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Canine hemangiosarcomas have been ascribed to an endothelial origin based on histologic appearance;
however, recent findings suggest that these tumors may arise instead from hematopoietic progenitor cells.
To clarify this ontogenetic dilemma, we used genome-wide expression profiling of primary hemangio-
sarcomas and identified three distinct tumor subtypes associated with angiogenesis (group 1), inflam-
mation (group 2), and adipogenesis (group 3). Based on these findings, we hypothesized that a common
progenitor may differentiate into the three tumor subtypes observed in our gene profiling experiment. To
investigate this possibility, we cultured hemangiosarcoma cell lines under normal and sphere-forming
culture conditions to enrich for tumor cell progenitors. Cells from sphere-forming cultures displayed a robust
self-renewal capacity and exhibited genotypic, phenotypic, and functional properties consistent with each
of the three molecular subtypes seen in primary tumors, including expression of endothelial progenitor cell
(CD133 and CD34) and endothelial cell (CD105, CD146, and avb3 integrin) markers, expression of early
hematopoietic (CD133, CD117, and CD34) and myeloid (CD115 and CD14) differentiation markers in parallel
with increased phagocytic capacity, and acquisition of adipogenic potential. Collectively, these results
suggest that canine hemangiosarcomas arise from multipotent progenitors that differentiate into distinct
subtypes. Improved understanding of the mechanisms that determine the molecular and phenotypic dif-
ferentiation of tumor cells in vivo could change paradigms regarding the origin and progression of endo-
thelial sarcomas. (Am J Pathol 2014, 184: 985e995; http://dx.doi.org/10.1016/j.ajpath.2013.12.025)
Similar to most cancers, sarcomas are classified based on their
histologic appearance, which presumably reflects the cells of
origin and their capacity for differentiation. Thesemorphologic
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result, the phenotype of the tumor bulk may not reflect the
tumor progenitor population, a possibility that has clinical
implications in terms of diagnostic criteria and therapeutic
approaches.

Such morphologic heterogeneity is a feature of canine
hemangiosarcoma, a frequent and highly metastatic tumor in
dogs that can arise in any organ but that shows predilection
for the spleen, right atrium/auricle, and skin or subcutis.1

The histologic appearance of hemangiosarcomas ranges
from the classic cavernous tumor containing neoplastic
endothelial-like cells to solid lesions that cannot be distin-
guished from other soft-tissue sarcomas without the aid of
immunohistochemical analysis.2 Recent findings have
challenged the presumed endothelial ontogeny of canine
hemangiosarcomas and the histologically similar human
angiosarcomas, suggesting instead that these tumors arise
from bone marrow progenitor cells that can transit to pe-
ripheral vascular sites.3e5 Therefore, a more precise iden-
tification of hemangiosarcoma progenitors may provide a
better understanding of disease progression toward the
observed endothelial lineage phenotype.

The low incidence and large phenotypic and genetic di-
versity of human sarcomas hampers understanding of their
cellular ontogeny. However, because domestic dogs develop
sarcomas spontaneously and with high incidence, the study
of canine tumors provides a powerful model in which tumor
heterogeneity is maintained. Furthermore, the similarities
between human and canine sarcomas make dogs a valuable
resource for therapeutic development6 and investigations
into sarcoma cellular ontogeny. Although it has been sug-
gested that mesenchymal stem cells (MSCs) are the cells of
origin for sarcoma,7,8 there is ongoing debate regarding the
potential for other cells to give rise to sarcomas and other
tumor types.9 Thus, knowledge of progenitor cell pop-
ulations capable of giving rise to a particular tumor type is
useful to positively impact therapeutic design and clinical
outcomes.

For this study, we tested the hypothesis that hemangio-
sarcomas arise from multipotent hematopoietic progenitors
and that this multipotency is associated with the observed
tumor heterogeneity. We identified three distinct molecular
subtypes of hemangiosarcoma associated with angiogenesis
or endothelial cell development and function (group 1),
inflammation and myeloid differentiation and function
(group 2), and adipogenesis and lipid transport pathways
(group 3). Furthermore, we demonstrate that a subset of
cells derived from hemangiosarcoma cell lines show the
capacity to recapitulate each of these patterns in vitro. Thus,
these results suggest that hemangiosarcoma progenitors
contribute to tumor complexity and reflect the array of
histologic phenotypes seen. These results also alter the
paradigm regarding the origin and progression of canine
hemangiosarcoma and suggest that diagnostic and thera-
peutic approaches addressing progenitor cell biology, rather
than the morphologic or histologic appearance of the tumor,
need to be developed for this disease.
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Materials and Methods

