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Abstract

Cardiometabolic diseases have substantially increased in China in the past 20 years and blood 

pressure is a primary modifiable risk factor. Using data from the China Health and Nutrition 

Survey we examine blood pressure trends in China from 1991 to 2009, with a concentration on age 

cohorts and urbanicity. Very large values of blood pressure are of interest, so we model the 

conditional quantile functions of systolic and diastolic blood pressure. This allows the covariate 

effects in the middle of the distribution to vary from those in the upper tail, the focal point of our 

analysis. We join the distributions of systolic and diastolic blood pressure using a copula, which 

permits the relationships between the covariates and the two responses to share information and 

enables probabilistic statements about systolic and diastolic blood pressure jointly. Our copula 

maintains the marginal distributions of the group quantile effects while accounting for within-

subject dependence, enabling inference at the population and subject levels. Our population level 

regression effects change across quantile level, year, and blood pressure type, providing a rich 

environment for inference. To our knowledge, this is the first quantile function model to explicitly 

model within-subject autocorrelation and is the first quantile function approach that 

simultaneously models multivariate conditional response. We find that the association between 

high blood pressure and living in an urban area has evolved from positive to negative, with the 

strongest changes occurring in the upper tail. The increase in urbanization over the last twenty 

years coupled with the transition from the positive association between urbanization and blood 

pressure in earlier years to a more uniform association with urbanization suggests increasing blood 

pressure over time throughout China, even in less urbanized areas. Our methods are available in 

the R package BSquare.
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1. Introduction

Globally, cardiovascular disease accounts for approximately 17 million deaths a year, and 

nearly one third of the total causes of death in 2008 (World Health Organization and others, 

2011). Of these, complications of hypertension account for 9.4 million deaths worldwide 

every year (Lim et al., 2013). Maximum (systolic) blood pressure and minimum (diastolic) 

blood pressure are physiologically correlated outcomes but are differentially affected by 

environmental factors (Benetos et al., 2001; Chobanian et al., 2003; Choh et al., 2011; Egan, 

Zhao and Axon, 2010; Franklin et al., 2009; Luepker et al., 2012; Sesso et al., 2000). Most 

studies construct a combined measure using hypertension cutpoints rather than looking 

across the distribution. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) 

have differential effects on cardiovascular disease events (Benetos et al., 2001; Franklin et 

al., 2009; Sesso et al., 2000; Stokes et al., 1989), so we model the conditional quantile 

functions of SBP and DBP. In linear quantile regression the quantiles of the response (e.g. 

the 90th percentile) change linearly with the predictors, and the regression effects are 

contingent upon on the percentile chosen. This allows the effects of urbanization to change 

along the distribution of blood pressure, enabling sharper insight into the relationship 

between urbanization and hypertension. By conducting inference in the upper tails of SBP 

and DBP, we are able to examine how urbanization affects individuals most at risk for 

hypertension. Quantile regression also allows comparisons of conditional 90th percentiles at 

different levels of a covariate. We use longitudinal data from the China Health and Nutrition 

Survey (Popkin et al., 2010) to study the impact of urbanicity on those trends. China 

provides an outstanding case study given recent and rapid modernization and substantial 

concomitant environmental change.

In developed countries that experienced slow rates of modernization, studies have suggested 

declines or leveling off in mean blood pressure over the last century, potentially due to 

increased hypertension treatment (Burt et al., 1995; Luepker et al., 2012; Egan, Zhao and 

Axon, 2010; McCarron et al., 2001). However, in China during a period of rapid 

modernization, we observed a substantial increase in mean SBP and DBP over time, 

particularly in low urbanicity areas (Attard et al., 2015). Understanding the association with 

urbanization across the full distribution of blood pressure will allow researchers and 

policymakers to understand the points along the distribution that may be most amenable to 

environmental change, allowing more tailored intervention targeting in China and in other 

low to middle income countries undergoing similar urbanization.

The purpose of our paper is to address two important gaps in the hypertension literature: 1) 

lack of attention to continuous SBP and DBP as correlated outcomes; and 2) attention to the 

tails of their distribution to examine how an environment-related exposure, in this case 

urbanization, is associated with the distribution of SBP and DBP. We utilize quantile 

regression to permit tail inference of SBP and DBP. However, the China Health and 

Nutrition Survey (CHNS) data are longitudinal in nature and we are interested in a 

multivariate outcome, and current quantile regression methods would not permit satisfactory 

exploration of our scientific aims.
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Several previous approaches in the longitudinal literature simply ignore the within-subject 

dependence when estimating the marginal quantile effects. Wang and Zhu (2011) 

constructed an empirical likelihood under the GEE framework, then adjusted for the 

dependence in the confidence intervals. For censored data, Wang and Fygenson (2009) 

ignored the within-subject dependence when estimating the marginal effects and controlled 

for the within-subject dependence when conducting inference via a rank score test. While 

these estimators are consistent, ignoring the within-subject dependence for estimation can 

result in a loss of efficiency and undercoverage. Another avenue is to introduce dependence 

via random intercepts, as in Koenker (2004). Waldmann et al. (2013) and Yue and Rue 

(2011) assumed asymmetric Laplace errors and included a random subject effect in the 

location parameter. Presenting separate methodology for marginal and conditional inference, 

Reich, Bondell and Wang (2010) accounted for within-cluster dependence via random 

intercepts and flexibly modeled the density using an infinite mixture of normals. Jung (1996) 

preserved marginal effects by incorporating correlated errors in a quasi-likelihood model. 

