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Breast cancer is noted for disparate clinical behaviors and patient outcomes, despite common histo-
pathological features at diagnosis. Molecular pathogenesis studies suggest that breast cancer is
a collection of diseases with variable molecular underpinnings that modulate therapeutic responses,
disease-free intervals, and long-term survival. Traditional therapeutic strategies for individual patients
are guided by the expression status of the estrogen and progesterone receptors (ER and PR) and human
epidermal growth factor receptor 2 (HER2). Although such methods for clinical classification have utility
in selection of targeted therapies, short-term patient responses and long-term survival remain difficult
to predict. Molecular signatures of breast cancer based on complex gene expression patterns have utility
in prediction of long-term patient outcomes, but are not yet used for guiding therapy. Examination of
the correspondence between these methods for breast cancer classification reveals a lack of agreement
affecting a significant percentage of cases. To realize true personalized breast cancer therapy, a more
complete analysis and evaluation of the molecular characteristics of the disease in the individual
patient is required, together with an understanding of the contributions of specific genetic and
epigenetic alterations (and their combinations) to management of the patient. Here, we discuss the
molecular and cellular heterogeneity of breast cancer, the impact of this heterogeneity on practical
breast cancer classification, and the challenges for personalized breast cancer treatment. (Am J Pathol
2013, 183: 1113e1124; http://dx.doi.org/10.1016/j.ajpath.2013.08.002)
Supported by Friends for an Earlier Breast Cancer Test, the Susan G.
Komen Breast Cancer Research Foundation, the National Cancer Institute,
and the University Cancer research Fund of the University of North Car-
olina School of Medicine.

This article is part of a review series on the molecular pathogenesis of
breast cancer.
Breast Cancer Is a World Health Problem

Breast cancer is a major health problem in the United States
and worldwide. The American Cancer Society estimates that
232,340 new cases of invasive breast cancer and 64,640
new cases of ductal carcinoma in situ (DCIS) will be
diagnosed among women in the United States in 2013.1

Worldwide, an estimated 1,383,500 new cases of breast
cancer will be diagnosed in women in 2013.2 Invasive
breast cancer accounts for 29% of all cancer diagnoses
among women in the United States and 23% of all cancer
diagnoses among women worldwide. Breast cancer is now
the second leading cause of cancer-related death in the
United States, with approximately 40,030 deaths expected
in 2013 for both men and women (or 39,620 deaths among
stigative Pathology.

.

women, representing 14% of all cancer-related deaths
among women) and remains the leading cause of cancer-
related deaths among women worldwide, with 458,400
deaths expected in 2013 (representing 14% of all cancer-
related deaths among women). A significant proportion of
new breast cancer cases (691,300 new cases) and deaths
(268,900 deaths) occur in economically developing
countries.2

Delta:1104_given name
Delta:1104_surname
Delta:1104_given name
mailto:wbcolemn@med.unc.edu
mailto:wbcolemn@med.unc.edu
http://dx.doi.org/10.1016/j.ajpath.2013.08.002
http://dx.doi.org/10.1016/j.ajpath.2013.08.002
http://ajp.amjpathol.org
http://dx.doi.org/10.1016/j.ajpath.2013.08.002


Rivenbark et al
Natural History of Breast Cancer

Clinical cancer develops over a long period of time, requires
multiple molecular alterations, and involves evolution of
cellular populations with increasingly aggressive phenotypic
characteristics.3,4 Although the time required for the process
of carcinogenesis is not well established for any human
cancer, estimates suggest that this multistep process unfolds
over many years and possibly several decades. With the
obvious exception of pediatric cancers, most cancers are
diseases of old (or older) age. Sporadic breast cancers, in
which there is no recognizable strong genetic component,
generally emerge later in life (perhaps reflecting mostly
postmenopausal breast cancers),5 whereas hereditary breast
cancers occur earlier in life (reflecting the contribution of
genetic predisposition).6,7 The relationship between time to
emergence of a clinical disease and the hereditary or
sporadic molecular underpinnings of the disease has been
variously explained through the two-hit hypothesis of
cancer and similar molecular concepts.