Pathologic and Immunohistochemical Analyses

Samples from 58 pet dogs with a histologic diagnosis of
hemangiosarcoma were included in this study (Supplemental
Table S1). Samples were obtained from surgical or necropsy
specimens with the owner’s consent; representative areas of
gross tumor were fixed in 10% neutral buffered formalin for
<72 hours. Diagnoses were made from routine H&E-stained
slides using standard histopathologic criteria10 by board-
certified veterinary pathologists at the Masonic Cancer
Center Comparative Pathology Shared Resource (University
of Minnesota, Minneapolis, MN) or at other reference labo-
ratories. Hemangiosarcomas were generally characterized by
poorly demarcated and nonencapsulated proliferation of
atypical ovoid to spindyloid cells. The cells proliferated as
solid sheets but often broke apart to form rudimentary and
tortuous vascular channels. The cells also were markedly
invasive into adjacent parenchyma. Samples from 20 cases
that were included in the microarray analysis were available
for reassessment and classification into cavernous or solid
morphology based on the number and size of vascular spaces
(Supplemental Table S1). As we have reported previ-
ously,5,10,11 there was intertumor and intratumor heteroge-
neity regarding tumor size, cellularity, and the extent of
hemorrhage, necrosis, and inflammation. Individual tumor
cells were characterized by scant to moderate eosinophilic
cytoplasm, and moderately pleomorphic, euchromatic nuclei
with medium-sized nucleoli. There usually was significant
organizing hemorrhage in the adjacent, noninvolved paren-
chyma, and occasional central necrosis. Inflammation was
observed in association with areas of hemorrhage and ne-
crosis, but, in some instances, it was present in perivascular
spaces and intermixed with tumor parenchyma. Whenever
the diagnosis was in doubt, confirmation was sought by
routine immunohistochemical analysis to assess expression
of CD31 and vWF (Factor VIIIerelated antigen) as described
elsewhere.10,11 Protocols and procedures for sample pro-
curement were reviewed by the Institutional Animal Care and
Use Committee of the University of Minnesota.
Microarray and RNA-seq Analysis

Microarray analysis was used to identify molecular signa-
tures in canine hemangiosarcoma, and the molecular sig-
natures were verified by RNA-seq analysis. RNA prepared
from 59 tumor tissue samples collected at surgery or nec-
ropsy was quantified and assessed for quality as described
elsewhere.5,12 Briefly, total RNA was quantified using a
fluorimetric Quanti-IT RiboGreen RNA assay kit (Life
Technologies, Carlsbad, CA), and total RNA integrity was
assessed using capillary electrophoresis in the 2100 Bio-
Analyzer system (Agilent Technologies Inc., Santa Clara, CA)
to generate RNA integrity numbers. Samples passed a quality
control step if they contained >1 mg with an RNA integrity
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number >6.5 (array hybridization) or >8 (RNA-seq). Total
RNA from 24 whole-tissue samples and 18 cell line samples
(12 monolayer-cultured cell lines including 2 samples in
duplicate and 6 sphere-cultured cell lines including 1 sample
in triplicate) were labeled using Agilent’s microarray one-
color low-input quick amp labeling kit, hybridized to
Agilent canine 4 � 44,000 feature gene chips according to
Agilent’s protocol version 6, and read using an Agilent array
scanner (Agilent Technologies Inc.). Total RNA from 47
samples (12 overlapping microarray analyses) was converted
to Illumina sequencing libraries using the TruSeq RNA sam-
ple preparation kit (Illumina Inc., San Diego, CA). PolyA
RNA was enriched from 1 mg of total RNA using oligo-
dTecoated magnetic beads, was fragmented, and was reverse
transcribed into cDNA. The cDNA was fragmented, blunt-
ended, ligated to bar-coded adaptors, and amplified using 15
cycles of PCR. Final library size distribution was validated
using capillary electrophoresis and was quantified using the
PicoGreen assay (Life Technologies) and by quantitative
PCR. Indexed libraries were normalized, pooled, and size
selected to 320 bp� 5% using a Caliper LabChip XT system
(PerkinElmer, Waltham, MA). TruSeq libraries were then
hybridized to a paired end flow cell, and individual fragments
were clonally amplified by bridge amplification using the cBot
system (Illumina Inc.). Once clustering was complete, flow
cells were loaded onto a HiSeq 2000 sequencing system and
were sequenced using sequencing by synthesis chemistry
(Illumina Inc.). On completion of read 1, a 7-bp index readwas
performed. The library fragments were resynthesized in the
reverse direction and sequenced from the opposite end of the
read 1 fragment, thus producing the template for paired-end
read 2. Each sample was sequenced to a targeted depth of
approximately 20 million paired-end reads. Base call (.bcl)
files for each cycle of sequencing were generated by real-time
analysis software (version 1.13, Illumina Inc.). Primary anal-
ysis and demultiplexing were performed using CASAVA
software version 1.8.2 (Illumina Inc.) to verify the quality of
the sequence data. The end result of the CASAVA workflow
was demultiplexed into FASTQ files for analysis. Bioanalyzer
quality control, RNA labeling, microarray hybridization and
reading, and RNA-seq were performed at the University of
Minnesota Genomics Center. Microarray data are available
from the Gene Expression Omnibus (http://www.ncbi.nlm.
nih.gov/geo; accession number GSE53219).

