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Abstract

Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the 

realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple 

fabrication techniques that can be used to produce these devices. This slow transition has in part 

been attributed to insufficient understanding of surface charge effects on the transport properties 

of single molecules through thermoplastic nanochannels. We report the surface modification of 

thermoplastic nanochannels and an assessment of the associated surface charge density, zeta 

potential and electroosmotic flow (EOF). Mixed-scale fluidic networks were fabricated in 

poly(methylmethacrylate), PMMA. Oxygen plasma was used to generate surface-confined 

carboxylic acids with devices assembled using low temperature fusion bonding. Amination of the 

carboxylated surfaces using ethylenediamine (EDA) was accomplished via EDC coupling. XPS 

and ATR-FTIR revealed the presence of carboxyl and amine groups on the appropriately prepared 

surfaces. A modified conductance equation for nanochannels was developed to determine their 

surface conductance and was found to be in good agreement with our experimental results. The 

measured surface charge density and zeta potential of these devices were lower than glass 

nanofluidic devices and dependent on the surface modification adopted, as well as the size of the 

channel. This property, coupled to an apparent increase in fluid viscosity due to nanoconfinement, 

contributed to the suppression of the EOF in PMMA nanofluidic devices by an order of magnitude 

compared to the micro-scale devices. Carboxylated PMMA nanochannels were efficient for the 

transport and elongation of λ-DNA while these same DNA molecules were unable to translocate 

through aminated nanochannels.
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Fluidic channels with one or two dimensions in the nanometer scale, nanoslits or 

nanochannels, respectively, have generated great interest because of unique phenomena that 

occur in nano-confined space such as nanocapillarity,1 concentration polarization2, 3 and 

electrical double layer (EDL) overlap.4-7 These properties arise when the channel size is 

comparable to either the length scales of electrostatic interactions in solution or the size of 

the molecules being transported through them. Some of the interesting applications that arise 

from the use of nanochannels include single-molecule analysis,8-11 molecular pre-

concentration,12 chemical analyses of mass-limited samples,13, 14 DNA electrophoresis,15-17 

desalination,18 nanofluidic diodes,19 real-time probing of biomolecules,20-24 ionic 

transport,25 and entropic trapping for DNA separations.26 Controlled fabrication of 

nanochannels has facilitated the study of charge-based phenomena like ion enrichment and 

depletion and surface-charge-governed transport.27-29

As described by Chantiwas et al.,30 thermoplastic nanofluidic devices offer an attractive 

alternative to glass/quartz devices due to the materials’ diverse physiochemical properties 

and the fabrication techniques available to design the prerequisite structures. A commonly 

employed modality for the fabrication of thermoplastic nanofluidic devices is nanoimprint 

lithography (NIL).31-34 This technique takes advantage of the deformability of the substrate 

at temperatures above the glass transition temperature (Tg) of the substrate to produce multi-

scale structures in a relatively high production mode over large areas at moderate cost.35

Another benefit of using thermoplastics for nanofluidics is the diversity in their surface 

chemistry, which is determined by the identity of the monomer units comprising the 

polymer chains such as poly(methylmethacrylate), PMMA, containing methyl ester 

monomer units. In addition, a diverse range of simple activation techniques can be employed 

to generate functional groups that alter the surface chemistry.36-40 Common surface 

activation protocols for polymer fluidic devices are ultraviolet (UV) and plasma 

activation.41-43 These activation techniques have been reported to generate a host of surface 

oxygen-containing species, such as carbonyls (aldehydes, ketones and carboxylic acids) and 

alcohols following a sequence of free-radical photo-initiated oxidation reactions.42, 44

Surface activation of polymer substrates possessing nanofluidic structures requires careful 

control of the dose to minimize activation-induced nano-scale roughness that may affect the 

operational characteristics of the device.45 Plasma treatment has been the method of choice 

for nanofluidic surface activation and low-temperature assembly of nanofluidic devices as it 

induces minimal surface root-mean-square (RMS) roughness, lacks diffraction limitations 

and shadowing effects as reported for UV activation of polymer microchannels,39 and 

allows for low temperature assembly of the device to maintain surface functionality and 

minimize nanostructure deformation.34 Exposing PMMA to controlled O2 plasma conditions 

can generate surface carboxylic acids,42 which remain accessible for subsequent 

modification reactions after device thermal assembly.
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In a previous work, we reported the generation of positively charged surfaces in PMMA 

microchannels following both chemical (N-lithiodiaminoethane reaction)40 and 

photochemical (UV) pathways.38 To the best of our knowledge, most of the work on 

nanochannel surface modification has involved functionalization of surface silanol groups in 

glass or fused silica,28 particularly for the immobilization of biomolecules.25, 29, 46 Glass 

possesses well-established surface chemistry, hydrophilicity, non-conductivity, rigidity, 

minimal surface defects, nondeformability at high pressures and well-established top-down 

fabrication techniques.47, 48 However, with the growing interests in elastomeric,49-52 

thermoplastic32 and membrane-based53, 54 nanofluidic devices, it becomes necessary to 

understand the effects of surface modification on the charge density and surface charge-

governed transport in thermoplastic nanofluidic channels, especially when considering such 

devices for many of the applications discussed previously.28, 55

In this work, we report the surface modification of thermoplastic nanoslits and nanochannels 

and the determination of the surface charge density, zeta potential and electroosmotic flow 

(EOF) in these devices. The nanofluidic devices were fabricated in PMMA using a 

simplified protocol that did not require UV or thermal NIL, significantly simplifying the 

production of devices, even for devices with structures to ~20 nm. Carboxyl groups were 

generated on the walls of PMMA nanoslits and nanochannels under controlled conditions, 

including the plasma exposure time and oxygen gas flow rate.42, 44 The surface-confined 

carboxyl groups were subsequently aminated by reaction with a solution of ethylenediamine 

(EDA). The extent of roughness induced by surface activation was assessed in a nanoslit 

device using atomic force microscopy (AFM). Surface conductance plots were generated for 

the fluidic devices using a range of KCl concentrations. In agreement with our 

measurements, a modified model of ion transport in nanofluidic devices based on Schoch et 

al.55 was presented. In addition, we investigated the effects of solution pH on the surface 

charge density and the EOF and assessed the ability of these devices for DNA translocation.

EXPERIMENTAL METHODS

Materials and reagents

PMMA sheets and cover plates were purchased from Good Fellow (Berwyn, PA), Cyclic 

olefin copolymer (COC 6017) was purchased from TOPAS Advanced Polymers (Florence 

KY) and Si <100> wafers were purchased from University Wafers (Boston, MA). 

