (Richie et al, 2002;

Rooney et al, 2003). Since MRT-1 is the only C. elegans protein

bearing sequence homology to the SNM1 family, we examined

whether it too plays a role in NHEJ. In contrast to strains

deficient for any of the core NHEJ subunits lig-4, cku-70 or

cku-80 (Clejan et al, 2006), mrt-1 mutant strains did not

display defects in an assay for NHEJ-mediated DSB repair

(Supplementary Figure 6). Thus, mrt-1 is not required for

NHEJ- or homologous recombination-mediated DSB repair.

As we did not observe a role for MRT-1 in either DSB repair

or NHEJ, we considered whether it may instead be required

for ICL repair, analogous to yeast Pso2p and human SNM1A

(Hazrati et al, 2008). We tested mrt-1(yp2) and mrt-1(e2661)

for their sensitivity to DNA ICLs and found that both mutant

alleles displayed hypersensitivity to trimethylpsoralen photo-

activated by UVA radiation (UV-TMP) compared with

wild-type (Figure 6B). Given the specific defect of MRT-1 in

DNA cross-link repair, we also tested the previously identified

telomerase-deficient 9-1-1 DNA-damage response complex

mutants mrt-2 and hus-1, both of which were even more

sensitive to UV-TMP than mrt-1 (Figure 6B). Interestingly,

mrt-1(e2661); mrt-2(e2663) and mrt-1(yp2); mrt-2(e2663)

double mutants were not more sensitive than mrt-2 single

mutants (Figure 6C and D), indicating that mrt-1 and the 9-1-

1 complex may function in a common pathway to promote

ICL repair.

Discussion

We have identified MRT-1 as a new factor required for

telomerase-mediated telomere repeat addition in vivo using

unbiased genetic screening and positional cloning. MRT-1 is a

dual-domain protein comprised of an N-terminal region with

a POT1-like OB2-fold domain and a C-terminus homologous

to the Pso2/SNM1 family of nucleases.

Four POT1-related OB-fold proteins exist in C. elegans, yet

MRT-1 is the only POT-1 OB-fold protein that is essential for

telomere-repeat addition by telomerase. POT1 duplications

have occurred several times during evolution and, once

duplicated, POT1-like proteins tend to evolve rapidly and

adopt distinct telomere-related functions. Mutation of one of

three Arabidopsis POT1 genes abrogates telomerase activity

in vivo and in vitro (Shakirov et al, 2005; Surovtseva et al,

2007). The former results mirror evidence from organisms

that contain a single essential POT1-related gene (Baumann
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and Cech, 2001; Veldman et al, 2004; Hockemeyer et al,

2005). For example, human POT1 can facilitate telomerase

activity in vitro when in a complex with its interacting protein

TPP1 (Lei et al, 2005; Wang et al, 2007; Xin et al, 2007). Thus,

POT1 OB-fold proteins that interact with single-stranded

telomeric DNA may perform a conserved function that

enables telomerase to act at chromosome termini in vivo.

This function is difficult to address in vivo in organisms

where deficiency for POT1 OB-fold proteins results in acute

telomere uncapping and/or end-to-end chromosome fusions

(Baumann and Cech, 2001; Veldman et al, 2004; Hockemeyer

et al, 2005). In contrast, viable null alleles of mrt-1 display

telomere-erosion phenotypes that are indistinguishable from

those of telomerase reverse transcriptase mutants (Figures 1

and 5 and Supplementary Figure 1).

Insight into the telomerase-promoting function of POT1-

like proteins is provided by the H127Y mutation in the MRT-1

OB2-fold that abolishes telomerase-mediated telomere repli-

cation and affects a conserved histidine (Figure 2A). This

amino acid corresponds to His245 of human POT1, which

forms hydrogen bonds with the second and fourth nucleo-

tides from the 30OH terminus of a telomeric oligonucleotide in

a crystal structure, suggesting that it may mediate interaction

with the chromosome terminus in vivo (Lei et al, 2004).

Our results demonstrate that this amino acid is required for

interaction of MRT-1 with single-stranded DNA in vitro and

that this residue is essential for in vivo telomerase activity.

Thus, the DNA-binding activity of POT1-related OB-fold

proteins is likely to be critical for telomerase activity in vivo.

Our genetic analysis of mrt-1; mrt-2 double mutants

indicates that MRT-1 and the 9-1-1 DNA-damage response

complex act together in a single pathway to facilitate telo-

merase-dependent telomere replication. While C. elegans

9-1-1 complex mutants display defects in responding to DSB

and ICL lesions, the mrt-1 alleles (including two probable null

alleles) are only deficient for ICL repair. It is intriguing that

MRT-1 and MRT-2 function in both telomerase-dependent

telomere replication and ICL repair. Although this may be

coincidental, we favour the possibility that telomerase-

dependent telomere replication and some ICL lesions may

share common features. Human SNM1B/Apollo interacts

with telomere-binding proteins and is required for telomere

function in vivo (Freibaum and Counter, 2006, 2008; Lenain

et al, 2006; van Overbeek and de Lange, 2006; Demuth et al,

2008), whereas human SNM1C/Artemis facilitates telomere

capping (Rooney et al, 2003). This telomere association may
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Figure 5 mrt-1, mrt-2 and trt-1 function in the same genetic pathway. (A, B) Southern blots of various mrt-1 single and double mutant
combinations performed as described for Figure 1A. Internal-repeat signals (Wicky et al, 1996) and telomere signals are indicated on the right.
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be specific to metazoans, as independent large-scale genetic