Bioinformatic Analyses

Agilent array values for each probe for each experiment
were compiled into a matrix of samples by probe. These
data were then examined for quality control and were
quantile-normalized using Genedata Analyst software
version 7.5 (Genedata AG, Basel, Switzerland). Of 45,220
features on each array, 35,676 that had annotations to
known genes were used for analysis. Unsupervised hierar-
chical clustering was based on average linkage using Gene
Cluster software version 3.0 for Mac OS X, and a heat map
The American Journal of Pathology - ajp.amjpathol.org
of two defined groups was visualized using Java TreeView
software version 1.1.6. Biological functions and canonical
pathways of differently expressed genes between the unsu-
pervised groups were defined by Ingenuity Pathway Anal-
ysis software version 8.6 (Qiagen, Redwood City, CA)
using BH multiple testing corrections to evaluate signifi-
cance. FASTQ files were mapped to the canine reference
genome (canFam3), and the resulting BAM files were
summarized to fragments per kilobase of exon per million
fragments mapped values using CUFFDIFF.

The values for genes differentially expressed between the
tumor subtypes were identified in the RNA-seq data set, and
the similarity between overlapping mean centered sample
matrices was assessed by calculating Pearson correlation r2

values between the data matrices. To visually show the
similarity, the two full matrices including unique samples
were visualized as a heat map.

Cell Culture and Sphere Formation

Nonadherent spheres were derived from early passages of
hemangiosarcoma cell lines to generate cell cultures
enriched for potential hemangiosarcoma progenitor cells.
The hemangiosarcoma cell lines SB-HSA (SB), Frog, and
Emma were cultured as described elsewhere.4,13,14 Sphere
formation was supported using conditions reported to favor
nonadherent cell growth.15,16 Cells were plated at a con-
centration of 5 � 104 cells/mL in ultra-low-binding dishes
(Corning, Lowell, MA) in Dulbecco’s modified Eagle’s
medium/F-12 medium containing L-glutamine and sodium
pyruvate (Life Technologies) and supplementedwith 10 ng/mL
of basic fibroblast growth factor (PeproTech, Rocky Hill,
NJ), 20 ng/mL of epidermal growth factor (PeproTech),
5 mg/mL of insulin (Sigma-Aldrich, St. Louis, MO), and
0.4% bovine serum albumin (MP Biomedicals, Solon, OH).
Cells were maintained at 37�C in 5% CO2 atmosphere, and
medium was replaced every 2 to 3 days.

Spheres were dissociated enzymatically once per week
into single-cell suspensions for culture maintenance. For this
procedure, spheres were transferred from ultra-low adherent
dishes to 50-mL conical tubes and were allowed to settle to
the tube bottom for 10 minutes at room temperature. The
spheres were washed once with 1� PBS without Ca2þ or
Mg2þ and were centrifuged at approximately 240 � g for
5 minutes. The cell pellet was resuspended in 1 mL of
Accutase solution (Sigma-Aldrich) and incubated for
approximately 10 minutes at room temperature with gentle
agitation every 2 to 3 minutes. The cells were passed through
a 200-mL gel-loading tip (Wheaton UK Ltd., Rochdale, UK)
50 to 100 times to break up the spheres. Cells were checked
visually using a hemacytometer and a light microscope at
�10 magnification to ensure dissociation of the spheres.

Images of cells were taken using an Olympus IX71 mi-
croscope with an Olympus DP70 cooled digital camera
(Leeds Precision Instruments, Golden Valley, MN) and
Olympus DP Controller software version 3.3.1 (Olympus
987
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America Inc., Center Valley, PA). Images were converted
from RGB to grayscale, and contrast was increased to 15%
using Adobe Photoshop CS5 (Adobe Systems Inc., San
Jose, CA). No other processing was performed.

Immunophenotyping

The primary antibodies used were antieCD14-RPE and
antieCD115-RPE [colony-stimulating factor 1 receptor
(CSF-1R)] (AbD Serotec, Raleigh, NC); antieCD51/61-
FITC (avb3 integrin; BD Pharmingen, San Diego, CA);
antieCD117-PE (c-kit) and antieCD34-PE (eBioscience, San
Diego, CA); antieCD133/AC133-PE (Miltenyi Biotech,
Auburn, CA); antieCD105-FITC (endoglin; Southern
Biotech, Birmingham, AL); and antieCD146-FITC (MCAM;
EMD Millipore, Billerica, MA).

For detection of cell surface markers, single-cell sus-
pensions were washed with 200 mL of fluorescence-
activated cell sorting staining buffer [PBS containing 2%
fetal bovine serum (Atlanta Biologicals, Atlanta, GA) and 2
mmol/L EDTA (Sigma-Aldrich)]. Fc receptors were
blocked with normal mouse or rat serum (Jackson Immu-
noResearch Laboratories, West Grove, PA) depending on
the host species of primary antibody used. Cells were
stained with one test volume (according to the manufac-
turer’s recommendations) of primary antibodies for 30 mi-
nutes on ice, washed twice in staining buffer, and then fixed
with 10% formalin. Fifty thousand events per sample were
collected using a BD FACSCalibur flow cytometer (BD
Biosciences, San Jose, CA) and then were analyzed using
FlowJo software version 10.0.7 (Tree Star Inc., Ashland,
OR). To determine the percentage of positive cells, FL2þ

regions (<0.5%) were drawn on isotype control plots and
then were overlaid onto progenitor markerestained plots.
Isotype controls were used for each of the monolayer and
sphere cell populations.

