
Exploring Inflammatory Disease Drug Effects on Neutrophil 
Function

Xiaojie Wua, Donghyuk Kima, Ashlyn T. Youngb, and Christy L. Haynesa,*

aDepartment of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, 
Minnesota, 55455, United States

bJoint Department of Biomedical Engineering, 152 MacNider Hall, University of North Carolina at 
Chapel Hill, Chapel Hill, North Carolina, 27599, United States

Abstract

Neutrophils are critical inflammatory cells; thus, it is important to characterize the effects of drugs 

on neutrophil function in the context of inflammatory diseases. Herein, chemically guided 

neutrophil migration, known as chemotaxis, is studied in the context of drug treatment at the 

single cell level using a microfluidic platform, complemented by cell viability assays and calcium 

imaging. Three representative drugs known to inhibit surface receptor expression, signaling 

enzyme activity, and the elevation of intracellular Ca2+ levels, each playing a significant role in 

neutrophil chemotactic pathways, are used to examine the in vitro drug effects on cellular 

behaviors. The microfluidic device establishes a stable concentration gradient of chemokines 

across a cell culture chamber so that neutrophil migration can be monitored under various drug-

exposure conditions. Different time- and concentration-dependent regulatory effects were 

observed by comparing the motility, polarization, and effectiveness of neutrophil chemotaxis in 

response to the three drugs. Viability assays revealed distinct drug capabilities in reducing 

neutrophil viability while calcium imaging clarified the role of Ca2+ in the neutrophil chemotactic 

pathway. This study provides mechanistic insight into the drug effects on neutrophil function, 

facilitating comparison of current and potential pharmaceutical approaches.

INTRODUCTION

Neutrophils are the dominant white blood cells in the human body, and they play a 

significant role in the first line immunological response.1 Neutrophil dysfunction is often 

found to be involved in neutrophilic inflammation, including acute severe subtypes of 

asthma2,3 and chronic obstructive pulmonary disease (COPD),4,5 ranking as the fourth 

leading cause of death worldwide.6 Despite the fact that neutrophilic inflammation 

endangers human health, only a few pharmacological treatments are available and effective 

to treat neutrophilic inflammation. The pathophysiology of neutrophilic inflammation is 

characterized by neutrophil accumulation around infection sites due to aberrant neutrophil 

chemotaxis and impaired apoptotic pathways;5,7 as such, there is a clear need to understand 

the underlying neutrophil biology in hopes of developing alternative approaches to slow 

*To whom correspondence should be addressed: chaynes@umn.edu, Tel. +16126261096. 

HHS Public Access
Author manuscript
Analyst. Author manuscript; available in PMC 2015 August 21.

Published in final edited form as:
Analyst. 2014 August 21; 139(16): 4056–4063. doi:10.1039/c4an00541d.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/345226646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


neutrophil chemotaxis and remove persistent neutrophils.8 Chemotaxis is a dynamic process 

whereby cells move in response to chemical gradients of signaling molecules called 

chemokines. Interleukin-8 (IL-8), one of the most well-documented primary chemokines 

that regulates neutrophil movement, is responsible for promoting neutrophil chemotaxis and 

activating the pathogenesis of neutrophil inflammatory diseases.9,10 The neutrophil 

intracellular pathway triggered by IL-8 offers several pharmaceutical targets, such as the 

receptor chemokine C-X-C motif receptor-2 (CXCR2), the signal transducer enzyme 

phosphoinositide 3-kinase (PI3K), and intracellular free Ca2+, all of which perform 

important functions in the neutrophil chemotactic cascade (Fig. 1). IL-8 initiates neutrophil 

chemotaxis through binding to seven-transmembrane domain receptors (CXCR1 and 

CXCR2) located on the surface of neutrophils. Although activation of both CXCR1 and 

CXCR2 is able to initiate a series of neutrophil signaling processes, the rate of receptor 

internalization is more rapid with CXCR2 than CXCR1, and a lower dose of IL-8 is required 

for CXCR2 activation.11,12 Following the translocation of CXCR receptors to the 

cytoplasmic granules mediated by G proteins, which are a family of proteins transmitting 

signals from extracellular stimuli to the interior of the cell - Gβγ subunits activate PI3K and 

phospholipase C (PLC) pathways to govern downstream signal transduction elements. PI3K 

and its main lipid products are involved in a variety of cellular processes, such as cell 

survival, cytoskeleton rearrangement, and cell transformation; more importantly, PI3K is 

responsible for the cell polarization that controls the direction of neutrophil migration.13 