screens have failed to reveal a role for S. cerevisiae PSO2/

SNM1 in telomere homeostasis (Askree et al, 2004; Downey

et al, 2006). Our results indicate that MRT-1 possesses dual,

separable biochemical activities: binding to single-stranded

DNA (OB-fold) and nucleolytic processing (SNM1 nuclease

domain). These activities are likely to act sequentially in vivo

and may facilitate both ICL repair and telomere-repeat addi-

tion by telomerase, although the role of the nuclease domain

of MRT-1 in telomere replication is presently unclear. Given

that the mammalian 9-1-1 complex physically interacts

with telomerase (Francia et al, 2006), and that subunits of

this complex, as well as MRT-1, are required for de novo

telomere repeat addition at C. elegans chromosome ends, we

favour the possibility that an ancient metazoan DNA-damage

response pathway may be triggered at chromosome termini

prior to telomere-repeat addition by telomerase.

Secondary DNA structures arising at telomeres, some of

which could resemble intermediates formed at ICL lesions,

might serve as substrates for MRT-1. At present we can only

speculate on the structure of the in vivo substrates of MRT-1.

Despite evidence that Pso2p/ SNM1 nuclease activity is

needed for ICL repair and that Pso2p/ SNM1 acts down-

stream of the initial cleavage event at a cross-link lesion, the

relevant in vivo substrates processed by Pso2p are still

unknown (Magana-Schwencke et al, 1982; Li et al, 2005).

Of the mammalian homologues, DNA substrates have only

been defined for SNM1C/Artemis, which targets hairpin

intermediates generated during V(D)J recombination

(Rooney et al, 2003). It is of interest that the ciliate TEBP

b-protein has been implicated in resolution of the telomeric

DNA G-quadruplex secondary structure during DNA replica-

tion, perhaps coincident with telomerase activity (Paeschke

et al, 2008). Additional unusual DNA structures at telomeres

include (1) the T-loop, where the terminal 30 overhang folds

back to form a structure that resembles a recombination

intermediate, (2) stalled replication forks that commonly

occur at repetitive DNA sequences (Griffith et al, 1999;

Fouche et al, 2006) and (3) simple 30 overhangs that are

ubiquitous telomeric structures and would be excellent sub-

strates for the 30-to-50 nuclease activity of MRT-1 (Figure 3

and Supplementary Figure 4). Finally, leading-strand DNA

synthesis at chromosome termini has been suggested to yield

the preferred substrate of telomerase (Chai et al, 2006), and

blunt chromosome termini could be a substrate for the

nuclease activity of MRT-1. In this case, 50-to-30 nuclease

activity at blunt chromosome termini would be required to

generate a 30 overhang for telomerase, and MRT-1 did not

possess such an activity under our experimental conditions

(Figure 3E and F). However, studies of yeast and vertebrate

SNM1 homologues of MRT-1 indicate that SNM1 nucleases

often display 50-to-30 nuclease activity in vitro (Li et al, 2005;

Hejna et al, 2007), which raises the possibility that MRT-1

may function analogously to create 30 overhangs at blunt

chromosome termini in vivo. Note that telomerase enzymes

from various species are associated with a nuclease activity

that can remove non-telomeric nucleotides from 30 ends of

primers in in vitro telomerase assays (Collins and Greider,

1993; Autexier and Greider, 1994; Cohn and Blackburn, 1995;

Melek et al, 1996; Bhattacharyya and Blackburn, 1997;

Prescott and Blackburn, 1997; Bednenko et al, 1997; Greene

et al, 1998; Lue and Peng, 1998; Niu et al, 2000; Huard and
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Figure 6 mrt-1 mutants are hypersensitive to UV/TMP but not
to ionizing radiation. (A) Sensitivity of wild-type, mrt-1(e2661) and
mrt-2(e2663) strains to increasing doses of ionizing radiation was
assayed as described (Ahmed and Hodgkin, 2000). (B) Sensitivity of
wild-type and mrt-1(yp2), mrt-1(e2661), mrt-2(e2663) and hus-
1(op244) mutants to UV/TMP with 10mg/ml TMP and the indicated
doses of UVA light (bottom) in Joules/cm2 was assayed as described
(Collis et al, 2006). (C) Sensitivity of wild-type, mrt-1(yp2) and mrt-
2(e2663) in comparison with mrt-1(yp2); mrt-2(e2663) double mu-
tants to UV/TMP as described in panel B. (D) Sensitivity of wild-type,
mrt-1(e2661) and mrt-2(e2663) in comparison with mrt-1(e2661);
mrt-2(e2663) double mutants to UV/TMP as described in panel B.
(A–D) Results show averages from three independent experiments
and error bars represent standard error of the mean for all graphs
depicted.
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Autexier, 2003, 2004; Oulton and Harrington, 2004), although

studies with recombinant telomerase suggest that this nucle-

ase activity may be a property of telomerase itself (Collins

and Gandhi, 1998; Huard and Autexier, 2004; Oulton and

Harrington, 2004). We conclude that the C. elegans ICL repair

protein MRT-1 may interact with single-stranded telomeric

DNA to promote telomere-repeat addition by telomerase and

may function in a nucleolytic processing event at chromo-

some ends.