Isopropanol, 1-ethyl-3-[dimethylaminopropyl] carbodimide hydrochloride (EDC), 2-(4-

morpholino)-ethane sulfonic acid (MES), ethylenediamine (EDA), tripropylene glycol 

diacrylate (TPGA), trimethylolpropane triacrylate (TMPA), Irgacure 651 (photo-initiator), 

50% potassium hydroxide (KOH), hydrochloric acid (HCl) and potassium chloride (KCl) 

were obtained from Sigma-Aldrich (St. Louis, MO). An anti-adhesion monolayer of 

(tridecafluoro – 1,1,2,2 – tetrahydrooctyl) tricholorosilane (T-silane) was purchased from 

Gelest, Inc. Tris buffer (pH = 8.0) and 2-(N-morpholino)ethanesulfonic acid (MES) buffer 

(pH 5.0) were obtained from Fisher Scientific (Houston, TX) and Life Technologies 

(Carlsbad, CA), respectively. All required dilutions were performed using 18 MΩ/cm milliQ 

water (Millipore) and buffer solutions were filtered using a 0.2 μm filter.
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Fabrication of nanofluidic devices

Device fabrication involved four steps. First, a Si master was developed by initially 

patterning two V-shaped access microfluidic channels, 55 μm wide, 12 μm deep and 1.5 cm 

long in a Si <100> wafer using standard photolithography and anisotropic etching with 50% 

KOH. Next, the nanofluidic channels were milled using a Helios NanoLab 600 DualBeam 

instrument (FEI) Focused Ion Beam (FIB) instrument. In most cases, a beam current of 9.7 

pA (diameter FWHM of 14 nm at 30 keV Ga+ ions at normal incidence) and a dwell time of 

1 μs were used to fabricate the desired nanochannels. For nanochannels <50 nm, an Al film 

with sputtering yield of 0.30 μm3/nC was deposited onto the Si wafer. The type and 

thickness of conductive film were chosen based on a previous report.48 After FIB milling, 

the Al layer was removed using an Al etching solution, cleaned with copious amounts of 

water and dried with N2 gas.

The patterned Si wafer, which served as the master for producing the resin stamp, was 

coated with an anti-adhesion monolayer of T-silane from the gas phase in a desiccator under 

vacuum for 2 h. The structures were then transferred into a UV-curable resin containing 68 

wt% TPGA as the base, 28 wt% TMPA as a crosslinking agent and 4 wt% Irgacure 651 as 

photo-initiator that on a COC backbone. To produce resin stamps with protrusive structures, 

the Si master was covered with the UV resin by dispensing with a pipette followed by gentle 

pressing of the COC plate on the resin-coated master to ensure complete filling of the resin 

into mold cavities. This was followed by exposure to a 365 nm UV light (10 J/m2) through 

the COC plate for 5 min in a CL-100 Ultraviolet crosslinker. After curing, the UV-curable 

resin was gently demolded from the Si master.

The patterned UV-curable resin was used as the stamp to hot emboss structures into a 1.5 

mm-thick PMMA sheet with access holes for reservoirs drilled prior or after embossing. 

Embossing was performed using a Hex03 hot embosser (JenOptik) at a pressure of 1910 

kN/m2 for 120 s with the top and bottom plates maintained at a temperature of 125°C. The 

pressure was applied after 30 s preheating of the stamp and the substrate at the desired 

molding temperature and was maintained during the imprinting process until cooled to 

40°C. After cooling, the PMMA replica was demolded from the UV-resin stamp.

For enclosing the fluidic substrate, a 175 μm thick PMMA sheet was used as a cover plate. 

Both the patterned PMMA sheet and cover plate were pre-activated using oxygen plasma at 

50 W for 35 s and 5.5 sccm oxygen gas flow rate. Thermal assembly was performed at 80°C 

for 400 s at a pressure of 370 kN/m2.

Surface modification

Surface amination reactions were initially tested on planar PMMA substrates (1 cm × 1 cm). 

PMMA substrates were exposed to 50 W (5.5 sccm) O2 plasma for 35 s to generate the 

carboxylic acid functional scaffolds necessary for the amination reaction (Scheme 1). The 

plasma modified samples were then soaked in 5 ml buffered solution (100 mM MES, pH 

5.0) containing 250 mg EDC and 330 μl EDA (density = 0.899 g/cm3) for 20 min at room 

temperature. After incubation, samples were rinsed with deionized water and air dried. The 

same protocol was adopted for the amination of assembled PMMA nanofluidic devices 
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containing either nanoslits or nanochannels. In this case, the assembled devices were 

immediately filled with the EDA-EDC/MES solution and allowed to incubate for 20 min 

and rinsed with deionized water prior to experiments.

Water contact angle and surface energy determinations

The wettability of unmodified and modified PMMA surface was assessed by water contact-

angle measurements using a VCA Optima instrument (AST Products). PMMA sheets (1.5 

mm thick) were cut to 1 cm × 1 cm and the surfaces modified as described above. A volume 

of 2.0 μl nanopure water (18.2MΩ·cm at 25°C) was dispensed onto the substrate and the 

photograph of each droplet was captured immediately for analysis using the software 

provided by the manufacturer. The measurements were repeated at least five times at 

separate positions on the substrate and the values reported as the mean ±one standard 

deviation. Surface energies of the surfaces were deduced from the Zismann plot created by 

measuring the contact angle of a series of liquids with known liquid-vapor surface tensions 

(γlv). The liquids used were water (γlv ~ 72.80 mJ/m2), glycerol (γlv ~ 64.00 mJ/m2) and 

DMSO (γlv ~ 43.54 mJ/m2) (see SI for more information).

Atomic Force Microscopy (AFM)

The topologies of untreated PMMA (u-PMMA), Plasma modified PMMA (O2-PMMA) and 

amine modified PMMA (NH2-PMMA) planar surfaces and the bottom surface of nanoslits 

were investigated using the Asylum Research MFP-3D Atomic Force Microscope (tip radius 

~2 nm) in repulsive tapping mode at a rate of 1.0 Hz. The Tap300A1-G cantilever tips (Ted 

Pella) had a frequency of 300 kHz and force constant of 40 N/m. For the planar surfaces, the 

scans were taken over a 3.5 μm × 3.5 μm scan size and the RMS surface roughness 

computed using the manufacturer's software. In the nanoslit, a scan size of 4 μm × 500 nm 

was acquired.