PLC-molecules can be divided into three categories (β, γ and δ), and the activation of the 

PLC-β isoform not only mediates the function of protein kinases, but also leads to an 

increased level of intracellular free Ca2+.14 The relationship between Ca2+ and chemotaxis is 

still in dispute, although it has been suggested that Ca2+ is involved in the contraction of the 

cell rear and uropod, which is an underlying step in the movements of cells.15 Clarification 

of the role of Ca2+ in neutrophil chemotaxis is necessary to understand and manipulate the 

signaling pathway.

In this work, we exploit single cell bioanalytical approaches to evaluate the physiological 

effects of three drugs aimed at the aforementioned targets. Inhibition of CXCR2 function 

with an antagonist downregulates the neutrophil migratory response in the biological 

cascade, potentially decreasing the number of cells infiltrating sites of interest. A number of 

CXCR2 antagonists have been identified by pharmaceutical companies, and some of them 

are already in preclinical trials.16 SB225002, a common CXCR2 antagonists, was employed 

herein to determine the impacts of receptor antagonism on neutrophil chemotaxis and 

viability. The PI3K inhibitor, LY294002, has been studied extensively during the past two 

decades;17,18 however, the precise role of this inhibitor in neutrophil chemotaxis, including 

temporal regulation and concentration selection, is still not clear. Also, LY294002 is 

expected to suppress neutrophil viability since PI3K has been identified as a survival factor 

for neutrophils.19 The connection between neutrophil chemotaxis and cytosolic Ca2+ levels 

can be determined by introducing the drug considered to influence both chemotactic 

behaviors and the mobilization of intracellular Ca2+. Theophylline is a common respiratory 

drug that alleviates the symptoms of COPD patients. Previous research has revealed that 

theophylline induces the inhibition of neutrophil chemotaxis in both healthy control and 

patient samples,20,21 likely by decreasing cytosolic Ca2+ concentration.22 A deep 
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investigation about the impacts of theophylline on neutrophil chemotaxis and intracellular 

Ca2+ is required to test this hypothesized role of Ca2+ in neutrophil chemotaxis and 

accurately describe drug action mechanisms.

Conventional chamber-based assays, such as use of the Boyden chamber,23 Dunn 

Chamber24 and agarose gel assays,25 introduce chemokine concentration gradients between 

two separate chambers containing buffer and concentrated signaling molecules. Although 

these assays are straightforward and convenient, the variable chemical gradients decay with 

time and only ensemble measurements are obtained, limiting the systems and effects that 

can be probed with these methods. Microfluidics is a technology that enables the precise 

manipulation of fluid flows at the microscale.26 Simple microfluidic platforms can be used 

to create dynamic and stable chemical gradients with high spatiotemporal resolution due to 

the accurate and precise control over laminar flow in microchannels. Additionally, optically 

transparent microfluidic platforms allow tracking of individual cells during chemotaxis in a 

real-time and quantitative fashion. Furthermore, compared to the simplistic environment in 

traditional methods, microfluidic techniques sustain a more complicated in vivo-like milieu 

with dynamic fluid flow and complex biological media so that cellular behaviors can be 

monitored in a physiologically relevant environment.

Methods

Device Fabrication

Microfluidic devices were fabricated using standard photolithography protocols. First, a film 

(CAD/Art Service Inc., Bandon, OR) with lightproof background and transparent channel 

patterns was used to transfer the device design onto a chrome photomask plate via UV light 

exposure to an AZ1518 positive photoresist coating (Nanofilm, Westlake Village, CA). 