These models account for within-subject dependence via a location adjustment for each 

cluster, which may not be sufficiently flexible. Models that incorporate random slopes 

include Geraci and Bottai (2013), who used numerical integration to average out random 

effects for marginal inference, and the empirical likelihood of Kim and Yang (2011). The 

marginal effects of Geraci and Bottai (2013) do not neccesarily maintain their original 

interpretation after integrating over the random effects. Kim and Yang (2011) permit subject-

specific inference for clustered data. While these methods account for dependence, we are 

interested in inference at the population level of temporally correlated data. Jung (1996) 

incorporates temporally correlated errors within a subject, at the cost of assuming the 

response is distributed Gaussian. Collectively these models lack attributes needed for our 

research question, which relates to understanding the effects of urbanization on SBP and 

DBP as correlated outcomes. First, we want to conduct inference at multiple quantile levels 

without assuming our response is distributed Gaussian. The approaches above model one 

quantile level at a time and can result in “crossing quantiles” (Bondell, Reich and Wang, 

2010), where for certain values of the predictors the quantile function is decreasing in 

quantile level. Second, we need to model the autocorrelation within a subject to maintain 

nominal coverage probabilities. Third, for our application we anticipate that the effect of a 

covariate on SBP may be similar to its effect on DBP, so we want a bivariate model to 

facilitate communication across blood pressure type.

In this paper we introduce a mixed modeling framework for quantile regression with these 

necessary attributes. We accomplish these methodological innovations by extending the 

model of Reich and Smith (2013) to accommodate autocorrelation and multiple responses. 

In the random component we account for the dependence across time and response via a 

copula (Nelsen, 1999). This permits the relationships between the covariates and the two 

responses to share information and enables probabilistic statements about SBP and DBP 

jointly. Our copula approach maintains the marginal distributions of the population-level 

quantile effects while accounting for within-subject dependence, enabling inference at the 

population and subject levels. Copulas previously utilized in the longitudinal literature 

(Smith et al., 2010; Sun, Frees and Rosenberg, 2008) focused on mean inference and do not 

account for predictors. Chen, Koenker and Xiao (2009) uses a copula to account for serial 
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dependence in quantile estimation, without predictors. Copulas have a straightforward 

connection to quantile function modeling, as both rely on connecting the response to a latent 

uniformly distributed random variable. Our copula model resembles the usual mixed model 

(Diggle et al., 2002) in that covariates affect both the marginal population distribution via 

fixed effects and subject specific distributions via random slopes. In the fixed component we 

allow for different predictor effects across quantile level, response, and year. Our model is 

centered on the usual Gaussian mixed model, and contains it as a special case.

We present a multilevel framework that extends the current Gaussian mixed model to the 

quantile regression domain. Our model permits examination of how urbanization has 

affected the distributional tails of SBP and DBP, while controlling for the dependence within 

CHNS subjects. This allows us to draw new inferences in a more flexible manner than mixed 

models where only the mean is affected by covariates. For example, we can examine how 

regression effects in the lower tail, middle of the distribution, and upper tail change over 

time, and we can examine how the quantiles of multiple responses adapt to changes in a 

predictor. To our knowledge, this is the first quantile function model for temporally-

correlated responses within a subject and the first quantile function model that 

accommodates a multivariate response with covariates. We describe the data in Section 2. In 

Section 3 we describe the mixed effect quantile model in the univariate and multivariate 

cases. In Section 4 we show the results of a simulation study that illustrates the need to 

account for within-subject dependence in a quantile framework. In Section 5 we analyze 

hypertension and we conclude in Section 6.

2. Data

The CHNS was designed in 1986 to gauge a range of economic, sociological, demographic 

and health questions (Popkin et al., 2010). The CHNS is a large scale household-based 

survey drawing from 228 communities which were cluster sampled from 9 provinces. 

Community structures include villages, townships, urban neighborhoods, and suburban 

neighborhoods. The communities sampled are designed to be economically and 

demographically representative of China. Procedures for collecting the data are described in 

Adair et al. (2014). We use data collected in 7 waves, starting in 1991 and ending in 2009. 