Adipocyte Differentiation Assay

Monolayer or sphere cells (1 � 105) were cultured in control
medium or under conditions to induce adipocyte differen-
tiation using a StemPro adipogenesis differentiation kit (Life
Technologies). Medium was changed every 3 days. Lipid
droplets were visualized as round refractile bodies in the cells
after 3 to 6 days. After 10 days of incubation in differentiation
medium, cells were fixed with fresh 4.0% paraformaldehyde
and were stained with 0.3% Oil Red O in a 60% isopropanol
solution (Millipore, Temecula, CA) for 50 minutes.

Phagocytosis Assay

Monolayer and sphere cells were plated in triplicate using
5000 cells per well in 100 mL of culture medium. The next
day, fluorescein isothiocyanateeconjugated, rabbit IgG-
coated latex beads (Cayman Chemical Co., Ann Arbor,
MI) were added to the cells. No beads were added to negative
988
control wells. The emission at 535 nmwas measured for each
well after 24 hours using aWallac 1420 VICTOR2 multilabel
counter (PerkinElmer). Relative phagocytosis for each cell
line was determined by dividing the emission at 535 nm of
the wells with beads by that of the respective negative
controls.

Statistical Analysis

All in vitro assays, including the progenitor staining and the
phagocytosis assay, were performed at least twice, with
triplicates in each experiment. Representative results are
depicted in this report. Blank values were subtracted from
the mean value of each sample where indicated. Data are
presented as these adjusted means � SD. Comparisons be-
tween monolayer and spheres were made using a Student’s
t-test. A P � 0.05 was considered statistically significant.

Results

Genome-Wide Expression Analysis Identifies Three
Distinct Molecular Subtypes in Hemangiosarcoma

Using cell lines, we previously demonstrated that inflam-
mation and angiogenesis are important to the pathogenesis of
canine hemangiosarcoma.5 Herein, we profiled intact whole
tumors to determine whether we could identify similar pat-
terns and whether additional molecular subtypes could be
observed. For this analysis, we used 24 samples obtained
from visceral hemangiosarcomas of 20 dogs (12 from spleen,
7 from heart, 4 from liver, and 1 from lung; 2 cases had paired
metastases, and 3 sites were examined from a single
case); the sample demographic characteristics are shown in
Supplemental Table S1. Principal component analysis of the
data set using genes with variance>0.5 across all 24 samples
identified three distinct subtypes (groups 1 to 3) (Figure 1A).
Figure 1B illustrates the unique genes whose overexpression
defined each group based on a greater than threefold average
increase over the mean with a P < 0.001 as determined by
analysis of variance with correction for multiple testing. This
analysis yielded 1436 differentially expressed genes. Results
from Ingenuity Pathway Analysis highlighting enriched
functional pathways and upstream activators associated with
each group are shown in Supplemental Tables S2, S3, S4, S5,
S6, and S7. The groups were characterized by enrichment of
genes associated with functions of blood vessel development,
angiogenesis, vasculogenesis, endothelial cell development,
and migration (group 1, angiogenesis); immune cell differ-
entiation, homeostasis and development, and migration
(group 2, inflammation); and lipid and cholesterol transport
and fatty acid, cholesterol, and steroid metabolism (group 3,
adipogenesis or lipogenesis). The separation of these sub-
types was not driven by breed (Figure 1C), location of the
primary tumor (Figure 1D), animal of origin (Figure 1E), or
morphologic subtype of the tumor (solid or cavernous)
(Figure 1F). The average linkage hierarchical clustering
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Genome-wide expression analysis
identified three molecular subtypes in hemangio-
sarcoma. A: Genes with variance >0.5 across 24
samples were used to generate principal compo-
nent analyses and hierarchical clustering. Samples
were assigned to one of three groups by unsu-
pervised clustering to identify genes with signifi-
cantly different expression between groups
(analysis of variance P < 0.001 and an average
fold change >3 between groups). B: This analysis
is shown as a heat map illustrating the 1436
differentially expressed genes among the three
groups. Annotation of clustering patterns were not
driven by breed (C), location of tumor (D), animal
of origin (E), or morphologic features (F). Results
from Ingenuity Pathway Analysis showing func-
tional pathways and upstream activators associ-
ated with these gene signatures are listed in
Supplemental Tables S2, S3, S4, S5, S6, and S7.

Molecular Subtypes in Hemangiosarcoma
using positive correlation of all genes from these samples
and corresponding to the principal component analysis
grouping is shown in Supplemental Figure S1.