After exposure, the photomask was placed in 351 developer solution (Rohm and Hass 

Electronic Materials LLC, Marlborough, MA) to remove cross-linked photoresist in the 

channels, and the exposed chrome layer was etched down in the chrome etchant solution 

(Cyantek Corporation, Fremont, CA). The final step was carried out in the piranha solution 

(1:1 volume ratio of 30% hydrogen peroxide and 99.9% sulfuric acid, Avantor Performance 

Materials, Phillipsburg, NJ) to remove the remaining photoresist. Following photomask 

fabrication, a 4-inch silicon wafer was spin-coated with 100 μm thick negative photoresist 

SU-8 50 (Microchem, Newton, MA) and then underwent the first baking step. The channel 

patterns were then copied to the SU-8 mold through the previously prepared photomask by 

UV exposure. After the second baking process, the silicon wafer was developed in SU-8 

developer (Microchem, Newton, MA) to dissolve the unexposed photoresist, and the device 

patterns remained on the substrate. A mixture of Sylgard 184 silicone elastomer base and 

curing agent (Ellsworth Adhesives, Germantown, WI) in 10:1 mass ratio was slowly poured 

on the completed SU-8 mold after degassing, and then incubated on the hot plate at 95°C 

overnight. The polydimethylsiloxane (PDMS) layer was cut and punched for inlet and outlet 

holes. Finally, the PDMS layer was attached to the glass substrate permanently using oxygen 

plasma at 100 L/h oxygen flow rate and 100 W for 10 seconds. The fabricated devices were 

sterilized by injecting 70% v/v ethanol solution into channels and exposed to UV light 

overnight before use.
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Neutrophil Isolation

Freshly drawn whole human blood samples with ethylenediaminetetraacetic acid (EDTA) as 

an anticoagulant were prepared by Memorial Blood Center (St. Paul, MN) according to IRB 

protocol E&I ID no. 07809. All the samples were collected from healthy donors as 

demonstrated by a screening questionnaire that meets the Food and Drug Administration 

(FDA) guidelines, and neutrophil isolation was performed immediately following blood 

draws. 5 mL of blood sample was layered carefully over the same volume of mono-poly 

resolving medium (Fisher Scientific, Waltham, MA) and centrifuged to obtain distinct 

density gradients. The neutrophil band was collected and purified using red blood cell lysis 

buffer (Miltenyi Biotec Inc., Auburn, CA) according to the previously reported protocol.27 

The final neutrophil pellet was re-suspended in Hank’s buffered salt solution (HBSS, Fisher 

Scientific, Waltham, MA) containing 2% human serum albumin (HSA, Sigma-Aldrich, St. 

Louis, MO).

Cell Viability Assay

Pure neutrophils were diluted to the density of 6 × 105 cells/mL in HBSS medium and 

seeded in 96-well plate with 100 μL in each well. Neutrophils were incubated with different 

concentrations of drugs (CXCR2 antagonist SB225002, EMD Millipore, Billerica, MA; 

PI3K inhibitor LY294002 or theophylline, Sigma-Aldrich, St. Louis, MO) for specific time 

periods (30 min, 90 min, or 150 min) in the incubator at 37°C under 5% CO2. After 

incubation, the well plate was centrifuged to remove medium, and the cells were incubated 

with 100 μL of 0.5 mg/mL 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT, Sigma-Aldrich, St. Louis, MO) solution for 2 h. The water-insoluble purple formazan 

crystals only produced by the living cells were dissolved in 150 μL of dimethyl sulfoxide 

(DMSO, Sigma-Aldrich, St. Louis, MO). The plate was placed on the orbital shaker for 20 

min to facilitate complete crystal dissolution. Finally, 100 μL of DMSO solution was 

transferred to another new 96-well plate for UV-Vis absorption measurements. Optical 

density was monitored at 570 nm, with 655 nm as a reference, using a microplate reader 

(Bio Tek, Winnoski, VT), and the cell viability was calculated using equation (1). The data 

in each condition were recorded from five different blood samples (donors).

(1)

Fluorescence Imaging and Microfluidic Chemotaxis Experiments

The fluorescence imaging was undertaken by injecting 100 μM Rhodamine 6G (Sigma-

Aldrich, St. Louis, MO) solution through the right medium inlet and HBSS buffer through 

the left medium inlet. The flow rates were kept at 100 μL/h to obtain stable fluorescence 

gradients in the cell culture chamber.