We focus on the Shandong province, located in central China, where hypertension rates are 

elevated (Batis et al., 2013). We utilize the urbanicity index of Jones-Smith and Popkin 

(2010). Rather than dichotomizing communities into urban/rural groups, for each wave 

Jones-Smith and Popkin (2010) assigned 0–10 scores for each of 12 factors, including 

population density, economic activity, traditional markets, modern markets, transportation, 

infrastructure, sanitation, communications, housing, education, diversity, health 

infrastructure, and social services. Jones-Smith and Popkin (2010) used factor analysis to 

confirm these factors represent one latent construct.

We have two scientific goals for these data. First, we want to estimate the role of urbanicity 

in these trends. Second, we want to examine blood pressure trends over time across different 

age cohorts. We bin individuals into six age groups: age < 18, 18 ≤ age < 30, 30 ≤ age < 40, 

40 ≤ age < 50, 50 ≤ age < 60 and age ≥ 60. For individuals with age < 18, blood pressure is 

very correlated with height and age, rendering uninterpretable comparisons across children 
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and adults. For this reason, most studies focus on children or adults, and we focus on adults 

in this paper. The plots in Figure 1 show slight increases over time in blood pressure across 

both genders and large increases over time in urbanicity. We construct an urbanicity by age 

interaction effect to look for associations between urbanicity and different age cohorts. As in 

Attard et al. (2015) we stratify our analyses by gender. Other covariates include current 

smoking status (men only due to low female rates) and current pregnancy status (female 

only). To look for changes across time we include temporal linear trends for all predictors.

3. Methods

In this section we present our methods for mixed model quantile regression. We first specify 

the marginal quantile functions in Section 3.1. In Section 3.2 and Section 3.3 we describe 

different approaches to accommodate within-subject dependence.

3.1. Marginal Quantile Model

Denote Yij as the measurement of SBP on individual i = 1, 2, …, N at visit j = 1, 2, …, J 
indexing the years 1991, 1993,…, 2009. While in general J can vary by individual, in our 

application J is constant across subjects. This section describes a model for SBP that allows 

urbanization effects to change along the distribution, with the extension to SBP and DBP in 

Section 3.3. Let Xij be a covariate vector of length P containing the variables such as age and 

urbanization for individual i at visit j. Denote the conditional distribution function of Yij as 

F(y|Xij) = P(Yij ≤ y|Xij). We specify the distribution of absolutely continuous Yij via its 

quantile function, defined as Q(τ|Xij) = F−1(τ|Xij), where τ ε (0, 1) is known as the quantile 

level. For each response Yij there exists a latent Uij ~ U(0,1) such that Yij = Q(Uij|Xij).

We assume the quantile function of SBP Q(τ|X) is a linear combination of covariates, that is,

The regression parameter βp(τ) is the effect of the pth covariate on Q(τ|X). A one-unit 

increase in Xp is associated with a β(τ) increase in the τth population quantile. We refer to 

β(τ) as a “fixed effect”, since this effect applies to the full population.

Similar to Reich and Smith (2013) we project βp onto a space of M ≥ 2 parametric basis 

functions I1(τ), …, IM(τ) defined by a sequence of knots 0 = κ0 < κ1 < … < κM < κM+1 = 1. 

Let q0(τ) be the quantile function of a random variable from a parametric location/scale 

family with location parameter 0 and scale parameter 1. The basis functions are defined as 

I1(τ) ≡ 1, , and
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for m > 2. Our model is of the form  and thus

(3.1)

where θmp are the regression weights. By partitioning our distribution by the knots, we only 

assume our distribution is locally parametric, so our method is semi-parametric. We set Xij1 

≡ 1 for all i and j for the intercept.

An example of our model is displayed in Figure 2. The left panel shows an example of 

Gaussian basis functions, where q0(τ) = Φ−1(τ), Φ(z) is the distribution function of the 

standard normal distribution, with knots at (0.25, 0.5, 0.75). Only one basis function changes 

at each quantile of the distribution. The middle panel illustrates the projection of these basis 

functions for θ.1 = (0, 3, 3, 3, 3) corresponding to basis coefficients for the intercept and θ.2 

= (0, 0, 2, −2, −2) corresponding to basis coefficients for lone covariate x (e.g. urbanization 

score). The middle panel shows the quantile function when x = 0 (β1(τ)) and how the 

covariate effects on the quantile function change across the distribution (β2(τ)). The final 

panel displays the conditional quantile function, which is (β1(τ)) + x(β2(τ)), for x ε (−1, 0, 

1). The effect of x is 0 in the first quartile, positive in the second quartile, and negative in the 

third and fourth quartiles.

To achieve a valid quantile function (i.e. increasing in τ) we map all predictors into the 

interval [−1, 1], and constrain the regression parameters such that  for m > 

1. We model θmp as a function of a Gaussian random variable . The regression parameter 

θmp is set to  if the constraint is satisfied and set to

if θ⋆ is outside of the constraint space. Details are outlined in Reich and Smith (2013). The 

latent regression variables  are given Gaussian priors with means μmp and precisions .

