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Abstract

Objectives: Dopaminergic signaling is implicated in nociceptive pathways. These effects are 

mediated largely through dopamine receptors and modulated in part by dopamine transporters. 

This study tests the hypothesis that genetic variants in the genes encoding dopamine receptor 2 

(DRD2) and the dopamine active transporter (SLC6A3) influence acute pain severity after motor 

vehicle collision (MVC).

Methods: European Americans presenting to the emergency department (ED) after MVC were 

recruited. Overall pain intensity in ED was assessed using a 0-10 numeric rating scale. DNA was 

extracted from blood samples and genotyping of single nucleotide polymorphisms (SNPs) in the 

DRD2 and SLC6A3 gene was performed.

Results: A total of 948 patients completed evaluation. After correction for multiple comparisons, 

SNP rs6276 at DRD2 showed significant association with pain scores, with individuals with the 

A/A genotype reporting lower mean pain scores (5.3, 95% CI 5.1 to 5.5) than those with A/G (5.9, 

95% CI 5.6 to 6.1) or G/G (5.7, 95%CI 5.2 to 6.2) genotypes (p=0.0027). Secondary analyses 
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revealed an interaction between sex and DRD2 SNPs rs4586205 and rs4648318 on pain scores: 

females with two minor alleles had increased pain intensity, whereas males with two minor alleles 

had less pain than individuals with a major allele (interaction p=0.0019).

Discussion: Genetic variants in DRD2 are associated with acute pain after a traumatic stressful 

event. These results suggest that dopaminergic agents may be useful for the treatment of 

individuals with acute post-traumatic pain as part of a multimodal opioid-sparing analgesic 

regimen.
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Introduction

Physiologic systems mediating acute pain in humans experiencing stressful/traumatic events 

remain poorly understood, limiting the development of new treatment options. One 

physiologic stress system which may contribute to acute pain responses in clinical settings is 

the dopaminergic system.[1, 2] In animal models, central dopaminergic pathways in the 

insula, striatum, nucleus accumbens, and periaqueductal gray influence nociceptive 

processing via activation of the dopamine receptor 2 (DRD2).[3-5] In studies of healthy 

human volunteers, functional imaging studies demonstrate that variation in DRD2-mediated 

neurotransmission in central brain regions is associated with acute pain intensity in response 

to experimental pain stimuli.[6, 7]

This endogenous variation in DRD2-mediated signaling is believe to be due, at least in part, 

to individual genetic differences that affect DRD2 function. Consistent with this hypothesis, 

genetic variants in DRD2 have been associated with vulnerability to chronic pain conditions.

[8-10] In addition, in a study of healthy human volunteers, genetic variants in the gene for 

the dopamine active transporter (DAT1 or SLC6A3), which terminates the effect of 

dopamine and other monoamines in the synapse, were found to predict the severity of acute 

experimental pain.[11] Together the above evidence suggests that genetic variants in DRD2 
and SLC6A3 may influence acute pain severity among individuals experiencing stressful/

traumatic events. If this was demonstrated to be the case, then this would provide valuable 

evidence that doparminergic systems are involved in acute pain in these settings, and would 

suggest that DRD2 and SLC6A3 may be important components of this pathway.

One of the most common types of stressful/traumatic events experienced worldwide is motor 

vehicle collision (MVC), with more than 50 million MVCs occurring each year. [12] 

Individuals experiencing MVC constitute a relatively homogenous injury population: even 

among individuals who present to the emergency department for evaluation after MVC, 

more than 90% have musculoskeletal strain alone [13]. The relatively homogenous nature of 

the injuries experienced by this population, together with the fact that acute pain in this 

population is the norm [13], make this a valuable, clinically relevant population in which to 

evaluate the potential impact of dopaminergic systems on acute pain.
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In this study we evaluated the association between genetic variants in DRD2 and SLC6A3 
and acute pain severity in the hours after motor vehicle collision (MVC) among individuals 

who were evaluated in the emergency department (ED) after MVC and discharged to home. 

We hypothesized that genetic variants in DRD2 and SLC6A3 would predict acute pain 

severity in the hours after MVC. In addition, because of evidence that the influence of 

dopaminergic systems on pain may be sex dependent,[14, 15] secondary analyses were 

performed in which we evaluated for potential sex differences in genotype effects (sex × 

gene interactions) on acute post-MVC pain.