Prior to doing chemotaxis experiments, the channels were rinsed with sterilized Milli-Q 

water (Millipore, Billerica, MA), and 20 μL of 250 μg/mL human fibronectin (Sigma-

Aldrich, St. Louis, MO) solution was injected through the cell inlet to cover the cell culture 

chamber. The devices were kept in the biosafety hood for 40 min before introducing 
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neutrophils. Neutrophils at a density of 3–5 × 106 cells/mL were incubated with specific 

concentrations of drugs at 37°C under 5% CO2 for 30 min, 90 min, or 150 min. After that, 

5–10 μL of neutrophils were injected through the cell inlet to achieve suitable population 

(30–60 cells in the viewable 400 μm × 1280 μm area) in the microfluidic cell culture 

chamber, and then the device was kept in the biohood for another one hour to enhance 

neutrophil adhesion to the fibronectin-coated glass. Two medium inlets were connected to 

syringes containing 10 ng/mL IL-8 (Sigma-Aldrich, St. Louis, MO) solution and HBSS 

buffer to achieve a 0–10 ng/mL IL-8 gradient within the observation channel. The flow rate 

was kept at 100 μL/h, which will generate minimum shear-induced impact on neutrophil 

chemotaxis. The migratory patterns of neutrophils within the IL-8 gradient were recorded 

using time-lapse imaging mode (every 10 s for 20 min) in Metamorph imaging software on 

an inverted microscope with a 10× objective (Nikon, Melville, NY) and a CCD camera 

(QuantEM, Photometrics, Tucson, AZ). Three biological replicates were performed for each 

condition.

Analysis of Chemotaxis Data

In the cell culture chamber, the trajectories of 15 or more randomly-chosen neutrophils were 

analyzed (Fig. 2(a)). Neutrophil chemotaxis was quantified using three parameters, motility 

index (MI), chemotactic index (CI), and effective chemotactic index (ECI), which have been 

employed to describe neutrophil chemotaxis previously.28 The MI value describes the total 

possible movement of neutrophils and is defined as the ratio of final straight migratory 

distance (dfinal) and the maximum displacement (dmax).

where dmax is the product of average velocity of the tracked cell and total observed time. CI 

represents the orientation of neutrophils during migration and is defined as the ratio of the 

final distance in the gradient direction (dx) and the entire migration distance of a cell (dtotal).

The third parameter, ECI, is defined as the product of MI and CI, and depicts the overall 

effectiveness of neutrophil chemotaxis. These three parameters from individual neutrophils 

were calculated and plotted as histograms reflecting average values and standard error of the 

mean (SEM). Unpaired t-tests with α =0.05 were used for statistical comparison.

Calcium Imaging

Neutrophils were prepared in HBSS buffer containing 2% HSA at the density of 4–5 ×106 

cells/mL. For loading cells with the intracellular Ca2+-sensitive fluorophore fura-2 AM 

(Sigma-Aldrich, St. Louis, MO), 1 mL of neutrophil suspension was incubated with 1 μL of 

1 mM fura-2 AM at 37°C under 5% CO2 for 30 min. Neutrophils were centrifuged twice to 

remove extra fura-2 AM, and then divided into two tubes of 500 μL solution. One 

population was re-suspended using Ca2+-free HBSS medium (Sigma-Aldrich, St. Louis, 
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MO) supplemented with 2% HSA and 2 mM ethylene glycol tetraacetic acid (EGTA, 

Sigma-Aldrich, St. Louis, MO), and the other one was kept in normal (Ca2+-containing) 

HBSS medium supplemented with 2% HSA. These two tubes were further split into 100 μL 

aliquots for incubation with different doses of theophylline. All the samples were put on ice 

in the dark until use. Before Ca2+ imaging, each sample was incubated at 37°C for 5 min 

and re-suspended in 100 μL of the same fresh media. A 100 μL neutrophil suspension in 

each tube was placed on the center of a petri dish without fixing agent and the fluorescence 

intensity was monitored at 495 nm using 340/380 nm dual wavelength excitation through a 

40× oil immersion objective on an inverted microscope (Nikon, Melville, NY). The change 

in fluorescence intensity induced by addition of 2 μL 500 mg/mL IL-8 solution was 

recorded.