Let θm. be the collection of regression parameters associated with basis function m. When 

the base quantile function is Gaussian (i.e. q0(τ) = Φ−1(τ)), if M = 2 or θ2. = … = θM. this 

model simplifies to a Gaussian heteroskedastic regression model, where 

 and thus . Standard Gaussian 

linear regression is a special case of the heteroskedastic regression model where M = 2 and 

θmp ≡ 0 for m > 1 and p > 1 and .
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3.2. Mixed Effects Quantile Model

In this section we introduce a semi-parametric model that extends the standard Gaussian 

mixed effects model to the quantile regression domain. This enables us to examine the 

effects of urbanization across the full distribution while accounting for the longitudinal 

structure of CHNS data through random effects. We utilize Gaussian basis functions (q0(τ) = 

Φ−1(τ)) for connections to standard mixed models. Recall the canonical Gaussian random 

effects model (Fitzmaurice, Laird and Ware, 2012)

(3.2)

where β is a vector of fixed effects, Zi is a J by R matrix of random effect covariates, 

 is a vector of length R of random effects specific to unit i, and 

are random errors.

We can rewrite (3.2) in three forms. Conditional on the random effects, 

. Marginally over the random effects, Yi|Xi ~ N(Xiβ, Ψi), 

where . Finally, the marginal quantile function form is 

, where ψij is the jth diagonal element of Ψi. Therefore, 

, where Uij ~ U(0,1) marginally, with dependence between the 

Uij within the same subject.

We use the third representation to extend mixed models to the quantile domain by viewing 

the transformed response as a realization from a potentially correlated Gaussian process. To 

account for the within-subject dependence, we hierarchically model the latent Uij through a 

Gaussian copula. Our model is

(3.3)

The fixed regression effects β(τ) are modeled as in Section 3.1. As in (3.2) the random 

effects  and random errors .

The copula in (3.3) permits structured dependence in the Uij. This preserves the 

interpretability of population level quantile effects βp and accounts for within-subject 

dependence, enabling simultaneous inference at the population and subject levels. This 

formulation allows predictors to have a complex relationship with the response. A covariate 

can have a different effect in the middle of the distribution relative to the tails. This is 

represented by the fixed component X′β(τ), the conditional τth population quantile, with the 

same interpretation of covariate effects as in Section 3.1. Further, individuals in a population 

are allowed to respond differently to the same covariate. This is represented by the random 
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component . A one unit increase in Zijr is associated with a  increase in the Z-

score of individual Yij.

For the CHNS data we anticipate that between-individual variability is strong, which can be 

estimated through a random intercept inside the copula. Covariates that change across time 

(e.g. urbanicity) can be used to further capture within-subject variability. For longitudinal 

data we anticipate serial within-subject correlation, so we model Λ = I + λΞ(α) as the sum 

of an identity matrix and a scaled (by positive λ) autoregressive order-1 (AR-1) correlation 

matrix Ξ(α), where Ξ(α)[u, v] = α−|u−v| with correlation parameter α. The scaling factor λ 
determines the proportion of variability determined by the temporal signal.

While we have thus far defined our model in terms of Gaussian basis functions, any of the 

parametric bases described in Reich and Smith (2013) can be utilized to model effects at the 

population level. Finally, the standard Gaussian mixed model is a special case of (3.3) where 

q0(τ) = Φ−1(τ), M = 2 and θmp ≡ 0 for m > 1 and p > 1. This allows us to center our flexible 

model on the popular model.

We assume the distribution of SBP can be partitioned into M − 1 components such that 

within each partition the distribution of SBP behaves parametrically. This partitioning 

enables the error distribution to adapt across components. For example, the error term can be 

different in the lower tail, the middle of the distribution, and the upper tail. Our error 

distribution is dependent on the covariates, so even in the least flexible fit (M = 2) our model 

permits more flexibility than standard mixed models.

We assume the within-subject dependence can be characterized through a multivariate 

normal distribution for several reasons. Using Gaussian basis functions and a Gaussian 

copula enables us to center our prior distribution on the canonical Gaussian mixed model. 

The Gaussian copula allow us to account for within-subject serial correlation, a potential 

issue with CHNS data, and correlation structures that are affected by covariates (e.g. 

urbanicity). The Gaussian copula easily imputes missing values, which was necessary for 

our application and its high rate of missing values. Finally, the Gaussian copula is 

computationally cheap. However, the price of the Gaussian copula is a lack of flexibility, as 

we discuss in Section 6. Nonparametric copulas (Fuentes, Henry and Reich, 2013) could be 

a useful extension in other applications.