Materials and Methods

Study participants

Participants were individuals aged 18 to 65 years who presented to one of eight emergency 

departments (EDs) for care after MVC between February 2009 to October 2011. Only 

English-speaking individuals who were alert, oriented, and clinically stable were enrolled. 

Injury scoring of each patient injury was performed using the Abbreviated Injury Scale 

(AIS), an anatomically-based scoring system that classifies each injury according to its 

relative severity on a six point ordinal scale.[16] Patients who had spinal, facial, long bone, 

and skull fractures as well as prisoners, pregnant patients, patients with intracranial injury or 

laceration with significant hemorrhage, patients who were admitted to the hospital, and 

patients presenting to the ED more than 24 hours after MVC were excluded. Only patients 

who identified themselves as European American were recruited in order to reduce 

population stratification bias in genetic association analyses.[17] The study was approved by 

the Institutional Review Board at each study site (Bay State Medical Center, Springfield, 

MA; Beaumont Hospital, Troy, Michigan, USA; Beaumont Hospital, Royal Oak, Michigan, 

USA; Massachusetts General Hospital, Boston, Massachusetts, USA; North Shore 

University Hospital, Manhasset, New York, USA; Saint Joseph Mercy Health System, Ann 

Arbor, Michigan, USA; Spectrum Health, Grand Rapids, Michigan, USA; Shands 

Jacksonville, Jacksonville, Florida, USA). All participants gave written informed consent.

Data collection procedures

Potentially eligible patients were approached by a research assistant to determine eligibility. 

The research assistant informed patients of the voluntary nature of their participation, 

discussed the risks and benefits of the study, and informed patients that their participation 

could be withdrawn at any time. In addition, in order to assess patient competency to give 

informed consent, patients were required to describe the essential elements of the study back 

to the research assistant. Following consent, study participants completed an ED interview 

using a web-based survey. Before enrolling patients in the ED, each research assistant 

completed a study training module followed by an interview with a standardized mock ED 

patient. Comparison of mock ED patient data across research assistants demonstrated high 

concordance, with an error rate of 1.3%. To enhance participation and to compensate 

participants for their time during their ED visit, study participants were provided with 

$80.00 remuneration for completing the ED interview.
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Measures

Demographic information was collected using standardized questionnaire items. Current 

overall pain severity was assessed via a numeric rating scale (NRS) ranging from 0 (“no 

pain”) to 10 (“worst pain possible”). If participants reported pain, they were also asked 

whether the pain was related to the MVC. Analgesic use in ED was obtained from medical 

records. Additional details regarding the study design and measurements have been 

published.[18]

DNA collection and genotyping

Blood (8.5 mL) was collected in the ED using PAXgeneTM DNA storage tubes. Blood 

samples were then refrigerated at the study site and shipped in batches every 2 weeks to 

Beckman Coulter Genomics, Inc, Morrisville, NC. DNA purification was performed using 

PAXgeneTM blood DNA kit (Qiagen, Valencia, CA). Average DNA yield was 275 μg per 

sample. Genotyping was performed in batches using the Sequenom platform (Sequenom, 

Inc., San Diego, CA). SNPs were chosen to cover genotypic diversity of the DRD2 and 

SLC6A3 genes. Two Hapmap samples and 2 repeat samples were included in each 

genotyping batch (96 samples) to ensure genotypic accuracy and reliability. Repeated 

genotyping demonstrated greater than 98% call agreement. The individuals performing 

genotyping of the DNA samples were blinded to participant pain scores or other clinical 

data.

Analyses

All genotyped SNPs were tested for Hardy-Weinberg equilibrium (HWE) using a chi-square 

test with Bonferroni adjustment for multiple testing. Linkage disequilibrium between SNPs 

was explored by calculating Levontin D’ and squared correlation r2 using HaploView.[19]

The main effects of SNP genotypes on acute pain intensity were evaluated using a general 

linear model. As the genetic model of association was unknown, a genotypic, dominant, and 

recessive model were used to evaluate main effects. Study site was included as a covariate in 

these models, to adjust for potential genetic heterogeneity between study recruitment 

centers. Patient sex was also included as a covariate in the models. Family-wise Type I error 

rate was controlled for by applying Bonferroni correction to the significance threshold alpha. 

The number of effective tests was evaluated by using the method of spectral decomposition.