The leading hypothesis for the natural history of breast
cancer development is stepwise progression from atypical
ductal hyperplasia to DCIS, followed by evolution of this
preinvasive lesion to invasive breast cancer8 (Figure 1).
DCIS is a commonly diagnosed breast lesion that accounts
for 25% of breast neoplasms diagnosed in the United
States.10,11 DCIS is by definition noninvasive, but can vary
from low-grade (and nonelife-threatening) to high-grade
lesions that may contain invasive elements. As such,
DCIS, especially if high grade, is a risk factor for devel-
opment of invasive breast cancer.12 Consistent with this
notion, the incidence of DCIS increases with age in parallel
with the incidence of invasive breast cancer, and many
Figure 1 Natural history of breast cancer development. Breast cancer develops
(and eventually dysplasia), DCIS, and invasive breast cancer. Multiple molecula
alterations in precursor and neoplastic cells. Genetic predisposition can contribut
been well characterized. Original magnification, �20. Modified from Rivenbark a
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invasive breast cancers are associated with adjacent DCIS
lesions. Although it is not entirely clear whether DCIS is
a required precursor for development of invasive breast
cancer, many invasive breast cancers are accompanied by
DCIS at the time of diagnosis,13 and there is consensus that
DCIS will eventually progress to invasive disease in the
absence of intervention. Genetic and epigenetic alterations
(Figure 1) may accompany, or be required for, transitions
between morphological stages and/or might occur among
the altered cells that comprise the pathological lesions
during development and progression of the disease.9

Since the late 1990s, invasive breast cancers have been
characterized using gene expression analysis and classified
on that basis into several molecular subtypes.14e18 More
recently, analyses of gene expression patterns in DCIS have
identified similar molecular subtypes.19e24 The correspon-
dence between molecular subtypes of DCIS and invasive
cancers suggests that the DCIS lesions are likely the direct
precursors of invasive cancers. However, some recent
molecular analyses of invasive breast cancers and associated
preinvasive lesions suggest that common cellular ancestors
with altered genomes (ploidy changes and mutations) may
give rise to both.25 Data suggest that the diversity of
molecular subtypes observed in invasive breast cancers
emerges from an evolution of low-grade to high-grade DCIS
lesions.24 Thus, early alterations in the breast epithelium
leading to the development of preinvasive DCIS lesions may
determine the severity of the invasive breast cancers that
subsequently develop in many patients. Although risk factors
for DCIS development appear to mirror those for invasive
breast cancer, the molecular pathogenesis of DCIS is not well
understood. Likewise, the nature of early molecular alter-
ations preceding DCIS has not been characterized in detail,
from normal breast epithelial cells that evolve through atypical hyperplasia
r alterations occur during this process, involving genetic and epigenetic
e to this process, but early molecular alterations (preceding DCIS) have not
nd Coleman,9 with permission from Elsevier.
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particularly in patients lacking strong genetic predisposition
to breast cancer development.
Breast Cancer Is Not Just One Disease

Breast cancer is aheterogeneousdisease characterizedbyvariant
pathological features, disparate response to therapeutics, and
substantial differences in long-term patient survival.26 The
heterogeneity observed among breast cancers reflects the now
well-accepted notion that there is not just one disease with
a few variant subtypes, but that breast cancer instead represents
a collection of distinct neoplastic diseases of the breast and the
cells composing the breast.26 The distinct nature and character
of these diseases can be realized through traditional patho-
logical examination (ie, in terms of disease morphology),27,28

but the actual extent of diversity among breast cancers can be
appreciated only through molecular analyses.29 Invasive
ductal carcinoma is the most common morphological subtype,
representing 80% of invasive breast cancers, and invasive
lobular carcinoma is the next most common, representing
approximately 10% of invasive breast cancers.27,28 The less
common subtypes include mucinous, cribriform, micro-
papillary, papillary, tubular, medullary, metaplastic, and
inflammatory carcinomas.27,28 These morphological subtypes
of breast cancer can be further subdivided into classifications
based on their molecular signatures (ie, expression of protein
biomarkers or gene expression profiles).
Figure 2 Clinical classification of invasive breast cancer based on expression o
correspond to the general clinical classifications are shown. Cancer histology is dep
immunohistochemistry. Breast cancers are generally classified as positive or nega
clinical groupings: ERþ/PRþ/HER2�, ERþ/PRþ/HER2þ, ER�/PR�/HER2þ, and the