3.3. Multivariate Mixed Effects Quantile Model

Here we extend (3.3) to the multivariate domain. We are not concerned with trying to define 

a multivariate quantile (Chakraborty, 2003), which imposes order on a collection of objects 

of multivariate dimension. The most common example of a multivariate quantile is a 

multivariate median, which is a common alternative to the multivariate mean for defining the 

center of a multivariate distribution. Instead, we want to conduct simultaneous inference on 

observations with multiple responses. We anticipate SBP and DBP may have similar 

distributions, so by jointly modeling them we can borrow information across responses. 

Further, SBP and DBP are correlated within an individual, so we must account for this 

dependence. Otherwise, our estimates of uncertainty will be too small. In summary, we are 
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interested in conducting simultaneous inference at the marginal medians (and other quantile 

levels) of SBP and DBP, rather than defining a central point for both distributions. A 

forerunner of our approach is (Gilchrist, 2000), who constructed ordered quantile surfaces 

by reducing the dimension of a multivariate random variable to one. Our multivariate 

quantile regression approach allows us to simultaneously analyze both responses and include 

covariates. This allows us to draw inferences about how urbanization and other covariates 

affect SBP and DBP, while preserving flexibility in how changes in urbanization affect these 

distributions. The approach in Gilchrist (2000) does not permit covariates or preserve the 

marginal distributions.

Denote Y1ij and Y2ij as the measurements of SBP and DBP on individual i at time j. We 

specify different quantile effects for each response (i.e. β1p(τ1) and β2p(τ2) for covariate p). 

Our bivariate model then accounts for dependence between the parameters in these quantile 

processes, and in the residual copula model.

Our multivariate mixed quantile model is

(3.4)

where now h = 1, 2 indexes the response of dimension H, Wi is of length JH, and the 

covariance of Ei is Ξ(α) ⊗ Λ + I where Ξ(α)[u, v] = α−|u−v| with correlation parameter α 
and Λ is an unstructured H × H correlation matrix.

This formulation allows the uniform random variables Uij to be interpreted as the 

individual’s percentile relative to the population. That is, an individual may be at the 

conditional 70th percentile (U1ij = 0.70) for SBP and the 75th percentile (U2ij = 0.75) for 

DBP, and the similarity in these percentiles can be exploited.

To borrow strength across the responses we model . By 

shrinking regression effects to a common location, we are able to borrow information across 

SBP/DBP to estimate covariate effects. This multivariate framework enables statements 

about joint effects of a predictor, and allows for probabilistic estimates regarding both 

responses (e.g. the conditional probability an individual has blood pressure higher than 

140/90).

We assign μmp independent normal priors with mean μ0mp and precision . We give ιmp 

independent Gamma (amp, bmp) priors. We designate Λ an inverse Wishart prior with scale 

matrix Λ0 and ν0 degrees of freedom. For our application we assign Δ a diagonal matrix 

structure with diagonal elements , h = 1, 2, …, H, r = 1, 2, …, R. In 

applications with more observations per subject and correlation on the within-subject 

regression coefficients is easier to detect, more complicated structures for Δ could be useful. 
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We use the Metropolis within Gibbs algorithm to sample from the posterior, with details in 

Smith et al. (2015).

4. Simulation Study

We conducted a simulation study to examine the effect of within-subject dependence on 

parameter estimation. To construct univariate, auto-correlated responses we generated 

dependent J-dimensional realizations Wi ~ N(0, Ψi), where  with jth 

diagonal element ψij. The design matrix Zi contains an intercept and one continuous 

predictor .

The first factor we examine in the simulation study is the strength of the within-subject 

dependence. We look at three levels, 0.0,0.5,0.9, of the temporal correlation parameter α, 

which correspond to no, moderate and strong within-subject dependence, respectively. Our 

second factor is the strength of the dependence determined by the covariance of the within-

subject random effects, Δ = ΔI2. In one setting the variance Δ = 0, corresponding to the 

coefficients having no effect on the dependence. In the other Δ is a diagonal matrix with 

nonzero values of Δ = 3, corresponding to roughly 60% of the variance within a subject 

being explained by covariates.

Given these correlated responses we perform the probability integral transform 

. The third factor in our study is the marginal distribution given these 

uniform random variables. The response data are

(1)

(2)

where Qt is the quantile function of Student’s t-distribution with 5 degrees of freedom, i = 1, 

2, …, N individuals, and j = 1, 2, …, J visits. The covariate X2i is binary with equal 

probability of −1 and 1 and is constant over time. Design (2) is a heteroskedastic linear 

model, but design (1) is more challenging to fit, with nonzero effects for only half of the 

distribution. We generated data at J = 7 timepoints for N = 50 and N = 100 individuals. For 

each level of our design we ran 100 Monte Carlo replications.

We examine three competitors for our simulation study. The first is the marginal quantile 

model of Section 3.1. This model assumes independent replications within an individual. 