[20] Interactions between patient sex and genotype showing a significant main effect were 

assessed by introducing the corresponding product term into the model. Post-hoc 

comparisons were evaluated for statistical significance (alpha = 0.05). Statistical analyses 

were performed using SAS 9.3 (SAS Institute, Inc., Cary, NC).

Results

A total of 10,629 patients were screened, 1416 were found to be eligible, 969 consented to 

study participation, and 948 completed evaluation (Fig. 1). Demographic data are provided 

in Table 1. Consistent with study exclusion criteria, participants had only minor injury: 99% 

of participants had a maximum AIS score of one, and the remaining participants had an AIS 

score of two. Minor lacerations were present in 53/948 (6%) participants, and a minor 
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fracture of a phalanx was present in one individual. Among the 21 SNPs genotyped, one 

SNP (rs4986918) was monoallelic and was excluded from the analyses. Two SNPs rs6279 

and rs27072 had relatively low call rates of 88%. However, as these SNPs have been found 

in prior studies to have associations with various pathologic phenotypes[21-23], and as other 

quality metrics (e.g., minor allele frequency and the HWE test) suggested that calls made 

were correct, these SNPs were included in further analysis. All tested SNPs were in Hardy-

Weinberg equilibrium (measured by Pearson χ2 test, df = 1, Bonferroni-adjusted p-value 

threshold 0.0025) in this study population (Fig. 2).

In analyses evaluating main effects, two SNPs in DRD2 (rs6279 and rs6276) and one SNP in 

SLC6A3 (rs463379) were associated with acute post-MVC pain severity at the nominal 

significance level of p < 0.05 (Table 2). After controlling for multiple comparisons using the 

method of spectral decomposition (8 effective tests for SLC6A3 and 8 effective tests for 

DRD2, 16 tests total), only the DRD2 SNP rs6276 continued to show a statistically 

significant main effect association with acute pain severity. Mean pain intensity among 

patients with an A/A genotype at rs6276 (5.3, 95% CI 5.1 to 5.5), n = 448) was lower than 

overall pain intensity among individuals with an A/G (5.9, 95% CI 5.6 to 6.1, n = 396) or 

G/G (5.7, 95% CI 5.2 to 6.2, n = 99) genotype. A dominant genetic model of this association 

provided the best fit to the data (p = 0.0007, Fig. 3a).

In analyses evaluating gene × sex interactions, a statistically significant interaction on acute 

pain severity was observed for DRD2 SNPs rs4586205 (p = 0.0027) and rs4648318 (p = 

0.0019) (Table 2). Because these two DRD2 SNPs are in high linkage disequilibrium (Fig. 

2b), only SNP rs4648318 (which showed the more significant interaction) was used in 

subsequent sex-stratified analyses (Fig. 3c). Among females, those with a G/G or A/G 

genotype at rs4648318 experienced more severe acute pain than those with an A/A genotype 

(p = 0.004). Among males, those with a G/G genotype experienced less severe acute pain 

than those with an A/A or A/G genotype (p = 0.039). Patient sex also appeared to modify the 

effect of rs6276 on pain scores (interaction p = 0.030, non-significant after Bonferroni 

adjustment), with the A/G genotype associated with relatively increased pain in males and 

relatively decreased pain in females (Fig 3b).

Discussion

In this observational study of adult European Americans evaluated in the ED, genetic 

variants in DRD2 were associated with acute pain severity in the hours after MVC. DRD2 
SNP rs6276 showed a statistically significant main effect association with acute post-MVC 

pain severity. The evaluation of gene × sex interactions, performed because of substantial 

evidence that the influence of dopaminergic systems on pain may be sex dependent,[14, 15] 

suggests that the effect of rs6276 genotype on acute pain may indeed be sex specific. In 

addition, DRD2 SNPs rs4648318 and rs4586205 also predicted acute post-MVC pain 

severity in a sex-specific manner.

The function of these significant DRD2 SNPs is difficult to elucidate as they are in non-

coding regions of the gene, though there is some literature on their phenotypic effects. SNP 

rs6276 is located in the 3’-untranslated region (UTR) of the DRD2, a region known to be 
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important in the stability of mRNA and mRNA regulation. Using SNPfunc and regulomedb, 

rs6276 does have putative microRNA binding sites and may also be involved in the binding 

of transcription factor Ikaros family zinc finger protein 1 (IKZF1) and CCCTC-Binding 

factor (CTCF).[24, 25] At this location, it is not expected to alter the protein structure of the 

dopamine receptor. However, rs6276 has been associated with various behavioral and 