Calibration of Ca2+ concentrations was performed by pipetting 2 μL of 25 mM digitonin 

(Sigma-Aldrich, St. Louis, MO), a cell-permeabilizing agent, into the cell suspension for the 

maximum fluorescence ratio (Rmax) and then 5 μL of 0.4 M EGTA for the minimum 

fluorescence ratio (Rmin). Intracellular Ca2+ levels activated by IL-8 were calculated 

according to the equation (2).29

(2)

where Kd is the effective dissociation constant for the probe molecule (220 nM), Sf2 is the 

minimum excitation intensity at 380 nm, and Sb2 is the maximum excitation intensity at 380 

nm. Neutrophil autofluorescence without added fura-2 AM was also measured following the 

same procedures and subtracted in the calculation.

Results and Discussion

Confirmation of Chemical Gradients in Microfluidic Device

The microfluidic device is composed of three inlets, many serpentine channels, and one cell 

culture chamber (Fig. 2(b)). At each node in the microfluidic serpentine channels, the fluid 

splits into two streams and mixes via diffusion, with the neighboring stream carrying a 

different concentration of chemokines. When the fluid arrives in the cell culture chamber at 

the end of the pyramidal network, all the streams combine and form a concentration gradient 

perpendicular to the direction of streams. The mixing behaviors of different streams flowing 

in the serpentine channels have been verified using COMSOL multiphysics 4.1 in our 

previous work,30 and a complete mixing process was achieved under the current 

experimental conditions. The concentration gradient profile is constant during experiments 

since the rate of molecular diffusion in each stream is much slower than the flow rate used in 

the experiment, which prevents the nondirectional diffusion of chemokine molecules across 

the cell culture chamber. The fluorescence imaging shown in Fig. 2(b) further confirms the 

formation of chemical gradients in the cell culture chamber with gradually increasing 

fluorescence intensity from left to right. This result can be extended to the condition of the 

IL-8 gradient since the IL-8 molecule has a higher molecular weight and slower diffusion 
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rate than the model fluorescent molecule (rhodamine 6G), which causes less nondirectional 

movements in the chamber.

Neutrophil Viability after Drug Treatment

The effects of drugs, at varying doses and time periods, on neutrophil viability were 

evaluated using a traditional colorimetric MTT assay. The presence of 10 μM CXCR2 

antagonist SB225002 for 100 μL of 6 × 105 cells/mL neutrophils induced about 40% 

decrease in neutrophil viability versus the control condition after 150 min incubation, while 

30 and 90 min incubation times caused smaller decreases in viability (Fig. 3(a)). These 

compromised viabilities are likely attributable completely to drug cytotoxicity as none of the 

incubation times are long enough to induce spontaneous neutrophil apoptosis.31 In addition, 

the same trends of viability reduction were observed while exposed to 1 μM and 100 nM 

SB225002. These results imply that SB225002 blocks the surface receptor sites 

accompanied with the internalization of antagonist, resulting in decreased neutrophil 

viability. The introduction of the PI3K inhibitor LY294002 only reveals moderate cytotoxic 

effects on neutrophils. Approximately a 20% reduction in neutrophil viability was observed 

after 90 and 150 min treatment at all the concentrations, and 30 min incubation had almost 

no effect on neutrophil viability (Fig. 3(b)). Previous studies suggested that PI3K played an 

important part in the anti-apoptotic system activated by granulocyte/macrophage colony-

stimulating factor (GM-CSF),32,33 and LY294002 was revealed to suppress the survival 

effects of this cytokine. Since there was no GM-CSF in the neutrophil medium to activate 

the PI3K pathway, the cytotoxic effects of LY294002 on neutrophils were limited as 

precedent work suggests. The evaluation of neutrophil viability after theophylline incubation 

was also in agreement with the previous reports that indicated a significant drop in 

neutrophil viability.34 Unlike the dose-dependent effects displayed in previous reports, 

neither the therapeutic plasma concentration (10 μM) nor excessive amounts of theophylline 

(100 μM and 1 mM) showed any reduction in neutrophil viability with 30 min incubation. 