The second model is the mixed effects quantile model of Section 3.2. This model can 

account for serial correlation and subject specific effects. For both of these two models we 

fit 2,3 and 5 basis functions for two different parametric bases (Gaussian and Student’s t). 
For each Monte Carlo replication the final model is selected by having the highest log 

psuedo marginal likelihood (Ibrahim, Chen and Sinha, 2005) across number of basis 
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functions and parametric bases. For data type (1) log pseudo marginal likelihood (LPML) 

most commonly selected 5 Gaussian basis functions for the independent model without a 

copula and 5 Student’s t-distributed basis functions for the copula model. For data type (2) 

LPML most commonly selected 2 Student’s t-distribution basis functions for both models. 

The third competitor is the model of Reich, Bondell and Wang (2010) using 25 

approximation terms, denoted “RBW”. RBW is able to fit marginal effects while accounting 

for a random intercept, but ignores temporal correlation covariate effects within a subject.

Prior means for  were 1 for p = 1 and 0 otherwise, and prior variances were 10. For the 

copula model we set (scalar) Λ0 = 1 and ν0 = 3, corresponding to a prior mean of 4 and 

infinite variance for Λ. For the Student’s t-distribution basis functions we gave the shape 

parameter a normal prior on the log scale with mean log(10) and variance log(10)/2. 

Averages of coverage probability (CP) of 95% intervals and mean squared error (MSE) of 

each model evaluated at the quantile levels τ = .1, .3, .5, .7, .9 for the N = 50 case are shown 

in Table 1. All of the conclusions listed below similarly held for the N = 100 case, shown in 

Smith et al. (2015).

When observations within a subject are independent (Δ = 0, α = 0 case), all models attain 

the nominal 95% coverage probability for both predictors and data types, except RBW for 

data type (1). Fitting a copula to independent data seems to have little effect on marginal 

inference. Increasing α causes undercoverage in the independent model for the continuous 

predictor X1. In contrast, the copula and RBW models maintain proper coverage. As within-

subject dependence increases, each observation contributes less information about the 

marginal distribution. This can be seen by the increases in MSE due to increases in α. We 

compare MSE across the estimators when the covariates do not affect within-subject 

dependence (i.e. Δ = 0). The copula model is better than RBW with respect to MSE for data 

type (1). RBW assumes the heteroskedastic model, as in data type (2), yet none of the three 

models are statistically significantly better with respect to MSE.

The results change when the subject-level regression coefficients affect dependence (i.e. Δ = 

3). RBW and the independent model suffer from poor coverage when the predictors account 

for dependence in the response. In contrast, the copula model maintains close to nominal 

coverage. Further, the copula model dominates RBW and the independent model with 

respect to MSE. The copula model has a statistically significantly lower MSE in roughly 

half of the cases and is lowest in all cases. In summary, accounting for covariates in the 

dependence can reduce MSE and preserve coverage.

5. CHNS Analysis

In this section we analyze the CHNS data. Our final sample consisted of 1421 females 

missing 56% of blood pressure measurements and 1248 males missing 55% of blood 

pressure measurements. Missing household income in year j was imputed using the 

community average for year j. Missing smoking status was imputed using the value from the 

previous sampling wave, and assumed to be a nonsmoker in the first wave if missing. 

Missing pregnancy status was assumed to be not pregnant.
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With a large number of predictors and so many missing observations, allowing all 14 

predictors to change with quantile level is not feasible. In our analysis we have urbanicity 

change with quantile level and all other effects be constant with quantile level, that is, we fix 

βp(τ) ≡ βp = θ1 for all τ by setting θ2 = … = θm = 0. The interpretations for these effects are 

equivalent to those in mean regression in that they are allowed to affect the location but not 

the shape of the response distribution.

Another challenge presented by these data is confounding due to blood pressure medication. 

Medication artificially supresses blood pressure values. For individuals on medication we 

ignore the measured values and assume only that they have high blood pressure. Using the 

method of Reich and Smith (2013) we treat these values as right-censored above the 

thresholds for high blood pressure, located at 140 for SBP and 90 for DBP. For individuals 

on blood pressure medication the censored likelihood is p1 = P (Y1i|Xi > 140) = 1 − 
FY1(140|Xi)) for SBP and p2 = P(Y2i|Xi > 90) = 1 − FY2(90|Xi)) for DBP. We use these 

censored probabilities in the likelihood for these individuals.

We linearly transformed the responses to have mean 0 and standard deviation 1. We assigned 

 priors for the intercept process and m > 1 and  priors for all 

other regression parameters. We set Λ ~ IW(10, 7Λ0) where Λ0 is an H × H correlation 

matrix with off-diagonal elements of 0. This corresponds to a prior mean of 1 and variance 

of 0.4 for the diagonal elements of Λ. This centers the prior distributions of SBP and DBP 

on a mean zero, unit variance normal distribution that is independent across SBP and DBP. 

We assigned  priors. We assigned α a uniform prior on the unit interval. We 

ran our models for 40,000 MCMC iterations, the first half of which we discarded.