Scanning Electron Micrographs (SEMs)

For SEM, the resin stamp and PMMA substrate were pre-coated with a 2-3 nm Au/Pd layer 

and imaged under high vacuum with an FEI Quanta 200 field emission gun at a 5 kV 

accelerating voltage.

Surface charge measurements

Direct current conductance plots were used to determine the surface charge of the nanoslits 

and nanochannel devices. Prior to all measurements, fluidic devices were flushed with a 

binary mixture of methanol/ultrapure water (50% v/v). Nanochannel filling was aided by 

capillary pulling from the inlet reservoir and vacuum suction from the outlet reservoir to 

ensure complete filling and the elimination of air-bubbles. Finally, fluidic channels were 

rinsed several times with deionized water before filling with the desired electrolyte.

Next, pre-cleaned devices were filled with the KCl solutions and Ag/AgCl electrodes were 

immersed into the access reservoirs poised at the ends of microchannels. Electrolyte 

solutions were allowed to equilibrate for 3-5 min evidenced by a stable resistance value 

under a bias voltage. The conductance values were determined by fitting the slope of the 

ionic current as a function of the applied voltage, which was stepped from -1V to 1V with 

Uba et al. Page 5

Analyst. Author manuscript; available in PMC 2016 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



50 mV step size and a 5 s holding time for each data point. All measurements were achieved 

with a low noise Axopatch 200B amplifier coupled to a digidata 1440A digitizer with signal 

acquisition and analysis performed with the pClamp10 control software. The measurements 

were performed five times with repeated draining and filling. The mean conductance was 

plotted against the electrolyte concentration in a log-log plot and the surface charge 

determined from these graphs. This experiment was also performed with KCl solutions 

prepared over a pH range of 3.5 to 12 to investigate the effects of pH on surface charge. The 

solution pH was adjusted using HCl or KOH. No pressure difference across the nanochannel 

was induced during the measurements. To avoid carry-over errors, each measurement was 

performed using a new device.

Electroosmotic Flow (EOF)

Two devices, one possessing a single PMMA nanoslit (138 μm long, 50 nm deep and 1 μm 

wide) and a single nanochannel (138 μm long, 120 nm high and 120 nm wide) connecting 

two opposite V-shaped access microchannels were fabricated as previously described. 

Fluidic channels were activated and the EOF was assessed using the current monitoring 

method. EOF values were measured using 0.1 and 0.05 M KCl solutions in 10 mM Tris 

buffer at pH 7.8. First, the pre-cleaned primed device was filled with 0.1 M solution and 

allowed to equilibrate for 3 min under a 1 V DC bias. Next, one access reservoir was 

emptied and 0.05 M KCl was introduced. Ag/AgCl electrodes were placed in the reservoirs 

across the channels under a 200 mV DC bias. Signals were acquired using the Axopatch 

200B amplifier with a pClamp10 software and Digidata 1440A digitizer set at 10 kHz 

sampling frequency.

Transport dynamics of λ-DNA through thermoplastic nanochannels

To study the electrokinetic parameters and extension length of λ-DNA, 100 × 100 nm 

nanochannels were used. λ-DNA (Promega Corporation) were stained with the bis-

intercalating dye, YOYO-1 (Molecular Probes, Eugene, OR) at a base-pair/dye ratio of 5:1 

in an electrolyte solution of 1X TBE (89 mM Tris, 89 mM Borate, 1 mM EDTA) with the 

addition of 4% v/v β-mercaptoethanol as a radical scavenger to minimize photo-induced 

damage (photobleaching and/or photonicking). Experiments were performed using 0.75 pM 

DNA solutions. Fluorescence microscopy was performed with an inverted microscope 

(Olympus IX81 TIRF microscope, Olympus, Pennsylvania, PA) equipped with a 100×/1.49 

NA oil immersion objective and 488 nm laser light for excitation and a Sedat laser filter set 

LF488/561-2X2M-B-000 (Semrock). Images were acquired at ~150 fps using a Hamamatsu 

EMCCD digital camera with EM gain and analyzed using Metamorph software.

Buffer solution was initially added into the precleaned chip then the buffer solution in one of 

the microchannels was replaced with a solution containing the stained λ-DNA. Lambda 

DNA was electrokinetically driven through the nanochannels by immersing platinum 

electrodes into reservoirs situated on either side of the nanochannel and applying a DC bias 

voltage using a variable voltage power supply.

To study the degree of extension of λ-DNA confined in the PMMA nanochannels, the λ-

DNA was initially driven from the microchannel into the nanochannel under a field strength 
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of 100 V/cm. Once the DNA molecule had fully entered the nanochannel, the DC field was 

switched off. The molecule was allowed to relax until it reached its equilibrium extension 

length inside the channel before an image was acquired at a 50 ms exposure time. The end-

to-end distance of the fluorescence image was measured using ImageJ software and 

displayed in a histogram.

RESULTS AND DISCUSSION

Device fabrication

The fabrication steps adopted for building the thermoplastic nanofluidic devices are depicted 

in Figures 1a – c. This fabrication strategy is a simplified scheme of an NIL process 

previously reported in our group.33 The resin stamp was made by casting the non-cured UV 

resin against a Si master and appyling pressure to the resin using a COC plate. UV curing 

was accomplished with a benchtop UV crosslinking chamber. Thermal embossing was used 

to transfer the nanofluidic structures into PMMA from the UV-curable resin stamp and the 

device was sealed with a PMMA cover plate using low-temperature plasma assisted bonding 

to build the enclosed mixed-scale device (Figure 1c). Shown are SEMs of devices 

possessing an array of 4 nanoslits (Figure 1d – f) or 7 nanochannels (Figure 1g – i). The 

nanostructures, which were fabricated by FIB milling into the Si master, were designed with 

dimensions (width × depth) of 1 μm × 50 nm and 120 nm × 120 nm for the nanoslits and 

nanochannels, respectively.33

This fabrication scheme was also used to produce 40 × 40 nm and approximately 20 × 20 

nm nanochannels in PMMA substrates - the smallest reported nanofluidic channel to date 

fabricated in a thermoplastic substrate. Figure 1j shows the cross-sectional image of the 20 × 

20 nm nanochannel FIB milled into a Si master through an 80 nm thick Al layer after 

removal of the conductive layer. The top-view of the channel after transfer into the 

thermoplastic is shown in Figures 1k. We observed that the final width and depth of the 

thermoplastic nanochannels following this fabrication scheme were sensitive to: (i) Surface 

uniformity of the sputtered Al film; (ii) the extent of uniformity of the silane layer vapor 

deposited onto the Si master; (iii) required dosage for complete curing of the UV resin; (iv) 

the strength of adhesion between the cured resin stamp and the COC back plate - strong 

adhesion was achieved by slightly roughening the COC with a very fine sandpaper, cleaning 

with water and drying prior to pressing onto the deposited uncured resin; (v) uniformity of 

the applied force over the entire substrate area during thermal embossing; and (vi) the 

cooling temperature during demolding - a temperature 40 to 50°C less than the embossing or 

assembly temperatures was found to yield the most intact and uniform nanofluidic structures 

after demolding. Sub-30 nm channels were sensitive to any minor variation in these 

parameters as evidenced by small differences in the channel width measured along the 20 

nm deep nanochannel (Figure 1k).

