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Abstract
The power of a test, the probability of rejecting the null hypothesis in favor of an alternative, may
be computed using estimates of one or more distributional parameters. Statisticians frequently fix
mean values and calculate power or sample size using a variance estimate from an existing study.
Hence computed power becomes a random variable for a fixed sample size. Likewise, the sample
size necessary to achieve a fixed power varies randomly. Standard statistical practice requires
reporting uncertainty associated with such point estimates. Previous authors studied an
asymptotically unbiased method of obtaining confidence intervals for noncentrality and power of
the general linear univariate model in this setting. We provide exact confidence intervals for
noncentrality, power, and sample size. Such confidence intervals, particularly one-sided intervals,
help in planning a future study and in evaluating existing studies.
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1. Introduction
1.1 Motivation

Statisticians estimate power and sample size in many settings. These quantities are used in
conducting a sensitivity analysis while planning a future study (prospective power analysis),
and also help in the quantitative evaluation of an existing study (retrospective power
analysis). Muller and Benignus (1992) recommended that any claim of no effect be
substantiated by an appropriate retrospective power analysis. For example, the wish to
demonstrate no appreciable effect arises in assessing toxicity of any compound proposed for
commercial use. Following a negative result, a study's power to have detected an appreciable
difference may be important. Regulatory decisions by agencies such as the U.S.
Environmental Protection Agency often hinge on such negative evidence.

Researchers may propose fixed values as the true population means in order to conduct a
power analysis. They often complete the power computation for a general linear univariate
model (GLUM) test by using a variance estimate σ̂2 obtained from an existing study. For
example, physicians describe a “clinically significant” effect as one that changes a person's
health in an important way. Combining a fixed sample size (N), a fixed, clinically significant
mean difference, and a variance estimate determines a power value. With estimated error
variance, a power value for a fixed N must be recognized as a random variable. Similarly the
sample size needed to achieve a fixed power varies randomly. Standard statistical practice
requires reporting uncertainty associated with such point estimates. A lower bound for
power allows stating, with specified confidence, that a study has power of at least “P” to
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detect the effect. Similarly, an upper bound on N provides a sample size which ensures, with
specified confidence, a desired target power.

Kupper and Hafner (1989) demonstrated the bias resulting from choosing sample size for a
test statistic assuming known variance (a z test), when one will conduct the data analysis
with an estimated variance (t test). Power calculations for both a z test and a t test start from
an assumption of known variance, and diverge due to differences in the conduct of data
analysis (test statistic computation). This highlights the importance of aligning power
computations with actual analysis methods. Kupper and Hafner, as well as Beal (1989),
provided closely related discussions in the context of choosing the N necessary to control
the length of a confidence interval for a scalar parameter.

Other authors have addressed the question of confidence intervals for power. Dudewicz
(1972) suggested substituting exact confidence bounds for σ̂2 into power calculations for a t
test. This yields approximate confidence limits for power. He did not present any asymptotic
or simulation evidence as to accuracy, nor did he note the approximate nature of the
calculations. Clark (1987) presented analytic and simulation results for generalization of the
method to the fixed-effects GLUM with Gaussian errors. She proved that exact confidence
bounds for estimated variance lead to asymptotically unbiased confidence intervals for both
noncentrality and power. She also demonstrated, via simulation, the optimistic bias in the
method. We present an alternate and straightforward formulation which allows computation
of exact confidence bounds for noncentrality, power, and sample size in the GLUM. These
methods are applicable when testing scalar and vector hypotheses.

1.2 An Example
Falk, Hogan, Muller, and Jennette (1992) compared treatment of deteriorating renal function
with both cyclophosphamide and corticosteroid therapies to corticosteroid therapy alone.
The researchers defined a clinically significant improvement in renal function as a doubling
of reciprocal serum creatinine level, corresponding to an increase of .50 dL/mg. Twelve
patients were randomly assigned to each treatment in a clinical trial. A power calculation
was performed with a test size of αt = .01 assuming true improvement due to dual therapies
was .50 dL/mg. Based on a variance estimate of .068, power was approximated as .960. The
authors used these calculations both to stop the trial early and to argue that the treatment
likely had little value. Given these results, what interval of uncertainty surrounds the power
estimate of .960?