5.1. Analysis

We fit 3 different models to compare dependence structures. In model 1 we fit our model 

without a copula, assuming independence across sampling wave and response. We also fit 

two copula models. In model 2 the covariance of Wi is Ξ(α)⊗Λ+IJH, where the non-

diagonal component is the Kronecker product of an AR-1 correlation matrix and an 

unstructured 2 × 2 covariance matrix Λ. In model 3 we fit a mean component consisting of a 

random intercept and an urbanicity effect with the same covariance as model 2, that is, 

. Finally, we fit SBP and DBP jointly and singly for all copula models. For 

each model we fit M = 2 and M = 4 basis functions. The runs with 4 basis functions had 

convergence issues, probably due to the large number of missing observations, so we present 

results for the M = 2 case.

LPML values were −32060, −17681, and −34282 for females for models 1,2, and 3 (−27683, 

−15576, and −29310 for males). The large values for model 2 indicate strong within-subject 

correlation that is captured in the covariance. The small LPML value for model 3 indicates 

that including subject-specific slopes for urbanization leads to overfitting. Figure 3 

illustrates the urbanicity random effect γi2 on systolic blood pressure across female subjects. 

These effects are not statistically significant. Nonzero slope effects combined with missing 

observations can lead to estimating many extreme quantile levels for the first and last 
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sampling waves. In applications with fewer missing observations or more timepoints, 

random slope effects could be useful.

The posterior means of the off-diagonal elements of the correlation between responses were 

0.94 and 0.95 for females and males respectively, with posterior standard deviations around 

0.01. Therefore, SBP and DBP at one timepoint within an individual are very strongly 

correlated, and the posterior distribution of the correlation effects is dominated by the data. 

The posterior means of the temporal correlation parameter α were 0.12 and 0.10 for females 

and males respectively, with posterior standard deviations around 0.02. For the univariate fits 

of blood pressure the posterior means of α ranged from 0.70 to 0.82 with posterior standard 

deviations around 0.02. The multivariate and temporal correlation seem to be fighting for the 

same signal. This strong correlation within an individual across response and time is useful 

when imputing missing values.

For females, the average of the posterior variance of the regression effects at the median 

βp(0.5) was 3.59 for the multivariate copula model and 4.24 for the multivariate independent 

model. This 13% increase in posterior variance (5% for males) suggests the independent 

model may be susceptible to undercoverage. For females, the mean of the posterior variance 

of the regression effects at the median was 3.62 for the univariate copula model. This 2% 

decrease in posterior variance for the multivariate model (1% for males) suggests that 

covariate effects are similar across SBP and DBP. In applications where multivariate 

observations within an individual were less correlated, we would expect a larger reduction in 

posterior variance of the effects. In summary, the copula models account for the within-

subject dependence and are less susceptible to undercoverage than models that assume 

independent replications within an individual. The multivariate quantile approach reduces 

posterior variance by modeling SBP and DBP jointly.

Posterior plots of the intercept process β1(τ) for the age 40–50 cohort and population 

urbanicity effects are shown in Figure 4. The intercept process represents the values of our 

baseline age 40–50 cohort when all predictors are zero, which is a central value after 

transformation to [−1, 1] for all covariates. For the intercept process, the light 2009 regions 

differ statistically from the dark 1991 regions for males in the lower tails of SBP and DBP. 

In contrast to the intercept process, the urbanicity effects change qualitatively from the first 

to the last sampling wave. In 1991 urban areas had higher blood pressure in the upper tail 

and lower blood pressure in the lower tail. In 2009 the urbanicity effect is negative or zero 

for SBP for all quantile levels. In contrast, urban areas are now associated with lower DBP 

in the upper tail of the distribution. Figure 1 illustrates that both blood pressure values and 

urbanization have increased over time, while Figure 4 shows that urban areas now have 

similar or lower quantiles of SBP and DBP than their rural counterparts. This indicates that 

rural areas are driving the increases in the upper tails of the distributions of SBP and DBP.

Estimated location effects are presented in Table 2, where several general associations are 

apparent. Blood pressure increases with age, as expected a priori. The interaction effects 

between urbanization and age represent the differences in urbanization effects across 

different age groups. Other than the cohort older than 60 years of age, 0 is in or very near the 

limits of the credible sets of interaction effects for both males and females for all years. This 
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indicates there is little evidence that the urbanization effect changes much with age for 

individuals aged 60 and below, indicating that rural Chinese youth may be more at risk for 

hypertension. However, there are very few young individuals measured in later waves (only 

91 in 2006, 0 in 2009), so estimates for this cohort are less stable and have larger variances. 