Compared to using the patterned Si directly as the embossing stamp, the UV resin stamp 

possesses a lower Young's modulus (600-800 MPa)56 and a thermal expansion coefficient 

that is similar to that of PMMA (6 × 10−5/°C). This leads to a reduction in the adhesion and 

thermal stress during thermal embossing of the nanofluidic device57,58 producing 

nanofluidic devices with high structural integrity. A single 4 inch Si wafer could contain 10 
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- 15 patterned devices with each Si master used repeatedly to fabricate > 20 UV resin 

stamps. Each resin stamp could be then be used for the embossing of >20 replicas in PMMA 

without noticeable damage.

PMMA substrates were sealed using plasma-assisted low temperature thermal fusion 

bonding (Figure 2a). The formation of leak-free fluidic devices or discontinuities due to 

channel collapse during assembly was evaluated by introducing 5 mM fluorescein in 0.5X 

TBE buffer into the fluidic network. As shown in Figures 2b and 2c, the nanoslits and 

nanochannels did not reveal any leakage or discontinuity along the channel length. Current-

voltage plots acquired after filling with 1 mM KCl (Figure 2d) revealed that the measured 

currents for voltages of opposite polarity had similar absolute values and good linearity 

(non-rectification). The absence of voltage gating and rectification indicated homogeneity in 

surface charge along the walls of the PMMA nanoslits and nanochannels when using 

symmetrical electrolyte conditions. Using low thermal bonding temperatures (~80°C) also 

minimized the amount of surface reorganization of the polar functional groups following 

plasma treatment (Figure S2).

PMMA surface modification

The surface wettability and solid surface tensions for the unmodified (u), plasma (O2) and 

amine (NH2)-modified PMMA were assessed using water contact angle measurements (see 

SI). u-PMMA showed a contact angle of 71.4 ±1.5°, which corresponded to a solid-vapor 

surface tension, γsv, of ~40.4 mJ/m2. After plasma treatment, the contact angle decreased to 

50.1 ±1.1° indicating an increase in γsv to ~54.6 mJ/m2. Amine modification led to an 

increase in the water contact angle to 62.9 ±2.0° (γsv = 45.8 mJ/m2). The observed trends 

were consistent with literature data.40

We also employed XPS and FTIR to analyze the u-PMMA, O2-PMMA and NH2-PMMA 

surfaces to verify the fidelity of the surface modification. The O/C and N/C ratios were used 

to assess the extent of surface modification of PMMA surfaces (see SI and Figure S4 for 

summary of the results). Furthermore, FTIR was employed to characterize the functional 

groups present on u-, O2- and NH2-PMMA surfaces. This data is summarized in the SI and 

Figure S5. The XPS and FTIR data confirmed the success of the surface modifications.

Surface topographical studies of modified PMMA nanoslits

Surface modification reactions induce not only chemical changes but also some 

topographical changes. These changes are in the form of nanometer or sub-nanometer 

random surface roughness on solid walls with roughness amplitude ar. Results obtained 

from previously reported molecular dynamic simulations showed that roughness may affect 

the wettability of surfaces and the EOF in nanofluidic channels depends on the magnitude of 

ar.59 For cases where λD/ar <<1, where λD is the Debye length, the EOF can be significantly 

different compared to λD/ar ~1; the presence of a rough surface that is comparable to λD can 

alter the EDL near the surface and reduce the EOF60 and streaming potential.61 For a 

homogeneously charged rough channel surface, the EOF is expected to decrease when ar is 

>5% of the channel width irrespective of the value of λD/ar.62 Alterations in the EOF 

become insignificant for surfaces with λD/ar > 1. 63,59 Also, the water contact angle is 
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expected to be altered by rough surfaces compared to a smooth surface with identical 

chemical properties.64,65

The roughness was measured by AFM for PMMA nanoslits because the bottom surface 

could be easily profiled without tip-wall interactions compared to nanochannels. Figure 3a 

shows a representative AFM image of a nanoslit. For the u-PMMA nanoslit shown in Figure 

3b, the measured RMS surface roughness was 0.75 nm. This value was approximately equal 

to the measured roughness obtained from the bottom surface of the FIB milled nanoslit in 

the original Si master (data not shown). However, this value was less than that of the planar 

u-PMMA (1.16 nm, see Figure 3e). After surface activation and modification, there was an 

increase in the RMS roughness to 0.96 nm and 1.08 nm for the O2- and NH2-PMMA 

nanoslits, respectively (Figures 3c and d). This increase in surface roughness for O2-PMMA 

was due to etching by the oxygen plasma while the surface roughness for the aminated 

surface can be attributed to slight swelling and/or dissolution of the PMMA by the EDA 

solution and the additional C-C bonds introduced onto the surface from EDA. An increase in 

the surface roughness was also observed on the planar O2-PMMA and the NH2-PMMA 

compared to u-PMMA (see Figures 3f-g). Nevertheless, because the experiments were 

performed at solution ionic strengths where λD <10× the channel dimension but slightly 

larger than the wall roughness (λD ~1.5 nm),17,66 we expect the contributions of surface 

roughness to wettability and EOF in our PMMA nanoslit and nanochannel devices to be 

insignificant relative to contributions from changes in surface charge.

Surface charge and pH effects

As shown in Figure S6, the nanofluidic device was comprised of input/output microchannels 

interconnected by an array of nanochannels with the majority of the voltage drop occurring 

across the nanochannels (see Table S1 for resistance values of the fluidic network). 