1.3 Statement of the Model, Hypothesis, and Properties
The GLUM with N sampling units and q predictors can be stated (Searle 1971, chap. 5):

(1.1)

Here X, with rank r ≤ q < N, contains fixed, known constants and β contains fixed, unknown

parameters. Also assume  with 0 < σ2 < ∞. The usual hypothesis involves the
secondary parameters θ = Cβ. Interest lies in testing the general linear hypothesis

(1.2)

versus
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(1.3)

Both θ0 and C contain fixed constants chosen by the data analyst. Assume full rank for C,
with each row of C defining an element of θ. The usual GLUM test statistic is

(1.4)

in which

(1.5)

(1.6)

and (·)− indicates a generalized inverse. The test statistic follows a noncentral F distribution
with ν1 (size and rank of C) numerator degrees of freedom (df), ν2 = (N − r) denominator df,
and noncentrality parameter

(1.7)

We use the notation SSH(·,N) to emphasize that SSH is a function of sample size by way of
the matrix X. The cumulative distribution function (CDF) of a noncentral F with ν1 and ν2
df and noncentrality parameter ω will be represented by FF[· | ν1, ν2, ω], with corresponding
density function fF[· | ν1, ν2, ω]. Using this notation, the power of the test can be written

(1.8)

in which fcrit(l − αt) is the 100 · (1 − αt) percentile from a central F with ν1 and ν2 df. The
CDF and density of a non-central F may be expressed as Poisson-weighted infinite sums
(Johnson and Kotz 1970, p. 192). In practice, CDF and density values may be precisely
calculated with computer algorithms (Abramowitz and Stegun 1964, p. 947; Odeh and Fox
1991, chap. 5).

Some authors, notably Cohen (1987, p. 8), have discussed “effect size” as a generic concept
encompassing disparate analyses (including tests of means, proportions, and categorical
data). For the special cases of the GLUM considered by Cohen, effect size and noncentrality
can be expressed as one-to-one functions of each other. Although distinct cases of the
GLUM yield distinct formulas for effect size, they yield only a single formula for
noncentrality. Hence we restrict our attention to noncentrality in order to maximize
generality and avoid ambiguity.
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2. Computing Confidence Bounds
2.1 Confidence Bounds for Noncentrality

For all calculations, a distinction must be carefully maintained between the sample size of
the estimation study (which provides the variance estimate) and the sample size of the target
study (for which power is desired). For example, the value of fcrit(·) is always calculated
using the target study error df. In a retrospective analysis, the two sample sizes are generally
the same. This may not be true, however, in a prospective analysis. To help facilitate the
necessary distinction, we use the notation ν2e and ν2t to represent the error df associated
with the estimation and target studies, respectively. As a further convenience, Nt represents
the sample size of the target study.

For fixed means, confidence bounds for noncentrality are easily formulated using known
distributional properties of the GLUM. Bounds for power and sample size follow directly
from these results. Clark (1987) demonstrated that the approximate method suggested by
Dudewicz (1972) yields optimistically small intervals in small samples, with bias decreasing
as ν2e increases. Exact bounds for ω can be calculated as follows. Assign lower (αcL) and
upper (αcU) tail probabilities to define the confidence coefficient (1 − αcL − αcU), and let
ccrit(p | ν) be the 100 · (p) percentile from a central χ2 with ν df. From standard Gaussian

theory, recognize that  Then observe that

(2.1)

Multiplying all terms in the inequality by SSH(θ, Nt)/SSE yields

(2.2)

with SSH(θ, Nt) fixed under the assumption of known (nonzero) θ and sample size Nt.
Consequently,

(2.3)

and

(2.4)

provide exact confidence bounds for ω. Choosing αcL = 0 yields a lower one-sided interval,
[0, ω̂U], while choosing αcU = 0 yields an upper one-sided interval, [ω̂L, ∞).