For Chinese aged 60 and above the urbanization interaction effect is positive for 2009. This 

tends to bring the effect in the upper tails closer to 0, and reduces the discrepancy in 

urbanization effect for older Chinese. The covariates household income, pregnancy and 

smoking status have little effect. To examine the robustness of assuming a male was a 

nonsmoker if smoking status was missing, we reran our final model assuming the individual 

was a smoker instead of a nonsmoker if the first wave was missing. The smoking effect was 

unchanged.

6. Discussion

In this paper we have presented novel methods for analysis using mixed models in a quantile 

regression framework to address a major limitation in the hypertension literature: the 

inability to consider continuous SBP and DBP as correlated outcomes. Most hypertension 

literature either considers the discrete hypertension outcome or continuous SBP or DBP 

outcomes in separate models. Our quantile regression model enabled the exposure effect of 

urbanization to vary smoothly along the distributions of SBP and DBP, offering much more 

flexibility than mean regression models or models that specify cutpoints. We conducted a 

simulation study that illustrates the utility of estimating dependence in SBP and DBP for 

quantile regresssion in a longitudinal setting. We found strong evidence of dependence of 

SBP and DBP and serial correlation within an individual. We found that the effects of the 

covariates are similar across SBP and DBP, and inference can be enhanced by borrowing 

information across outcomes. There are many biostatistical and epidemiological applications 

where cutpoints are currently utilized to enable separate inference at different parts of the 

distribution, including analyses of air pollution, nutrients, and apolipoprotiens, to name a 

few. Our model obviates the choice of cutpoints. This is a key advantage, as inference is 

often nonrobust to cutpoint selection.

We found that urbanicity is now associated with lower rather than higher blood pressure, 

especially in the upper tails of the distribution, potentially illuminating the segment of the 

population at highest risk relative to dietary or physical activity changes occurring with 

modernization. It is possible that modernization-related changes of urbanization lead to 

more protective lifestyle habits for individuals at the highest levels of urbanization. Perhaps 

these individuals have greatest access to health care and environmental supports for healthy 

diet and physical activity, which leads to some degree of protection at the upper tail of the 

distribution. Our findings suggest that attention be paid to the center of the urbanization 

distribution to address individuals who might be in urbanizing areas, but without access to 

supports for healthy lifestyle behaviors. Given that urbanization has increased over the last 

twenty years and the urbanization effect in the upper tail has diminished, blood pressure 

appears to be increasing in China even in less urbanized areas.

We flexibly model the population level regression effects using a linear combination of 

parametric basis functions. We model the within-subject level dependence using a Gaussian 
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copula. We chose a Gaussian copula to facilitate centering of the prior distribution, to 

accommodate within-subject serial correlation and covariates affecting the within-subject 

dependence, and for simplicity in computation and imputation of missing values. However, 

these advantages may not be worth the restrictive behavior of the Gaussian copula in other 

applications, and this is an area of future research. Gaussian copulas assume independence 

in the deep tails and assume the same dependence in the lower tail as the upper tail. In this 

paper we focus on the quantile levels from 0.1 to 0.9. In practice if inference at more 

extreme quantile levels is of interest, other copulas should be considered. Another useful 

extension is a fully nonparametric approach to the quantile function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Systolic blood pressure (SBP) and diastolic blood pressure (DBP) by gender and urbanicity 

scores across time. Blood pressure measurements are in millimeters of mercury (mmHg). 

Urbanicity is a composite score measuring 12 features of the community environment 

(Jones-Smith and Popkin, 2010). Horizontal lines represent thresholds for high blood 

pressure, located at 140 mmHg and 90 mmHg for systolic and diastolic blood pressure 

respectively.
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Fig 2. 
Plots of the quantile model with M = 5 basis functions with knots at (0.25, 0.5, 0.75) and 

one covariate x, with θ.1 = (0, 3, 3, 3, 3) corresponding to basis coefficients for the intercept 

and θ.2 = (0, 0, 2, −2, −2) corresponding to basis coefficients for x. The left plot displays the 

constant basis function (m = 1) and 4 Gaussian basis functions that each correspond to a 

different quartile of the distribution. The middle plot displays the intercept process β1(τ), 

which is the distribution when all covariates are 0, and the covariate effect β2(τ), defined as 

the deviation in the intercept process due to a one unit change in x. The final panel displays 

the conditional quantile function Q(τ|x) = β1(τ) + xβ2(τ) for x = −1, x = 0, and x = 1.
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Fig 3. 
Plots of posterior credible sets of urbanicity random effects on females for systolic blood 

pressure. For visual clarity posterior credible sets are ordered by posterior median and every 

10th subject is shown.
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Fig 4. 
Plots of the intercept process for the age 40–50 cohort and population urbanicity effects by 

gender and blood pressure type. The intercept process is the distribution of the response 

when all covariates are 0. The urbanicity plots are the effects of a one standard deviation 

increase in urbanicity on the τth quantile of blood pressure. Dark regions correspond to 1991 

estimates, while light regions correspond to 2009 estimates.
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