Therefore, the majority of the electrokinetic flow occurred within the nanochannels, which 

can be heavily influenced by surface charge and λD to name a few. The surface charge can 

be a significant determinant of the fluid dynamics for devices possessing high surface-to-

volume ratios. Depending on the solution pH and the surface chemistry, the solid can have 

either a positive or negative surface charge density, σs, described by σs = ∑i qi/A; where qi = 

zi e and qi is the net charge of ion i, zi is the valency of ion i, e is the electron charge, and A 

is the surface area; this can be used to compute the number of charged sites per unit area, Γ 

in nm−2.66 Due to wall surface charge, an EDL develops to maintain the electroneutrality at 

the solid/liquid interface.67 For a channel filled with a symmetrical 1:1 electrolyte such as 

KCl with ionic concentration c, the EDL thickness or λD is;

(1)

where R is the gas constant (J·mol−1K−1), ε0 is the permittivity of vacuum (F·m−1), εr is the 

dielectric constant of the medium, F is the Faraday constant (C·m−1), and T is the 

temperature (K). λD can vary from <1 nm at high ionic strength to a few tens of nm at low 

ionic strength.27
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Electrical conductance measurements across nanofluidic channels filled with ionic salt 

solutions have been used to deduce the magnitude of the surface charge density. Here, we 

present a modified electrokinetic model based on the report from Stein et al.28 for 

determining σs. When an external electric field is applied across a nanochannel filled with an 

ionic salt solution, the measured electrical conductance (GT) is the sum of the bulk 

conductance (GB) and the surface conductance (GS). At high salt concentrations, the surface 

charges in the nanochannel are shielded by the mobile ions and have negligible influence on 

the ion concentration in the nanochannel. In this case, transport is dominated by the ions in 

the bulk solution and GB depends on the nanochannel dimensions and electrolyte 

concentration according to;55,66,46

(2)

where w, L and h are the nanochannel width, length and height, respectively, NA is 

Avogadro's number, c is the electrolyte concentration in mol/L, n is the number of 

nanochannels in the device and μK+ and μCl
− are the ion mobilities of K+ and Cl− ions, 

respectively (μK+ = 7.619 × 10−8 m2/V s and μCl
− = 7.912 × 10−8 m2/V s). However, at low 

salt concentrations, the nanochannels become predominantly filled with counterions. For 

electroneutrality within the nanochannel, excess counterions in the EDL compensate for the 

net surface charge, which governs the counterion concentration inside the channel (see 

equation S9 in SI).68 GB becomes negligible and σs governs the total ion conductance in the 

nanochannel. For 1D nanoslits such as reported by Stein et al.,28 Schoch et al.,55 Karnik et 

al.,29 and Martins et al.,46 h << w; hence (w + h) ≈ w. However, for 2D nanochannels with 

h ≤ w, the channel width also contributes to GS;

(3)

Hence, the measured electrical conductance is represented as;

(4)

(Complete derivation of equation (4) is shown in the SI). When GB ≈ GS, a transition ion 

concentration, ct, is observed on a log-log plot of GT versus the ion concentration.55

We investigated the effects of surface modification of polymer nanofluidic devices by 

experimentally measuring σs of modified PMMA nanoslits and nanochannels by monitoring 

ionic conductance plots. Figures 4a and 4b show the conductance traces for an array of 

surface modified nanoslits (22 μm × 1 μm × 50 nm) and nanochannels (45 μm × 120 nm × 

120 nm) measured over a range of KCl concentrations (10−5 M – 1 M in Tris buffer, pH = 

7.8). In both devices, the conductance results obtained before and after surface modification 

differed essentially in the low ionic concentration regime. This effect was characterized by a 

shift of the plateau conductance suggesting a change in the surface charge dependent on the 

nature of the modification. When the modified surfaces were in contact with an electrolyte at 

pH 7.8, ~99.9% of the surface carboxyl groups (pKa = 4.66) would be deprotonated and 
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~99.0% of the amine groups (pKa = 10.42) would be protonated.69 At extreme pH values 

and low buffer concentrations, the counterions in solution necessary to maintain 

electroneutrality are H+ and K+ for O2-PMMA devices and Cl− and OH− for the NH2-

PMMA devices. However, at pH 7.8 and KCl concentration ≥10−5 M, [K+] >> [H+] and 

[Cl−] >> [OH−]. Therefore in equation (4) (and equation (S11)), μopp ≈ μK+ or μCl− for the 

deprotonated and protonated carboxyl and amine surfaces, respectively.70

At a KCl concentration greater than 10−2 M, the measured ionic conductance in both the 

nanoslits and nanochannels fit linearly to the theoretical bulk conductance (Figure 4) and 

was reproducible from one device to another. This confirmed that there was no significant 

change in the dimensions of the fluidic channels during thermal embossing, device assembly 

and surface chemical modification. However, at low electrolyte concentrations (surface 

charge-governed regime), the nanochannel conductance deviated from linearity and 

plateaued for both the plasma and amine treated devices with the measured surface 

conductance lower for the –NH3
+ terminated devices compared to the –COO− terminated 

devices. For the nanoslit devices, the average surface conductance at this region was 7.5 × 

10−10 S for the O2-PMMA device. After amination, the conductance dropped to 3.8 × 10−10 

S, ~50.7 % of its original value (Figure 4A). The transition concentration, ct, used to 

compute σs was approximately 6.60 mM and 3.52 mM for the O2- and NH2-PMMA 

surfaces, respectively. For O2-PMMA nanoslits, we obtained |σs| ~38.2 mC/m2, which was 

less than 60 mC/m2 reported by Stein et al.28 and 214 mC/m2 reported by Schoch et al.55 for 

glass-based nanoslits measured at pH 8. For the NH2-PMMA nanoslit, |σs| was 28.4 mC/m2. 

In the nanochannels, the conductance in the low ionic strength region for the amine-

modified device dropped to ~67.6% of its O2-PMMA device. The surface charge densities 

were 40.5 mC/m2 and 22.9 mC/m2 for the O2- and NH2-PMMA devices, respectively.