For 90 min incubation, theophylline induced a 40% reduction in viability at all the three 

concentrations, and all the drug concentrations induced a 50% decrease in neutrophil 

viability with 150 min incubation (Fig. 3(c)). Theophylline is known to down-regulate the 

expression of bcl-2, a protein in eosinophils and B cells that protects cells against apoptotic 

stimuli;35 however, this explanation cannot be employed herein due to the absence of bcl-2 

expression in neutrophils. Another study demonstrated that theophylline augments 

granulocyte apoptosis by inhibiting the adenosine A2A receptor after 16 h culture,36 but this 

long time incubation made it impossible to discriminate between the contribution of 

spontaneous neutrophil apoptosis and drug-induced cell death. A detailed investigation of 

the immunomodulatory effects of theophylline on neutrophil apoptosis is clearly needed. 

Based on the results herein, the CXCR2 antagonist SB225002 and theophylline both greatly 

shorten neutrophil life span quickly while the PI3K inhibitor LY294002 was less effective at 

inducing neutrophil apoptosis. SB225002 and theophylline are more potent drugs than 

LY294002 in accelerating neutrophil apoptosis, but the risk of SB225002 acting on other 

CXCR2-expressing cells and the common cytotoxicity of theophylline on immune cells 

should be considered for the future use.
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Neutrophil Chemotaxis with Drug Incubation

Instead of traditional chamber-based assays, neutrophil chemotaxis under a 0–10 ng/mL 

IL-8 gradient was monitored in the gradient microfluidic device before and after drug 

treatment. Neutrophil migration patterns were quantified using the aforementioned three 

numerical parameters: MI, CI and ECI. Compared to the viability results reported above, 

neutrophil chemotaxis was not as sensitive to the low concentrations of CXCR2 antagonist, 

and no suppressive effect was observed under 100 nM and 1 μM drug conditions (Fig. S1(a) 

and (b)). The addition of 10 μM SB225002 resulted in a significant decrease in CI value 

after 90 and 150 min incubation while also causing an 80% decline in the ECI value after 

150 min incubation (Fig. 4(a)). These results suggest that CXCR2 antagonism has 

remarkable impacts on the direction and effectiveness of neutrophil chemotaxis in a 

concentration- and time-dependent fashion without altering neutrophil motility. The IC50 of 

SB225002 for inhibiting neutrophil chemotaxis through CXCR2 antagonism is between 1 

μM and 10 μM, which is much higher than the reported value (IC50 = 22 nM).37 This 

reported value was obtained using conventional chamber-based assays where all cells are 

assumed to be alive and responding to the chemokine signal; however, dead cells induced by 

CXCR2 antagonist cannot migrate into the chemokine chamber and are retained in the 

medium chamber. In this fashion, chamber-based assays overestimate the inhibitory effects 

of SB225002 on neutrophil chemotaxis by ignoring the cytotoxicity of the drug. On the 

contrary, defunct neutrophils cultured in the microfluidic device are removed by the fluid 

flow or barely move on the bottom; these cells were eliminated from the data analysis, and 

only effective neutrophil chemotaxis was collected and analyzed.

Neutrophils exposed to varying concentrations of LY294002 showed distinct chemotactic 

behaviors. Similar to SB225002, 100 nM LY294002 had no major effect on neutrophil 

chemotaxis (Fig. S1(c)), and 10 μM induced a significant decrease in the CI value after 150 

min incubation (Fig. S1(d)), which confirms the conclusion that PI3K regulates the cellular 

polarization in the IL-8 signaling pathway and LY294002 interrupts the PI3K-involved 

neutrophil migration. Meanwhile, 1 μM of LY294002 resulted in about a 70% reduction in 

CI signal after 150 min incubation as well as a statistically significant drop in ECI values 

after 90 and 150 min treatment (Fig. 4(b)). These results suggest that PI3K modulates 

neutrophil chemotaxis via a positive feedback loop wherein two cytokines function both 

upstream and downstream of one another. Although there is no literature precedent for the 

involvement of PI3K in a positive feedback loop, the phospholipid product PtdInsP3 and 

downstream Rho GTPases have been reported to activate each other in a positive feedback 

relationship.38 Herein, we speculate that neutrophils exposed to 10 μM LY294002 are short 

of activated PI3K and PtdInsP3, which activates the positive feedback loop between 