psychiatric disorders.[26-31] Functionally, there is a described effect of this polymorphism: 

compared to those with the A/G or G/G genotype, individuals with the A/A genotype at 

rs6276 have been shown to have reduced release of growth hormone in response to 

apomorphine (a surrogate measure of central dopamine receptor function).[32, 33] In 

addition, the rs6276 G allele is in linkage disequilibrium (HapMap database release 27) with 

at least two non-synonymous polymorphisms which may also affect clinical outcomes: a) 

rs1801028 (Ser311Cys), known to be associated with reduced DRD2 activity, and b) 

rs1800497 (also known as the TaqIA A1), located in the coding region of the neighboring 

ANKK1 gene, whose T allele is associated with increased dopamine synthesis from L-dopa.

[34, 35] Of note, a T allele at rs1800497 has also been shown to correlate with low 

dopaminergic signaling.[36] The rs6276 G allele is also in high linkage disequilibrium 

(r2=0.95) with the rs6275 T allele (NcoI or C939T) which is associated with increased risk 

of schizophrenia, increase in prolactin in olanzapine-treated women, and response to 

treatment regimens for migraines.[22, 37-39] SNPs rs4648318 and rs4586205 are located in 

an intronic sequence in DRD2; variations in these non-coding regions are known to regulate 

expression of protein splice variants or affect protein levels.[40] Although rs4648318 has 

been weakly associated with nicotine dependence and Tourette syndrome[23, 41] little is 

known of the functional effect of this SNP.

In summary, the A/A genotype of rs6276 is known to lead to reduced dopaminergic 

signaling,[32, 33] and in our population individuals with the A/A genotype had significantly 

lower pain scores. This potentially supports a simple linear model where greater 

dopaminergic signaling through DRD2 leads to greater acute pain scores. However, 

evaluation of sex-specific effects suggests that the relationship between dopaminergic 

signaling through DRD2 and pain is more complex.

As noted above, differences in dopaminergic signaling between sexes have long been 

appreciated.[42, 43] Females have been found to have higher basal central dopaminergic 

signaling in both human and animal studies.[44] Taken together, our gender results best fit 

the “inverted-U” model of dopaminergic signaling,[1, 45, 46] whereby both a relative 

deficiency and a relative excess of dopamine receptor signaling results in increased pain. 

This model fits well with our results, and may explain why in males, with generally lower 

levels of DRD2 signaling,[44] the G/G genotype (which is associated with greater 

dopaminergic signaling[32]) leads to lower pain scores, while in females, with generally 

higher levels of DRD2 signaling,[44] the A/A genotype (which is associated with less 

dopaminergic signaling[32]) leads to lower pain scores.

This “inverted-U” model may also explain why pain treatments for individuals with 

abnormal dopamine processing vary according to whether a dopamine deficiency or excess 

is present. In patients with a paucity of dopamine, such as those with Parkinson’s disease, 

lower pain tolerances are correlated with the absence of dopamine and ameliorated by its 
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replacement.[47, 48] In diseases such as migraine headaches, in which there are elevated 

dopamine levels during acute migraine attacks,[49] dopaminergic antagonists such as 

metoclopramide and olanzapine appear to be analgesic.[50]

We hypothesized that polymorphisms in SLC6A3 would also be associated with 

nociception. SNP rs463379 was associated with pain scores before adjustment for multiple 

comparisons, but after adjustment was only associated with statistical significance at the 

trend level. As noted previously, although one group found an association between SLC6A3 
variants and experimental pain in healthy human volunteers, in a subsequent study they were 

unable to find an association between this transporter and endogenous pain modulation.[11, 

51] Another study could not find an association between SLC6A3 SNPs (including 

rs403636) and acute postoperative pain among individuals undergoing third molar 

extraction.[52] Our study provides only a weak evidence for an association between 

SLC6A3 variants and acute clinical pain after MVC trauma.

Several limitations should be considered when interpreting our results. First, the magnitude 

of the differences in pain score according to genotype identified in this study were small. 