By similar argument, one can derive a minimum length interval for ω based on the shortest
unbiased confidence interval for variance (Tate and Klett 1959; Juola 1993). However, since
ω ∊ ℜ+ while power lies in the bounded interval [αt, 1), minimum length intervals for
noncentrality may not lead to minimum length intervals for power.
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2.2 Confidence Bounds for Power
The strict monotone dependence of the noncentral F distribution function on noncentrality
(Johnson and Kotz 1970, p. 193) ensures that an exact confidence interval for power follows
from an exact interval for ω. The lower (P̂L) and upper (P̂U) bounds for power must satisfy
the two equations

(2.5)

and

(2.6)

The fact that power is a smooth, strictly increasing function of ω ensures that

(2.7)

Alternately, consider using a distinct, and therefore approximate method to produce, say, ω̃L
and ω̃U. Then an approximate confidence interval for P results by observing

(2.8)

2.3 Confidence Bounds for Sample Size
An upper confidence bound for sample size (NU) provides the smallest N that ensures, with
confidence (1 − αcL), a desired target power. To achieve the result, one must solve the
equation

(2.9)

for NU such that

(2.10)

Here νNU is the error df for the target study, and is a function of NU. The value of NU is
most easily obtained by iterative solution of Equations (2.9) and (2.10). The strict
monotonicity of the power function makes this task straightforward. In practice, the use of
discrete N introduces some inexactness in coverage.

2.4 Simultaneous Bounds for Power and SampleSize
A confidence region for an entire power curve may be desired. For example, consider power
as a function of the difference between two means, δ. One may seek a confidence region for
power over an interval of δ > 0. For a particular value of δ, say δ0,
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(2.11)

and

(2.12)

provide exact confidence bounds. Considering a continuous set of δ0 generates two curves,
which in turn define a confidence region. The boundaries are defined by the locus of all
points generated by computing (2.11) and (2.12) for all δ0 > 0 in the set. The strict
monotonicity of the function ensures that

(2.13)

Hence the pointwise bounds provide simultaneous confidence intervals. See Figure 1,
discussed in Section 4, for an example.

Similar logic applies to sample size and other power related functions. Consider the triplet
(P, δ, N). Fixing any one of the three, and computing a second as a function of the third,
leads to a potentially informative plot. Given the results of Sections 2.1–2.3, these
applications lead to exact coverage (ignoring the use of discrete N).

3. Simulations For Coverage Accuracy
3.1 Simulation Methods

In order to assess both the Dudewicz/Clark and exact methods, simulations were conducted
using SAS IML©. Bounds for the power of a one-way ANOVA were calculated, and results
were tabulated for each method under the following conditions: significance level of the test
(αt ∊ {.01, .05}), target power (P ∊ {.2, .5, .9}), number of groups (G ∊ {2, 4}), cell size
(NG ∊ {4, 8,16}), and target coverage (C ∊ {.80, .95}, with αcL = αcU). Without loss of
generality, σ2 = 1 for all simulations. A vector of cell means was chosen as β = γ · [0 1… G
− 1]′, in which γ was calculated by iterative use of a power program (Muller, LaVange,
Ramey, and Ramey 1992, app. A), to ensure the desired target power for each combination
of αt, P, G, NG, and C. A total of 1,500 random samples of Gaussian data were generated for
each combination and method. The statistic σ̂2 was calculated, as were lower and upper
bounds for power. The proportion of events for which confidence bounds captured true
power was determined for consecutive sets of 150 replications. These were used to test the
significance of αt, P, G, and NG and their interactions as predictors of coverage using
factorial ANOVA's with 35 model and 324 error degrees of freedom. The 150 cases for each
binomial observation, the balanced design, and the small predicted differences in population
proportions led us to expect accurate inference with the use of ANOVA's.

3.2 Simulation Results
Simulation results are summarized in Table 1. For the Dudewicz/Clark method, the main
effects of G and NG were significant at the .01 level (p ≤ .001). Results agreed with Clark's
proof that the method provides asymptotically unbiased confidence intervals for power.
Small error degrees of freedom, however, yielded rather liberal results. For example, with C
= .95 and 6 error df, the observed coverage was only .872 (std err = .0012).

With the exact method, the αt× P × G × NG interaction term for C = .80 was significant at
the .01 level (p = .007). We discounted this lone small p value in light of the small amount
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of variance associated with the effect and the multiplicity of tests conducted. Empirical
results did not deviate substantially from predicted values, and accurate coverage was
obtained for all conditions.