We also monitored the effect of pH on σs of PMMA nanoslits and nanochannels. As 

depicted in Figure 5, the plasma modified nanoslits and nanochannels indicated that the 

surface charge density gradually increased as the pH of the electrolyte solution increased 

because at low pH the surface carboxyl groups were converted to their protonated form. This 

leads to a corresponding decrease in the surface conductance as less counterions are 

attracted into the fluidic channel. At high pH, the carboxyl groups become deprotonated 

thereby increasing σs. An opposite trend was observed for the amine modified surfaces. The 

measured surface conductance was higher at low pH and lower at high pH. This is most 

likely due to the conversion of the –NH2 groups to –NH +3 groups at low pH. At pH ≥8, the 

surfaces of the O2-PMMA devices were fully deprotonated and the |σs| for the nanochannel 

was found to be greater than the nanoslits. The values were 38.3 mC/m2 (Γ ≈ 4.2 nm−2) and 

40.5 mC/m2 (Γ ≈ 4.0 nm−2) for the fully deprotonated PMMA nanoslit and nanochannel, 

respectively. These values were found to remain relatively constant at pH >10. In the 

nanochannel, the width is comparable to the height, therefore, the surface charge density of 

the vertical walls, which is typically neglected in the nanoslit, also contributes to the ion 

transport within the channel.71 Surplus counterions would be attracted into the nanochannel 

and more coions would be excluded.
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EOF measurements

The EOF can be described in terms of a mobility, μeof = υeof/E, where υeof is the steady-state 

bulk EOF. At low λD, μeof can be represented in terms of the bulk solvent viscosity ηo, and 

the zeta potential ζ by the Helmholtz-Smoluchowski relation:72

(5)

Also, the zeta potential can be represented in terms of σs and λD for different electrolyte 

solutions by combining equations (9) into (10):42

(6)

With ε0 and εr constants, conditions that change σs, ζ, λD, or η will alter the magnitude of 

the EOF. μeof was measured using the current monitoring method.73 For the EOF 

measurement, we used PMMA devices possessing a single nanofluidic channel 138 μm long 

and 0.1 M and 0.05 M KCl solutions to allow for the generation of a large amount of 

readable current (see Figure S6c for a typical current trace) and to ensure that the 

measurement was performed at a region where equation (5) is valid (λD ≤ 2 nm). This single 

channel geometry eliminates errors in migration time that may arise due to preferential 

filling across an array of nanochannels during electrolyte replacement. A negative EOF 

value indicated that the EOF was from cathode to anode and consistent with a positively 

charged fluidic channel wall while a positive EOF value indicated a negatively charged wall. 

Molecular Dynamics (MD) simulations reported by Qiao et al.70 have revealed that 

differences in the distribution of counterions for negatively charged O2-PMMA devices 

when compared to the positively charged NH2-PMMA is influenced by the finite size of the 

ions - K+ (0.27 nm) and Cl− (0.36 nm) and the EOF is influenced by surface fluid 

interactions.

In previous work, we have shown that exposing PMMA microchannels to controlled plasma 

conditions can generate carboxylate groups with a surface coverage of 2.7 ± 0.5 × 10−9 

mol/cm2.44 We have also reported the EOF at pH 7.4 for carboxylated and NH2-terminated 

PMMA microfluidic devices to be 4.43 ±0.58 × 10−4 cm2/ Vs and -1.34 ±0.21 × 10−4 

cm2/Vs, respectively.38 As shown in Table 1, we obtained an EOF of 0.93 ±0.03 × 10−4 

cm2/Vs and -0.82 ±0.01 × 10−4 cm2/Vs for O2- and NH2-PMMA nanoslits, respectively. For 

the O2- and NH2-PMMA nanochannels, the EOF was found to be 1.02 ±0.02 × 10−4 cm2/Vs 

and -0.75 ±0.02 × 10−4 cm2/Vs, respectively. The trend and magnitude of the EOF observed 

in the PMMA nanofluidic devices scales with the measured σs in the nanochannel and was 

consistent with molecular dynamic simulations reported by Qiao et al.74 The values reported 

for the O2-PMMA nanochannels were similar to that reported by Menard et al.17 for fused 

silica nanochannels (≤100 nm) measured using 2× TBE with 2% polyvinylpyrrolidone 

acting as an EOF suppressor (0.79 ±0.01 × 10−4 cm2/Vs) and ~35.8 ±4.4% lower when 

compared to fused silica channels measured with 2× TBE only (1.58 ±0.01 × 10−4 cm2/Vs). 

A possible reason for the lower EOF observed in the PMMA nanofluidic devices is the low 
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ζ. This conclusion is supported by the results from the continuum theory based on the 

Poisson–Boltzmann equation for the ion distribution, Navier–Stokes equations for fluid 

transport72 and atomistic simulations.74 Both models showed that the EOF in a nanofluidic 

channel varies almost linearly with ζ with the latter model true for surface charge densities 

≤80 mC/m2.74 Furthermore, ζ depends on the chemistry of the solid–liquid interface and is 

related to the surface charge density by parameters such as the ionic strength, density of 

charged sites on the surface, their pKa values and the solution pH, which modulates the 

extent of dissociation of the surface groups (Figure 5).

In addition, recent reports have shown that reducing the size of fluidic channels can result in 

reductions of the EOF due to the apparent increase in the viscosity of a fluid upon 

confinement in charged nanoconduits,75-78 an effect not considered in equation (5). In most 

cases, this phenomenon makes the ratio of the apparent to predicted or bulk viscosity, 

represented as ηapp/ηo, to exceed 1.3 with this ratio dependent on the material of the channel 

walls, size and shape of the channel, the ionic concentration, ζ, temperature, and dielectric 

constant.77 Due to the relatively higher ζ in glass-based devices, ηapp/ηo is expected to be 

greater when compared to thermoplastic devices. This may explain why the EOF measured 

in glass nanoslits at pH 8.5 (~1.3 × 10−4 cm2/Vs) was lower than those of fused silica micro-

capillaries (5 × 10−4 cm2/Vs)79 or glass microchannels (4.82 × 10−4 cm2/Vs).80

Transport dynamics of λ-DNA through thermoplastic nanochannels

The majority of applications explored in nanofluidic devices have focused on investigating 

the transport properties of dsDNA confined in fused silica glass17, 81-86 and elastomeric87, 88 

nanochannels. However, because thermoplastics possess dissimilar surface properties 

compared to glass-based devices,30 it becomes necessary to explore the transport properties 

of dsDNA in these devices. Although, a few studies have utilized PMMA-based nanoslits32 

and nanochannels89, 90 for DNA stretching, the electrokinetic parameters of dsDNA in 

surface modified thermoplastic 2D nanochannels is yet to be reported. Understanding the 

effects of σs and the charge polarity on these parameters and on the stretching properties of 

dsDNA in thermoplastic nanochannels is necessary for assessing the viability of these 

devices for applications in DNA sizing or mapping.