We validated the three signatures in 47 samples using
RNA-seq analysis, which provided an independent method
with greater density of annotation. The demographic fea-
tures of this cohort are shown in Supplemental Table S1.
Unsupervised hierarchical clustering showed a comparable
separation of samples into three groups (Supplemental
Figure S2A), with 12/12 overlapping samples being
assigned to the same group by both analysis methods
(Supplemental Figure S2B), suggesting that the molecular
identification of canine hemangiosarcoma was robust. Thus,
it seems that canine hemangiosarcomas can be segregated
into three distinct categories based on molecular genotype
rather than histologic evaluation.

These results confirmed earlier findings from cell lines
showing that angiogenesis and inflammation are important
drivers in the pathogenesis of most of these tumors, but they
also highlighted a novel finding that adipogenic or lipogenic
pathway genes seem to be highly up-regulated in a smaller
subset of tumors. Furthermore, two lines of evidence sup-
ported the idea that hemangiosarcomas are derived from
common progenitors that can differentiate into one of three
possible downstream forms: the lack of an association be-
tween gene expression patterns and anatomical tumor loca-
tion or histologic subtype and the presence of more than one
subtype in tumors derived from individual dogs (n Z 3).

Sphere-Cultured Cells Recapitulate Molecular Pathways
from Hemangiosarcoma Tissues

We next tested the idea that tumor heterogeneity might
result from the presence of a common progenitor cell with
The American Journal of Pathology - ajp.amjpathol.org
the potential to differentiate downmultiple lineage pathways.
Sphere formation is a characteristic of normal stem cells and
has been used to enrich tumor-initiating cells from cancer cell
lines.15e18 Thus, we used anchorage-independent, serum-
free cell culture conditions to generate three-dimensional
spheres and enrich for cells with progenitor capabilities.
Free-floating, self-renewing spheres were generated from
three canine hemangiosarcoma cell lines: SB, Frog, and
Emma (Supplemental Figure S3, AeC). Sphere formation
was observed within 24 hours in all three lines (Supplemental
Figure S3, DeF). Autonomous growth and self-renewing
capacity were confirmed in the SB cell line through the
persistence of free-floating spheres in culture for more than a
year, whereas the phenotypic stability of sphere cells
generated from the Frog and Emma cell lines was confirmed
over several months.

To investigate the transition of the cell lines into the
sphere state, we next analyzed the genome-wide gene
expression of adherent (monolayer) cells versus sphere-
cultured cells using unsupervised methods as described for
the intact tissue samples. The groupings generated from this
unbiased approach represent monolayer-cultured cells and
sphere-cultured cells, with 79 genes differentially expressed
between the two groups based on a greater than twofold
average increase over the mean (BH-q < 0.05) (Figure 2A).
To establish whether the subtypes identified in intact tumors
were represented in the sphere cell population, we per-
formed hierarchical clustering of the 1436 genes profiled on
the tumor sample microarray platform against the 79-gene
signature.12 This analysis yielded 34 genes that were
significantly expressed between groups 1 to 3 and the sphere
cells (Figure 2B). Hierarchical clustering of the 34 genes
indicated that the differences shared between groups 1 to 3
and the sphere cells suggest that groups 2 and 3 are more
989
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similar to spheres than to monolayer cultures, although all
three groups are represented (Figure 2C). Collectively, these
data support the idea that sphere cells grown via anchorage-
independent growth conditions generate cell populations
that overexpress genes associated with the three differenti-
ated hemangiosarcoma subtypes we identified in dogs. We
also interpret the present data to suggest that the heman-
giosarcoma subtypes are likely to be derived from a com-
mon multipotent cell, and cells with progenitor potential can
be enriched in the sphere cells derived from hemangio-
sarcoma cell lines. If so, sphere cells should show pheno-
typic and functional characteristics associated with each of
the three groups.
Enriched Progenitor Populations from
Hemangiosarcoma Cell Lines Display Phenotypic and
Functional Characteristics of Angiogenic,
Inflammatory, and Adipogenic Tumor Subtypes

Based on the array analyses, we sought to further define the
enriched progenitor populations and to determine whether
these populations displayed concomitant acquisition of
phenotypic and functional properties associated with
angiogenesis, myeloid cell differentiation, and adipogenesis.
Therefore, we validated enrichment of progenitor cells by
first assessing the cell surface expression of markers shared
by endothelial and hematopoietic progenitor cells (CD34,
Figure 2 Confirmation of the three molecular phenotypes of hemangiosarcom
hemangiosarcoma cell line samples into monolayer- and sphere-cultured cells, and
linkage; BH-q < 0.05; fold change > 2). B: Heat map of 34 gene expression patte
expressed in intact tumors and the 79 genes differently expressed by spheres. C:
For B and C, each data set was independently mean centered.
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CD117, and CD133) in monolayer- and sphere-cultured
cells. The percentage of cells expressing CD34, CD117, and
CD133 increased in sphere cells from the SB and Frog cell
lines within 2 weeks (12.4% versus 2.11% for CD34þ;
12.5% versus 4.15% for CD117þ; and 17.0% versus 6.16%
for CD133þ) (Figures 3, A and B). This phenotype was
stable for up to 12 months in the SB cell line, and the
markers were co-expressed by the same cells (Figure 3, C
and D), supporting the notion that hemangiosarcomas may
develop from a common progenitor.
We then examined the expression of surface markers