Materials and methods

Protein expression and purification
Proteins encoded by pAG472 (6�His–MBP–TEV–MRT-1), pAG474
(6�His–MBP–TEV–MRT-1(H127Y), pAG538 (6�His–MBP–TEV–
MRT-1(D245A) and pAG473 (6�His–MBP–TEV–MRT-1(4mut))
(see Supplementary data) were expressed in E. coli BL21(DE3) pRil
(Invitrogen). Cultures (500 ml) were induced at OD600 B 1.0 with
5 mM IPTG and grown overnight at 121C. Bacteria were lysed in one-
pellet volume of lysis buffer (50 mM sodium phosphate, pH 8.0,
300 mM NaCl, 10 mM imidazole, 0.1% Tween, 10% glycerol,
protease inhibitor cocktail complete (Roche) and 1 mg/ml lyso-
zyme) by sonication, centrifuged and purified over a TALON metal
affinity resin (Clontech) (see Supplementary data). MBP-6�
His–TEV–MRT-1 containing fractions eluted with 120 mM imidazole
were cleaved with 6�His–TEV1 protease at 41C overnight.
Cleavage efficiency was monitored by SDS–PAGE and Coomassie
staining. Extracts were adjusted to a final concentration of
40 mM imidazole and incubated with NiNTA agarose (Qiagen)
(see Supplementary data). The flow through was collected and
assayed for MRT-1 by SDS–PAGE, Coomassie staining and western
blotting, dialysed against 50 mM KCl, 20 mM potassium phosphate,
pH 8.0, 20% glycerol, 0.2% Tween 20, 5 mM b-mercaptoethanol
and concentrated up to 10-fold in an Amicon Ultra Centricon 30K
MWCO (Millipore).

Proteins encoded by pAG368 (6�His–MRT-1) and pAG369
(6�His–MRT-1(H127Y)) were expressed as described above, but
with IPTG induction for 2 h at 251C. Bacteria were lysed by
sonication in one-pellet volume of lysis buffer (20 mM sodium
phosphate, pH 8.0, 500 mM NaCl, 20 mM imidazole, 0.2% Tween,
20% glycerol, 5 mM b-mercaptoethanol, protease inhibitor cocktail
complete (Roche)) containing 1 mg/ml lysozyme, centrifuged and
purified over a NiNTA agarose column (Qiagen) according to
manufacturer’s instructions. Protein fractions were pooled and then
dialysed and concentrated as described above.

Nuclease assay
Radiolabelled oligonucleotide (5 nM) was incubated with 70 nM of
cleaved and purified MRT-1 wild-type or mutant protein in a final
volume of 10 ml reaction buffer (50 mM Tris–HCl, pH 8.0, 50 mM
NaCl, 10 mM MgCl2, 0.5 mM EDTA, 10% glycerol) unless indicated
otherwise. Thirty units of RecJf (New England Biolabs) and 5–10 U
ExoI (New England Biolabs) were used as controls. Reactions
were incubated at RT for 1 h unless stated otherwise. An equal
volume of formamide buffer (95% formamide, 18 mM EDTA,
0.025% SDS, 0.025% bromphenol blue, 0.025% xylene xyanol)
was then added to each sample. Samples were heated at 801C for
3–5 min and loaded onto a denaturing 12% polyacrylamide gel
(40% acrylamide 29:1).

Electrophoretic mobility-shift assay
Radiolabelled oligonucleotide (5 nM) was incubated with 6�His–
MRT1 alleles or TEV-cleaved and dialysed MRT-1 protein versions at
the indicated concentrations for 20 min at RT in 25 mM Hepes pH
7.5, 50 mM NaCl, 1 mM EDTA, 5% glycerol, 1 mM DTT in the
presence of 100 ng of poly(dI–dC) as nonspecific competitor. For
DNA competition experiments, proteins were incubated with a
radiolabelled oligonucleotide in the absence of poly(dI–dC) for
20 min at RT. Unlabelled oligonucleotide was then added to the
samples followed by incubation for 20 min. Samples were loaded
onto a pre-run 6% polyacrylamide (29:1) gel and a marker dye was
loaded in parallel into one well. The gel was then run for 3–5 h with
7 V/cm in 0.5� TBE at 41C, dried and exposed to film. DNA
binding was quantified using Fujifilm FLA-5100 and LAS-4000
scanners and AIDA Image Analyzer v3.27 software (Raytest).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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