However, we have found that the risk G allele at rs6276 was positively associated with both 

opioid analgesic use in ED (Chi-square test p=0.03) and pain severity in ED, suggesting that 

the association of the SNP with pain may be attenuated by analgesic use. Importantly, the 

magnitude of influence of an individual SNP on a biologic pathway is not necessarily 

proportional to the influence of the overall pathway or indicative of whether the pathway is 

an important/druggable target. For example, individual common genetic variants in LDL 

cholesterol or μ-adrenergic pathways can have only small effects on endophenotypes or 

clinical outcomes,[53, 54] however medications targeting these pathways have advanced the 

care of patients with coronary artery disease.[55] In this regard, it should be noted that the 

purpose of this analysis was to assess whether dopaminergic signaling has an influence on 

acute pain outcomes, by assessing only a few of the many potential genetic variants 

influencing only two of the components of dopaminergic neurotransmission pathways.

Another limitation of the study is that, as discussed above, we do not know if the SNPs 

associated with acute pain severity in this study are themselves functional or are in linkage 

disequilibrium with the actual functional allele(s). Further studies are needed to identify the 

precise DRD2 functional alleles associated with acute pain severity, and to evaluate the 

molecular changes mediated by the identified genetic variants. Future studies may be 

strengthened by examining the mRNA profile to corroborate SNPs in the genomic DNA 

with an mRNA profile from the peripheral blood cells. Ideally, dopamine levels centrally 

would be assessed. In addition, the involvement of dopaminergic signaling in cognitive and 

psychological responses which are interwoven with the neurosensory processing of acute 

pain makes it challenging to isolate the direct effect of dopaminergic genetic variants on 

neurosensory processing vs. the indirect effects of these variants mediated by cognitive and 

psychological factors. Therefore both direct and indirect effects of dopaminergic genetic 

variants were assessed in the present study. Lastly, while the cohort size of this candidate 

gene association study was relatively large, the lack of an available replication cohort 

increases the possibility of a false positive result (type I error). Our findings lack an 

independent cohort for verification and require replication in other cohorts of patients with 
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acute pain after MVC and in cohorts of patients with acute pain after other forms of stress 

exposure/tissue injury such as acute postoperative pain. However, we believe that from a 

Bayesian viewpoint, our evaluation of focused hypotheses within a biologic pathway with 

proven preclinical and clinical evidence of involvement in nociceptive processing reduces 

this risk.

In conclusion, our study findings support the hypothesis that dopaminergic signaling through 

DRD2 is involved in nociceptive processing.[5, 56] While dopamine antagonists are used for 

management of acute migraine attacks by emergency medicine physicians,[50] few studies 

of dopaminergic agents for non-headache conditions have been performed.[57-61] Our 

results suggest that variation in dopaminergic signaling is associated with acute pain severity 

after MVC. If confirmed by future validation cohorts, these results suggest that 

dopaminergic agents may be useful for pain control in other clinical conditions and settings, 

such as individuals with acute post-traumatic pain and acute postoperative pain, as part of a 

multimodal opioid-sparing analgesic regimen.
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Figure 1. 
Study flowchart. ED = Emergency Department. EA = European American. MVC = Motor 

Vehicle Collision.
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Figure 2. 
The table in Panel A delineates the SNPs examined in this study, arranged in genomic order 

and grouped by gene. The Hardy-Weinberg equilibrium p-value was computed using 

Haploview. MAF describes the minor allele frequency as noted in this cohort. Panels B and 

C show the linkage disequilibrium of DRD2 and SLC6A3 SNPs, respectively. As noted in 

the text, SNP rs4986918 was monoallelic in this population.

Qadri et al. Page 14

Clin J Pain. Author manuscript; available in PMC 2016 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Acute pain scores by DRD2 genotypes A) Among all participants for rs6276; B) Among 

males or females for rs6276 (rs6276×sex interaction p = 0.030, non-significant after 

correction for multiple testing); C) Among males or females for rs4648318 (rs4648318 ×sex 

interaction p = 0.0019). Box plots represent median, lower and upper quartile, and range. 

Means are represented by a (+) symbol. Only those p-values which provided best fit to the 

data (lowest p-values) are shown; rec = recessive; dom = dominant; add = additive.
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Table 1

Study participant characteristics.

Variable N = 948

Age (Mean ± SD), years 36 ± 13

 Range, years 18-65

n %

Females 575 61.0

8-11 years 42 4.4

12 years or completed high school 184 19.4

Post high school training other than college 57 6.0

Education Some college 312 32.9

College graduate 238 25.1

Post graduate level 113 11.9

No data 2 0.2

$0-$19,999 117 12.3

$20,000-$39,999 176 18.6

$40,000-$59,999 161 17.0

$60,000-$79,999 116 12.2

Income

$80,000-$99,999 91 9.6

$100,000-149,999 98 10.3

$150,000 or higher 84 8.9

No data / Refused 105 11.1

Acute Pain in ED None or mild (0-3 NRS) 188 20.0

Moderate (4-6 NRS) 407 43.3

Severe (7-10 NRS) 344 36.6

NRS = Numerical Rating Scale
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Table 2

Associations between DRD2 and SLC6A3 genotypes, acute pain intensity, and sex.