associated with endothelial differentiation (CD105, CD146,
and avb3 integrin) because these would represent cellular
functions consistent with the genotype displayed by the
vascular or angiogenic group 1 tumors. Monolayer and
sphere cells from all three lines showed stable expression of
CD105 and avb3 integrin (Figure 4). The expression of
CD146 was variable, with high levels of expression in SB
monolayer and sphere cells and low to moderate expression
in Frog monolayer cells (Figure 4). None of the cells
expressed CD90 (Thy-1), a marker associated with MSCs
and T cells (data not shown).
Next we looked for cellular phenotypes associated with

myeloid cell differentiation and/or inflammation (group 2).
As noted in Figure 3, A and B, expression of CD34 and
CD117 was higher in sphere cells than in monolayers from
the SB and Frog cell lines. Both of these molecules are
normally expressed by bone marrowederived myeloid
a in sphere-cultured cells. A: Unsupervised hierarchical clustering separates
a heat map shows that the 79 genes were differentially expressed (average
rns significant in both the comparisons between the 1436 genes differently
Hierarchical clustering of genes is significant to the comparison made in B.
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Figure 3 Sphere cells expressed markers for endothelial and hematopoietic progenitors. A: Flow cytometric analysis of expression of CD34, CD117, and
CD133. B: Graphical representation of the percentage of positive cells for each marker in the monolayer cells subtracted from the percentage of positive cells
detected in the corresponding sphere cells. C: Expression of CD34, CD117, and CD133 as examined in SB sphere cells sustained under nonadherent growth
conditions for 2 weeks, 4 to 6 months, or 11 to 12 months. Data shown are the means � SD of three experiments. D: Co-expression of CD133 molecules with
CD34 and CD117.

Molecular Subtypes in Hemangiosarcoma
progenitor cells, as are CD14 (a component of the lipo-
polysaccharide receptor) and CD115 (CSF-1R). The latter
two surface proteins were detectable at low levels in SB
monolayer cells but not in Frog monolayer cells. However,
the proportion of cells expressing both molecules was
Figure 4 Endothelial (angiogenesis, group 1) markers were expressed by m
expression through flow cytometric analysis of surface expression of CD105, CD14
controls or secondary controls, where applicable, are represented as shaded regio

The American Journal of Pathology - ajp.amjpathol.org
increased in SB and Frog sphere cells (Figure 5A).
Expression of CD14 and CD115 was not observed in the
Emma cell line under either culture condition. To increase
confidence that the hemangiosarcoma sphere cells had
retained or acquired myeloid properties, we determined their
onolayer and sphere cells. Assessment of progenitor and lineage marker
6, and avb3 on monolayer and single-cell suspensions of spheres. Isotype
ns.
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capacity for phagocytosis. SB sphere cells showed an
approximately fivefold increase in phagocytic activity
compared with their monolayer counterparts, reaching a
level that was comparable with that observed in the mouse
macrophage cell line RAW264.7. An even more dramatic
enhancement of phagocytic activity (approximately 20-fold)
was observed in the Frog sphere cells (Figure 5B). A modest
increase also was noted in the Emma sphere cells; however,
the phagocytic activity in these cells already was high
compared with control RAW264.7 cells (Figure 5B). Taken
together, these results suggest that progenitor cells in the
hemangiosarcoma population have the potential to differ-
entiate along the myeloid pathway.

Finally, adipogenic/lipogenic potential has not been pre-
viously reported in hemangiosarcoma, although progenitor
cells from infantile hemangiomas have been shown to
Figure 5 Sphere cells exhibited properties of myeloid progenitors (inflammatio
markers CD14 and CD115 (CSF-1R) by monolayer and sphere cell populations. Da
rescein isothiocyanateeconjugated, IgG-coated latex beads by monolayer and sp
each cell line. The macrophage cell line RAW246.7 was used as a positive contro
experiments. The increased phagocytic activity in the SB and Frog sphere cells
*P � 0.05.
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undergo endothelial as well as adipogenic differentiation.19