4. Example Revisited
Consider the study of patients with deteriorating renal function (Falk et al. 1992) described
in Section 1.2. Assuming true improvement due to dual therapies was .50 dL/mg, estimated
power for αt = .01 was .960. The exact method with αcL = αcU = .025 leads to a 95%
confidence interval for ω of [11.01, 36.88]. The 95% interval for power follows as [.688, .
999]. Figure 1 provides the simultaneous confidence bands for the power function associated
with a range of reciprocal serum creatinine differences.

One can also determine the minimum sample size necessary to ensure, with confidence (1 −
αcL), a specified level of power. For this example, a sample size of 17.95 per treatment
group ensures, with probability .975, a power of .900. Hence the addition of six subjects per
treatment group increases the lower bound on power from .688 to .900. The practical
necessity of choosing an integer number of subjects introduces some inexactness.

5. Discussion
Strong consideration should be given to one-sided confidence intervals for power. This
contrasts sharply with the usual practice of rarely considering one-sided intervals or tests.
The reasons for this recommendation are twofold. First, interest typically lies in one-sided
statements like, “Power of at least….” Second, the asymmetry of the distribution of
noncentrality and the restriction of power to the interval [αt, 1) frequently mean one bound
from a two-sided interval provides information of little practical value. Consider again the
example of Section 4. Compare the two-sided 95% confidence interval for power of [.688, .
999] with a one-sided 95% confidence interval of [.750, 1]. The change from a one-sided to
a two-sided confidence interval has little effect on the upper bound, but a large effect on the
lower bound.

Although the discussed methods apply to fixed means, in some cases estimated means must
be considered in a power calculation. For example, government regulators often desire
evidence of any toxicological effect of a compound, regardless of clinical significance. The
practical importance of such an effect must be interpreted in terms of impact for the entire
population. Some relevant work has been done on providing confidence intervals for
noncentrality parameters from χ2 and F distributions in this situation (Venables 1975; Lam
1987; Wright and O'Brien 1988). Venables suggested applying a truncated Cornish-Fisher
expansion to provide estimated confidence intervals for noncentrality. Wright and O'Brien
extended results of Dwass (1955) to provide approximate intervals for noncentrality and
power. Lam described algorithms, based on a Newton−Raphson approach, that can provide
confidence limits for the noncentrality parameters. Hardison, Langston, and Quade (1980)
and Guirguis (1990) presented computational algorithms that are very useful in this context.
With proper treatment of certain boundary conditions, these algorithms allow computing
unbiased confidence bounds for noncentrality and power with simple random selection of an
observed value. These methods have been discussed by Taylor (1993). The potential for
severe biases in the mean estimates makes this a complex issue, particularly for
retrospective power calculations. Research is in progress to provide a general solution.

Clearly, uncertainty exists for power calculations with models other than the GLUM. For
example, when testing the difference between two binomial proportions, the work of Dozier
and Muller (1993) can be combined with the present results to provide approximate intervals
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for power. Similar techniques could be useful in methods as disparate as survival analysis
and multivariate linear models.

The exact methods discussed in this paper only require algorithms for computing percentiles
from central chi-square, central F, and noncentral F densities. The validity of the methods
depends upon meeting the assumptions of the fixed-effects GLUM, especially homogeneity
of variance. The many possible sources of heterogeneity should instill caution. Although
thoroughly studied in the context of data analysis, the impact of violations on power has
received much less attention.

6. Conclusions
Statisticians emphasize the need to associate a measure of uncertainty with any parameter
estimate. Hence the information added to the example by considering exact confidence
bounds for estimated power and sample size should not surprise any statistician. Such
bounds provide valuable tools for the planning and evaluation of scientific research.

We also strongly recommend plots as in Figure 1. Graphical displays of this nature have
been extremely well received by scientists with whom we have consulted. These plots
convey large amounts of information, help clarify design tradeoffs, and return sample size
decisions to the scientist.
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Figure 1.
Power to Detect a Difference in Mean Reciprocal Creatinine at αt =.01. Solid line is
estimated power. Dashed lines are exact 95% confidence bands on power. Vertical line
corresponds to clinically significant difference of .50 dL/mg.
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