PtdInsP3 and Rho GTPases to stimulate the production of PtdInsP3, thus preventing the 

inhibitory effects of LY294002. Unlike SB225002, the IC50 of LY294002 for inhibiting 

neutrophil chemotaxis in this study was around 1 μM, close to the known value (IC50 = 1.4 

μM),39 since LY294002 induces smaller cytotoxic impacts on neutrophils than SB225002, 

and the contribution of cytotoxic effects to IC50 is limited for LY294002. This also supports 

our belief that the cytotoxic effects of drugs must be considered in the measured IC50 values.
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Theophylline, a current medication for COPD, indicates a completely opposite trend in 

neutrophil chemotaxis inhibition compared to the other drugs. At therapeutic concentration, 

10 μM theophylline caused a significant decrease in MI value after 90 and 150 min 

incubation, with no significant change in CI and ECI values (Fig. 4(c)). Two larger 

concentrations, 100 μM and 1 mM, did not indicate any significant difference in the three 

numerical parameters (Fig. S1(e) and (f)), which suggests that theophylline only lowers the 

motility of neutrophils around the optimal concentration without any influence on the 

polarization and effectiveness of neutrophil chemotaxis. These results contradict the 

observation found in the previous studies that theophylline is a potent inhibitor for 

neutrophil chemotaxis.20–22 As mentioned above, drug cytotoxicity can lead to 

overestimated chemotaxis in the traditional chamber-based assays by impeding neutrophil 

migration by increasing cell apoptosis rather than damaging chemotactic pathway. 

Theophylline induces a great drop in neutrophil viability instead of inhibiting neutrophil 

chemotaxis.

In sum, our results demonstrate that SB225002 and LY294002 decrease polarization and 

effectiveness of neutrophil chemotaxis at different optimal concentrations, but theophylline 

only decreases motility of neutrophils at therapeutic concentration.

Intracellular Calcium Imaging

To determine the role of Ca2+ in neutrophil chemotaxis, the effects of theophylline on the 

mobilization of intracellular Ca2+ during theophylline treatment were assessed using single 

cell ratiometric fluorescence imaging. In the medium containing Ca2+, the concentrations of 

intracellular Ca2+ after 10 ng/mL IL-8 activation were determined at varying doses and 

theophylline incubation times. Compared to the control sample, the presence of 1 mM 

theophylline induced a significant decrease in intracellular Ca2+ after 30 and 150 min 

incubation (Fig. 5(a)), which indicates that theophylline suppresses the elevation of Ca2+ 

level in the IL-8 signaling pathway. The fluorescence images clearly show that the number 

of bright cells increases greatly after IL-8 stimulation without theophylline treatment (Fig. 

5(c)); however, the elevation of intracellular Ca2+ was almost totally inhibited with 1 mM 

theophylline treatment after 150 min (Fig. 5(d)). In addition to the high dose, 10 μM 

theophylline also significantly inhibited Ca2+ increase after 90 min incubation. Although 

there is no statistically significant inhibition for 100 μM of theophylline, the average value 

of intracellular Ca2+ level at each time point was lower than that of the control sample. 

Further examination with 500 μM and 50 μM theophylline also indicated significant 

decrease in intracellular Ca2+ level after long time exposure (Fig. S2), which reveals that the 

introduction of theophylline in a large concentration range inhibits the elevation of 

intracellular Ca2+ activated by the chemokine IL-8. Combined with theophylline’s apparent 

minimal effect on neutrophil chemotaxis, it appears that neutrophil chemotaxis is 

independent of the alteration in intracellular Ca2+. In the Ca2+-free medium, no significant 

change in intracellular Ca2+ levels was observed for any of the theophylline doses, 

accounting for the control cell behavior (where the influence of Ca2+ in the media was 

significant). These results suggest that the function of theophylline in IL-8 signaling 

pathway is to block the entry of Ca2+ into cells. First, the intracellular Ca2+ levels of the 

control conditions in Ca2+-free medium are much lower than those in Ca2+-containing 
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medium, which indicates that IL-8 activation triggers the influx of extracellular Ca2+ and the 

absence of extracellular Ca2+ resulted in. the small Ca2+ concentrations for the control 

conditions. Second, the conclusion that theophylline inhibits influx of extracellular Ca2+ is 

also confirmed by the real-time calcium imaging curve (Fig. S3). After incubation with 1 

mM theophylline for 150 min, the addition of digitonin, a cell-permeabilizing agent that 

allows entry of extracellular Ca2+, induced a tiny increase in Ca2+ level; however, the 

addition of digitonin resulted in the maximum fluorescence for the control condition.