Lipid droplets were apparent in control human bone marrowe
derived MSCs after 3 to 6 days in differentiation medium
(Figure 6A), but droplets were not present in MSCs grown
under nondifferentiating cell culture conditions (Figure 6B).
SB sphere cells elicited lipid after 6 to 9 days in differen-
tiation medium (Figure 6C), whereas SB monolayer cells
did not show adipogenic potential (Figure 6D). Similarly,
lipid droplets were evident in Frog sphere cells in the sphere
structure and around the sphere base, where cells attached
to the substrate in the differentiation assay (Figure 6E), but
the Frog monolayer cells did not undergo adipogenic dif-
ferentiation (Figure 6F). Emma sphere cells showed accu-
mulation of lipid in a pattern that was similar to that
observed for Frog sphere cells (data not shown), suggesting
that hemangiosarcoma sphere cells possess adipogenic
n/myeloid, group 2). A: Cell surface expression of determinant myeloid cell
ta shown are representative of three experiments. B: Phagocytosis of fluo-
here cells. Phagocytosis is represented as relative fluorescence intensity by
l. Data shown are means � SD representative of at least two independent
was significant compared with the activity detected in monolayer cells.
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Figure 6 Hemangiosarcoma sphere cells underwent adipogenesis
(adipogenesis/lipogenesis, group 3) under differential culture conditions.
Human bone marrowederived MSCs (A) and canine hemangiosarcoma SB
(C) and Frog (E) sphere cells were grown in adipogenic medium and were
stained with Oil Red O. MSCs (B) and SB (D) and Frog (F) sphere cells were
grown in nondifferentiating cell culture medium as controls and were
stained with Oil Red O.
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properties and/or the capacity to differentiate along an
adipogenic pathway. These data provide further support for
the idea that nonadherent sphere cells have multipotent
progenitor potential because they were able to differentiate
into cells that acquired phenotypic and functional charac-
teristics of each of the three hemangiosarcoma subtypes
present in dogs.
Discussion

Canine hemangiosarcoma has been classified historically as
a tumor of malignant endothelium. We previously proposed
that hemangiosarcomas might arise from bone marrowe
derived angioblastic progenitors.4,5 Herein, we expanded
this line of investigation by performing an unbiased
genome-wide analysis of gene expression in primary tumor
samples from spontaneously arising canine tumors, com-
bined with analysis of enriched progenitor cells from
hemangiosarcoma cell lines. We identified three ontogenetic
subtypes in canine tumors, and these subtypes were re-
flected phenotypically and functionally in the progenitor
populations enriched from hemangiosarcoma cell lines. This
suggests that the subtypes are at least partly attributable to
the tumor cells themselves and indicate that hemangio-
sarcomas might arise from cells with multipotency.4,5 This
idea is supported by the co-expression of early endothelial
and hematopoietic progenitor cell markers by a subset in the
sphere cell population. However, these data should be
The American Journal of Pathology - ajp.amjpathol.org
interpreted cautiously because it is possible that heman-
giosarcomas arise from a mix of progenitor cells that each
have the capability to undergo lineage-specific differentia-
tion and contribute to tumor progression. Studies using cell
sorting of lineage markers or single-cell isolation followed
by clonal expansion would distinguish between these two
possibilities, but we have not yet undertaken this approach.

Although we do not consider the latter scenario to be
likely, the importance of endothelial and myeloid in-
teractions for tumor growth is becoming more apparent. For
example, He et al20 demonstrated that mature mouse
endothelial cells provide critical signals for the selective
growth and differentiation of macrophages from hemato-
poietic progenitors. Endothelial-derived CSF-1 was found to
be a vital signal for macrophage expansion and survival
because blockade of macrophage CSF-1R (CD115)
impaired further growth and limited angiogenesis. Thus, the
CSF-1Repositive cells found in the sphere cell population
might represent differentiated hematopoietic cells that
interact with mature endothelial cells to promote angio-
genesis and, therefore, contribute to hemangiosarcoma
progression. In addition, the classical cell markers for
endothelial and myeloid lineages may not adequately inform
cell function. Yoder et al21 described a population of human
myeloid cells that co-express hematopoietic and endothelial
markers. These cells possessed myeloid progenitor cell ac-
tivity and differentiated into phagocytic macrophages but
failed to form perfused vessels in vivo. This myeloid pop-
ulation could be identified by CD45 expression, dis-
tinguishing them from a defined population of endothelial
cell progenitors. We previously showed that hemangio-
sarcoma cell lines can show expression of CD45,4 but
rigorous clonogenic and functional assays are needed to
validate the identity of the putative malignant hemangio-
blastic cell(s) in the hemangiosarcoma sphere populations.

In contrast to the myeloid populations described by He
et al20 and Yoder et al,21 Bailey et al22 showed that mouse
myeloid progenitors give rise to vascular endothelium.
Herein, vascular endothelial cells were able to differentiate
from common myeloid progenitors and granulocyte/
macrophage progenitors, indicating that endothelial cells are
an intrinsic component of myeloid-lineage differentiation
and underlining the close functional relationship between
the vascular and hematopoietic systems. Ritter et al23 re-
ported co-expression of the dendritic markers CD83 and
CD14 along with endothelial cell markers in human infan-
tile hemangioma. Because infantile hemangioma is a clonal
disease arising from a single progenitor cell,23e25 the
myeloid-endothelial cell co-expression might represent a
step in the myeloid to endothelial cell transition. Further
studies are needed to confirm such a mechanism in
hemangiosarcoma, including marker co-expression studies
and the ability of isolated cell populations to participate in
blood vessel formation. Hemangiomas in adults may arise
from early endothelial progenitor cells or differentiated
endothelial cells,26 indicating the potential of benign vascular
993
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tumors to arise through multiple mechanisms. Finally, we
must bear in mind that at least part of the inflammatory
signature observed in the tumor specimens is due to the
presence of infiltrating inflammatory cells in the tumor
microenvironment. Infiltrating immune cells are a common
feature of hemangiosarcoma,5 and these cells likely
contribute to the overall signature. However, we previously
demonstrated that an inflammatory signature is intrinsic to
hemangiosarcoma cell lines,5 and this finding is further
supported in the present work.