SNP Alleles
(M:m)

Genotype
M/M

Genotype
M/m

Genotype
m/m

Main effect
p-value

Gene × sex
p-value

Dopamine Receptor 2 gene (DRD2)

rs6279 G:C Mean 5.3 5.8 5.7 0.032 0.021

95% CI 5.1, 5.6 5.5, 6.0 5.2, 6.2

rs6276 A:G Mean 5.3 5.9 5.7 0.0027* 0.030

95% CI 5.1, 5.5 5.6, 6.1 5.2, 6.2

rs6277 T:C Mean 5.5 5.6 5.6 0.64 0.64

95% CI 5.2, 5.7 5.4, 5.8 5.3, 6.0

rs1800499 G:A Mean 5.6 5.2 7.7 0.14 0.65

95% CI 5.4, 5.8 4.6, 5.8 5.0, 10.4

rs1076563 C:C Mean 5.5 5.6 5.6 0.79 0.62

95% CI 5.2, 5.8 5.4, 5.9 5.2, 6.0

rs7103679 C:A Mean 5.7 5.3 5.2 0.19 0.10

95% CI 5.5, 5.8 5.0, 5.7 4.3, 6.1

rs4586205 C:T Mean 5.4 5.8 5.8 0.081 0.0027*

95% CI 5.2, 5.6 5.5, 6 5.2, 6.3

rs4648318 T:G Mean 5.4 5.8 5.6 0.13 0.0019*

95% CI 5.2, 5.6 5.5, 6.0 5.1, 6.2

rs4274224 A:G Mean 5.5 5.6 5.6 0.96 0.61

95% CI 5.2, 5.8 5.4, 5.8 5.2, 5.9

rs4581480 A:G Mean 5.5 5.8 5.7 0.37 0.76

95% CI 5.3, 5.7 5.4, 6.2 4.4, 7.0

rs1799978 T:C Mean 5.6 5.6 8.2 0.31 0.55

95% CI 5.4, 5.7 5.1, 6.0 4.8, 11.5

Dopamine Transporter gene (SLC6A3)

rs27072 C:T Mean 5.6 5.4 5.9 0.33 0.96

95% CI 5.4, 5.8 5.1, 5.7 5.1, 6.7

rs6869645 C:T Mean 5.6 5.7 5.9 0.83 0.012

95% CI 5.4, 5.7 5.2, 6.2 3.2, 8.7

rs6347 A:G Mean 5.6 5.5 5.5 0.85 0.54

95% CI 5.4, 5.8 5.3, 5.8 4.9, 6.1

rs6348 C:T Mean 5.6 7.2 - 0.24 NE

95% CI 5.4, 5.7 4.5, 9.9 -

rs464049 T:C Mean 5.3 5.7 5.7 0.11 0.27

95% CI 5.0, 5.6 5.4, 5.9 5.3, 6.0

rs463379 C:G Mean 5.4 5.8 6.0 0.047 0.47

95% CI 5.2, 5.6 5.5, 6.0 5.4, 6.6

rs4975646 G:A Mean 5.7 5.4 5.6 0.39 0.85

95% CI 5.4, 5.9 5.2, 5.7 5.1, 6.1
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SNP Alleles
(M:m)

Genotype
M/M

Genotype
M/m

Genotype
m/m

Main effect
p-value

Gene × sex
p-value

rs403636 G:T Mean 5.6 5.5 4.4 0.093 0.87

95% CI 5.4, 5.8 5.2, 5.8 3.4, 5.5

rs3756450 T:C Mean 5.6 5.6 5.8 0.88 0.97

95% CI 5.4, 5.7 5.2, 5.9 4.8, 6.8

For genotypes, ‘M’ refers to the reference (major) allele whereas ‘m’ refers to the minor allele. The overall pain intensity by genotype is shown as 
mean and 95% confidence interval (CI). P-values are adjusted for study site and sex. NE=non-estimable.

*
denotes a p-value which is significant after controlling for multiple comparisons.
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