Conclusions

Three representative drugs were employed in this work to determine the drug effects on 

neutrophil function. Through the drug cytotoxicity assays, we found that the CXCR2 

antagonist SB225002 and theophylline induced significant decreases in neutrophil viability 

at all tested concentrations while the PI3K inhibitor LY294002 produced mild decrease in 

neutrophil viability. This indicates that SB225002 and theophylline are more potent drugs to 

accelerate neutrophil apoptosis. A microfluidic device with a highly stable chemokine 

gradient was employed to quantify neutrophil chemotaxis with and without drug treatment. 

More importantly, the microfluidic platform was used to monitor neutrophil chemotaxis 

independent of drug cytotoxicity, and demonstrated that the conventional chamber-based 

assays likely overestimate the inhibitory effects of drugs due to the unaccounted for drug 

cytotoxicity. SB225002 was shown to mediate neutrophil chemotaxis in a time- and 

concentration-dependent manner while LY294002 triggered a positive feedback loop of 

PtdInsP3 and Rho GTPases in the IL-8 signaling pathway at high doses. Theophylline 

indicated slight capability to slow neutrophil chemotaxis, and further investigation revealed 

that the alteration of intracellular Ca2+ had no effect on neutrophil chemotaxis but was 

inhibited by theophylline treatment. The exploration of drug effects on neutrophil function 

can be used to determine the biological implications of various relevant drugs and provide 

the significant insights on drug development for neutrophilic inflammation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simplified schematic diagram of the IL-8 signaling pathway in neutrophil chemotaxis.
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Figure 2. 
(a) Trajectories of neutrophils in the control sample. The highlighted migratory routine of 

single neutrophil shows how data was processed for analysis. (b) Schematic of microfluidic 

gradient device used in the experiment and confirmation of chemical gradient with 

fluorescence imaging. (Scale bar: 100 μm)
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Figure 3. 
Cytotoxic effects of each drug on neutrophil viability, as determined by the MTT assay. (a) 

Percent of neutrophil viability compared to the control condition after incubation with 100 

nM, 1 μM, and 10 μM of SB225002 at different time points. (b) Percent of neutrophil 

viability compared to the control condition after incubation with 100 nM, 1 μM, and 10 μM 

of LY294002 at different time points. (c) Percent of neutrophil viability compared to the 

control condition after incubation with 10 μM, 100 μM, and 1mM of theophylline at 

different time points.
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Figure 4. 
The inhibitory effects of each drug on neutrophil chemotaxis (*, pitalic>0.05, using a two-

tailed unpaired t-test). (a) MI, CI, and ECI values after 10 μM SB225002 treatment for 

control, 30 min, 90 min, and 150 min. (b) MI, CI, and ECI values after 1 μM LY294002 

treatment for control, 30 min, 90 min, and 150 min. (c) MI, CI, and ECI values after 10 μM 

theophylline treatment for control, 30 min, 90 min, and 150 min.
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Figure 5. 
The effects of theophylline on mobilization of intracellular Ca2+ activated by 10 ng/mL IL-8 

(*, pbold>0.05, using a two-tailed unpaired t-test). (a) Incubation with 10 μM, 100 μM, or 1 

mM theophylline in the medium containing Ca2+. (b) Incubation with 10 μM, 100 μM, and 1 

mM theophylline in Ca2+-free medium. (c) Fluorescence imaging of control sample before 

and after the addition of IL-8. (d) Fluorescence imaging of 150 min incubation sample with 

1 mM theophylline before and after the addition of IL-8. (Scale bar in all the images: 50 μm)
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