First, we assessed the degree of extension of dsDNA confined in O2-PMMA nanochannels 

seeded with 2× TBE buffer (pH 7.5). When a DNA molecule with width w was driven from 

a microchannel into the nanochannel under a constant field, upon initial entrance (also called 

DNA injection), the molecule was observed to stretch because the pulling electric force 

acted against the resistance due to the entropic interface and frictional forces experienced by 

the portion of the molecule resident in the microchannel (red trace and insert in Figure 6a).86 

When the field was turned off after the molecule had fully entered the nanochannel, the 

molecule underwent elastic relaxation and attained an equilibrium extension length shorter 

than the injection length (blue trace and insert of Figure 6a). Assuming that the nanochannel 

has a depth D, which is less than the free-solution radius of gyration but greater than the 

persistence length lp of the molecule, due to self-avoidance the confined molecule will 

extend in such a way that it divides into a series of non-interpenetrating blobs with the 

molecular mass distributed along the channel with relatively uniform density.83 We 
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estimated the extension factor ε of the confined DNA molecule possessing an equilibrium 

extension length LE and a contour length LC with the equation;

(7)

Although, the total contour length of an unstained λ-DNA molecule (48.5 kbp) is 16.3 μm, at 

our intercalating dye concentration, we expect a 23% increase in length to 20 μm.82 

Therefore, from equation (7), we expect the extension factor for a stained λ-DNA molecule 

with a width of 3 nm91 and persistence length of 50 nm confined in a 100 × 100 nm 

nanochannel to be ~0.25. Nevertheless, we note that equation (7) does not account for ionic 

effects, like the buffer ionic strength and viscosity, on the elasticity and wall wettability, 

roughness and frictional drag on the overall extension of the DNA molecule.81, 92, 93

In our experiment, we observed that when stained λ-DNA molecules were completely 

introduced into the O2-PMMA nanochannels, it stretched to ~11.25 ±1.68 μm at initial entry 

(calculated from n = 20). When the field was turned off, the DNA molecules remained 

confined in the nanochannel but relaxed to an overall average extension length of 6.88 μm, 

determined from a Gaussian curve fit of the histogram shown in Figure 6b. The 

experimental extension factor was 0.34, a value ~40% greater than that predicted by the de 

Gennes theory. The enhanced stretching of the confined DNA molecule was likely due to 

additional interfacial surface forces in the form of surface energy acting on the DNA 

molecule from the charged nanochannel walls. The measured surface energy for O2-PMMA 

devices was ~38.9 mJ/m2 (see Figure S3 in SI). Next, we investigated the electrophoretic 

properties of DNA molecules electrokinetically driven through nanochannels using 50 μm 

long, 100 nm × 100 nm channels. All DNA movements represented in the frames shown in 

Figures 6c and 6d were observed without the need of an EOF suppressor. The apparent 

electrophoretic mobility μapp of DNA in the nanochannel was due to the electrophoretic 

mobility of DNA, μep, and the EOF.

Figure 6e shows the variation of μapp for λ-DNA traveling through O2-PMMA nanochannels 

filled with 0.5× (black squares) and 2× (red circles) TBE. Our results revealed that the 

apparent mobility of λ-DNA was lower in the channel filled with 0.5× TBE than that of 2× 

TBE. One possible reason for this was that as the ionic strength of the buffer solution in the 

charged nanochannel was reduced, there was a corresponding increase in λD (~30 nm for 

0.5× and ~8 nm for 2× TBE, estimated from classical theory).94, 95 This led to a larger EOF 

for the lower ionic strength buffer thereby reducing μapp of λ-DNA molecules through the 

nanochannel. We observed that in the devices filled with 2× TBE, the DNA moved through 

the nanochannel with a constant velocity (Figure 6d) and an almost linear variation of the 

electrophoretic mobility for the entire range of electric field strengths studied (red trace in 

Figure 6e). This confirmed the absence of dielectrophoretic trapping sites along the channel 

wall, which was supported by the low nanochannel wall roughness. Interestingly, in the 

nanochannels seeded with 0.5× TBE, we observed intermittent (stick-slip) motion of the 

DNA molecules through the nanochannel similar to previous reports32, 84 at measurements 

performed <150 V/cm (Figure 6c). Based on MD simulations96 and theoretical 

computations,97 a highly negatively charged DNA molecule translocating through a 
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nanochannel interacts both electrically (attractive or repulsive forces) and hydrodynamically 

with the channel wall. Therefore, we attributed the intermittent motion of DNA to latent 

electrical interactions between the charged DNA molecule and the thick EDL and this 

presents the possibility that at this field strength, the driving force was less than the 

interfacial force. This observation is yet to be reported for DNAs translocating through glass 

nanofluidic devices at this field strength because the threshold field strength required to 

introduce DNA into nanochannels without the addition of an EOF suppressor was >200 

V/cm for 100 nm nanochannels.17 However, at field strengths greater than 200 V/cm, we did 

not observe intermittent motion of DNA in these devices with 0.5× TBE. It is possible that 

at these fields, the driving force overwhelmed the interfacial force causing the DNA to move 

through the nanochannel with continuous velocity or that the wall interactions occurred so 

fast they were not detectable at our imaging frame rate.

Finally, we performed translocation experiments in a NH2-PMMA device using 2× TBE 

(pH 7.4). At this pH, we observed that λ-DNA adsorbed onto the surface of the assess 

microchannels and remained immobile even with the application of a large bias voltage. 

This sticking is probably due to strong electrostatic interactions between the negatively 

charged DNA backbone and the positively charged amine groups. When the solution pH 

was increased to 10, there were significant reductions in DNA sticking in the microchannel 

and several λ-DNA molecules were observed to move towards the entrance of the 

nanochannel. However, when the DC voltage was turned on, the DNA molecules initially 

attempted to enter the nanochannel but paused at first entry (Figure S7 in SI). No further 

movement was observed at higher fields and even with reversed DC voltages. This is likely 

due to strong wall interactions with residual –NH3
+ groups or hydrogen bonding between 

the DNA and the deprotonated –NH2 groups overwhelming the electrokinetic driving force.

CONCLUSIONS

In this work, we report a simple and robust fabrication strategy that can be used to produce 

thermoplastic nanofluidic devices with structures below 20 nm. Furthermore, because the 

fabrication steps were successfully achieved using simple bench top UV curing and thermal 

embossing instruments, the cost of device fabrication was significantly reduced compared to 

conventional NIL techniques. We demonstrated the successful modification of thermoplastic 

nanoslits and nanochannels using oxygen plasma to produce carboxylic acid moieties that 

could be subsequently converted into amino groups by reaction with EDA. For the 

conditions reported in this work, the plasma treated polymer nanoslits and nanochannels 

were observed to possess |σs| of 38.2 mC/m2 and 40.5 mC/m2, respectively, at pH 7.8. These 

values were lower than that reported for their glass-based counterparts. The low surface 

charge densities in polymer nanofluidic devices helped to minimize artifacts arising from 

ion exclusion due to concentration polarization. The ability to generate positively charged 

moieties in a simple modification scheme with |σs| of 28.4 mC/m2 in the nanoslits and 22.9 

mC/m2 in the nanochannels offers a unique venue for performing nanochannel 

chromatography by generating the proper stationary phase.