Hemangiosarcomas also arise in mice and humans,3 and
the pathologic appearance of the tumors across species is
similar. Recent immunohistochemical analysis of mouse
hemangiosarcomas indicated that tumors arise from endo-
thelial progenitor cells expressing CD34, vascular endo-
thelial growth receptor 2, and CD31.27 In humans, Liu
et al26 determined that hematopoietic stem cells or early
endothelial progenitor cells expressing CD34, CD45, and
CD117 are involved in tumor formation. CD133 detection
was negative in almost all cases, as was staining for CD14.
However, as indicated by the authors, CD133 is an early
marker for progenitor or initiating cells, and the expression
levels may be below the limit of detection by immunohis-
tochemical analysis after cellular differentiation or due to
tumor heterogeneity. These results indicate that animal
models contribute different aspects to our understanding of
vascular sarcomas and that studies in dogs may be espe-
cially relevant to understanding the pathogenesis of the
human disease. Studies using an extensive panel of early
and more differentiated hematopoietic and endothelial
markers should be used, and methods to detect rare, early,
and mid-progenitor (eg, CD115) cell expression events
could be used to more precisely define cellular similarities
and differences across species.

To our knowledge, the identification of adipogenesis in
hemangiosarcoma development has not been described
previously. An adipogenic/lipogenic phenotype might
represent a natural differentiation end point of cells that give
rise to hemangiosarcoma. In the context of vascular tumors,
benign hemangiomas progress through i) endothelial pro-
liferation without defined vasculature; ii) involution, where
blood vessel formation becomes defined; and iii) replace-
ment of blood vessels with a fibrofatty residuum, which
often leads to spontaneous regression of the tumor. Using
CD133-selected and clonally expanded cells from human
hemangiomas, Khan et al19 demonstrated endothelial dif-
ferentiation of these cells in vivo in the form of neo-
vasculature followed by differentiation into adipocytes. The
blood vessels and adipocytes were derived from trans-
planted cells and not from the host (mouse), indicating
differentiation of the CD133 progenitors down endothelial
and adipogenic lineages. The present results are consistent
with the possibility that hemangiosarcoma progenitors un-
dergo adipogenic differentiation, and although it is not clear
what triggers adipogenesis in infantile hemangioma, we
believe that an epigenetic program, ie, influenced by the
994
microenvironment niche (cell-cell interactions, cytokines,
energy, and oxygen), might direct cells toward endothelial
and/or adipogenic differentiation.
In addition to bone marrowederived angioblasts or

MSCs, transformation of adipose-derived stem cells
(ADSCs) could produce the phenotypes we observed in
hemangiosarcoma. Chen et al28 recently demonstrated that
several types of soft-tissue sarcomas originate from malig-
nantly transformed ADSCs and that local hypoxic responses
lead to chronic inflammation in adipose tissue.29 The latter
would favor differentiation of ADSCs into multiple line-
ages, including adipocytes, endothelial cells, and peri-
cytes.30 In this case, intrinsic or extrinsic inflammation
could favor ADSC differentiation toward an angiogenic
phenotype and inhibit adipogenic differentiation in tumors.
Finally, we must consider that the adipogenic/lipogenic
signature in hemangiosarcomas could represent an altered
metabolic process or an adaptation to the energetic needs of
the tumor.
In summary, these data suggest that hemangiosarcomas

exist as different molecular subtypes based on cellular or
metabolic processes that favor angiogenesis, inflammation,
and adipogenesis. The capacity to generate these phenotypes
is retained in a population of progenitor-like cells, ie,
enriched when hemangiosarcoma cell lines are cultured as
nonadherent spheres. These tumors might arise from single
multipotent progenitors that transit through a myeloid/
endothelial intermediate and can differentiate down multiple
lineages as part of an adaptive process (eg, response to
hypoxia and inflammation in the tumor niche), culminating
in any of the observed myeloid, endothelial, or adipogenic
tumor phenotypes. Alternatively, multiple progenitor line-
ages might contribute to tumor formation, with one pro-
genitor giving rise to endothelial-like and adipogenic-like
cells and another progenitor giving rise to myeloid-like cells
that perpetuate the tumor but that are not involved in
vascular formation. These two scenarios are not mutually
exclusive, and either could explain the heterogeneity asso-
ciated with hemangiosarcoma and the prominent vascular
morphology that characterizes these tumors. However, the
observation that metastatic pairs or triads from individual
animals showed multiple distinct phenotypes is most
consistent with the first possibility. The capability to
reproduce the tumor subtypes using enriched progenitor
populations from hemangiosarcoma cell lines offers a
unique model to study the development and progression of
hemangiosarcoma as a means to improve prognosis, pre-
diction, and response to therapy in these tumors.
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