The reduced EOF observed in PMMA nanofluidic devices compared to polymer 

microchannels and glass nanochannels was likely due to lower surface charge density (and 
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zeta potential) and apparent increases in fluid viscosity due to nanoconfinement. Generally, 

lower EOF values are desirable in applications involving DNA analysis for mapping and 

sequencing because it enables the introduction of these biomolecules into the fluidic 

channels without the need for EOF suppressors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Process scheme for the fabrication and assembly of thermoplastic nanofluidic devices. (a) 

Fabrication of the Si master, which consisted of micron-scale access channels and the 

nanochannels/nanoslits; (b) fabrication of the protrusive polymer stamp in a UV-curable 

resin from the Si master; (c) generation of the fluidic structures in the thermoplastic 

substrate from the resin stamp by thermal embossing and plasma-assisted bonding of the 

substrate to the cover plate. SEMs of the Si master, resin stamp and PMMA substrate for the 

nanoslits (d, e, f) and nanochannels (g, h, i), respectively. Inset shows the off–axis (52°) 

cross section SEM images of the Si masters. The dimensions (l × w × h) were 22 μm × 1 μm 

× 50 nm for each of the 4 nanoslits and 45 μm × 120 nm × 120 nm for each of the 7 

nanochannels. Series of SEMs for a 18 × 23 nm nanochannel in Si (j) and (k) the embossed 

nanochannel in PMMA. The roughness seen in the SEMs for the stamp and substrate are 

artifacts from coating with 3 nm AuPd for imaging.

Uba et al. Page 20

Analyst. Author manuscript; available in PMC 2016 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(a) Photograph of a thermally assembled nanofluidic devices fabricated in PMMA. The 

fluorescence images for the sealed nanoslit (b) and nanochannel (c) devices seeded with 5 

mM FITC in 0.5× TBE buffer. (d) I/V plot generated between -0.9 V to 0.9 V for the 

nanofluidic device filled with 1 mM KCl revealing an electrical conductance of 90.08 ±5.7 

nS and 12.26 ±12.3 nS for the nanoslits and nanochannels, respectively. The measured 

currents have similar absolute values for the respective voltages of opposing polarities; 

hence, the channels are symmetric (absence of rectification).
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Figure 3. 
AFM characterization of a PMMA nanofluidic device with 1 μm x 50 nm nanoslit (a) for: 

(b) u-PMMA; (c) O2-PMMA; and (d) NH2-PMMA. The image shown is 4 μm x 500 nm. 

The measured root-mean-square (RMS) surface roughness was 0.80 nm, 0.95 nm and 1.03 

nm, respectively, for these three devices. Also shown are AFM images for planar PMMA; 

(e) u-PMMA (f) O2-PMMA and (g) NH2-PMMA. Images on the planar PMMA were 

scanned over an area of 3.5 × 3.5 μm.

Uba et al. Page 22

Analyst. Author manuscript; available in PMC 2016 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Conductance plots obtained from surface modified devices consisting an array of (a) four 

nanoslits (each 1 μm wide, 50 nm deep and 22 μm long), and (b) seven nanochannels (each 

120 nm wide, 120 nm deep and 45 μm long) square and circle markers represent the data 

obtained for the plasma and amine modified surfaces, respectively. The solid blue line 

represents the trace of the theoretical bulk conductance calculated with equation (2). Each 

data point represents an average of five measurements with a scatter in the data within 5-8% 

of the mean value. From the graph, the effective surface charge density as calculated from 

the transition concentration, ct, was 38.2 mC/m2 for plasma treated nanoslit, 28.4 mC/m2 for 

amine treated nanoslit, 40.5 mC/m2 for plasma treated nanochannel and 22.9 mC/m2 for the 

amine treated nanochannel.

Uba et al. Page 23

Analyst. Author manuscript; available in PMC 2016 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Plot showing the effect of pH on the surface charge density σs, in plasma and amine 

modified nanoslits and nanochannels.
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Figure 6. 
(a) Representative fluorescence intensity profile of an individual YOYO-1 stained λ-DNA 

molecule after injection (red line) and confinement (blue line) in the plasma modified 

nanochannel filled with 2X TBE buffer. Complete injection into the nanochannel produced 

an initial molecule length of 11.25 ±1.68 μm (calculated from n=20 events). However, when 

the voltage was turned off, the DNA relaxed to its equilibrium length. (b) Histogram of the 

measured end-to-end length of relaxed λ-DNA molecules confined in the PMMA 

nanochannel. The average equilibrium length determined by the Gaussian curve fit (black 

line) was ~ 6.88 ±0.43 μm.
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Representative frames of fluorescently stained λ-DNA molecules translocating through a 

100 nm × 100 nm plasma modified PMMA nanochannel and imaged in (c) 0.5× and (d) 2× 

TBE buffer at 80 V/cm and 120 V/cm, respectively. The time between frames is 

approximately 20 ms and scale bars are 10 μm. (e) Plots of DNA apparent mobility against 

the electric field strength for DNA translocation through the single nanochannel filled with 

0.5× (black markers) and 2× (red markers) TBE buffer. Error bars represent the standard 

deviations in the measurements (n = 10).
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Scheme 1. 
Protocol for the surface modification of PMMA with (a) carboxyl groups by plasma 

activation, and (b) amine groups by chemical reaction with ethylenediamine through EDC 

coupling chemistry to the plasma activated PMMA.
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Table 1

Measured and expected EOF values as well as surface charge and zeta potentials for the plasma activated and 

amine terminated devices investigated at pH 7.8.

Device Terminating groups σs (mC/m2) ξ (mV) μeof (cm2/Vs) × 10−4

Expected
* Measured

Nanoslit O2-PMMA − 38.3 − 57.1 4.53 0.93 ± 0.025

NH2-PMMA 28.4 45.8 −3.63 −0.82 ± 0.012

Nanochannel O2-PMMA − 40.5 −59.8 4.74 1.02 ± 0.017

NH2-PMMA 22.9 38.3 −3.04 −0.75 ± 0.021

*
Calculated from equation (6) using the values for σs and ξ
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