The American Journal of Pathology - ajp.amjpathol.org
Immunohistochemical Classification of Breast Cancer

Routine histopathological subclassification of invasive ductal
carcinomas is accomplished by immunostaining cancer tissues
to detect expression of estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth receptor 2
(HER2; alias c-ErbB-2 or, in rodents, Neu), as well as HER1
and various cytokeratins (eg, CK5/6).30,31 The differential
expression of these protein biomarkers provides a clinical
classification for breast cancer (Figure 2) and dictates thera-
peutic approaches for treatment.32 Approximately 70% of
invasive breast cancers express ER,33 and the majority of ERþ

cancers also express PR.34,35 Although the presence of normal
PR levels suggests an intact ER signal transduction pathway in
the breast cancer cells,36 discrepant ER and PR expression
patterns (ERþ/PR� and ER�/PRþ) are sometimes observed.35

In clinical practice, for many breast cancers the classification
as ERþ/PR� or ER�/PRþmay be attributable to false-positive
or false-negative results of immunohistochemical staining,
although technical improvements have reduced errors signif-
icantly.32,37 Collectively, the ERþ malignant neoplasms are
classified as luminal cancers. These cancers are further sub-
classified based on their HER2 status and proliferation rate,
giving rise to the ERþ/PRþ/HER2þ and ERþ/PRþ/HER2�

subtypes (Figure 2). The ER� breast cancers are subclassified
as HER2þ and triple-negative based on HER2 overexpression
or gene amplification status, basal cytokeratin expression, and
EGFR (HER1) expression, giving rise to ER�/PR�/HER2þ
f ER, PR, and HER2. Representative examples of invasive breast cancers that
icted using H&E staining; expression of ER, PR, and HER2 is visualized using
tive for hormone receptors ER and PR and for HER2, resulting in four major
triple-negative ER�/PR�/HER2�. Original magnification, �40.
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(HER2-enriched) and ER�/PR�/HER2� (triple-negative)
subtypes (Figure 2).

Molecular Classification of Breast Cancer

Early studies of transcription profiles using DNA micro-
arrays identified several molecular subtypes of breast
cancer.15 Groupings of breast cancers were established
using computational methods that evaluated similarities in
the gene expression profiles generated for individual breast
cancers among large cohorts of breast cancer samples.
Clusters were identified based on common gene expression
patterns driven by overexpressed genes. The first study of
this type identified four major molecular subtypes of breast
cancer: i) ERþ/luminal, ii) HER2þ (HER2-enriched), iii)
basal-like, and iv) normal-like.15 Subsequent transcription
profiling studies of invasive breast cancer demonstrated that
these molecular subtypes are distinct and reproducible
between breast cancer cohorts and using different gene sets
for cluster analysis.38 The currently recognized molecular
subtypes of breast cancer are i) luminal A (ERþ), ii) luminal
B (ERþ/HER2-enriched), iii) HER2þ (HER2-enriched), (iv)
basal-like, v) claudin-low, and vi) normal-like.8,9,18e22

Significantly, the molecular subtypes of breast cancer
revealed by transcriptomic analysis are associated with
different clinical outcomes.15,16,38e42 Recent studies have
shown that the molecular subtypes of breast cancer can be
robustly identified based on other transcriptomic platforms,
including quantitative real-time PCR (qPCR).43 The repro-
ducibility of molecular subtype classification of breast
cancer based on transcriptomic analyses has been
reviewed.44 Although breast cancer classification methods
show good reproducibility, suggesting that these are robust
biological subtypes, breast cancers that are not classifiable
are identified with regular frequency.44

Luminal A and Luminal B Breast Cancers
ERþ breast cancers occur most frequently and comprise two
major molecular classifications: luminal A and luminal B.
Luminal A breast cancers are the most common, with
a frequency of 28% to 31%.44 Luminal B breast cancers are
characterized by ER positivity accompanied by amplifica-
tion and/or overexpression of the HER2 gene. Luminal B
breast cancers occur less frequently, typically representing
approximately 20% of patients in any given data set.44 The
expression status of proliferation-associated genes is one
major discriminator between luminal A and luminal B breast
cancers.45,46 In general, the two ERþ breast cancer subtypes,
luminal A and luminal B, are associated with a good
prognosis and excellent long-term survival (approximately
80% to 85% 5-year survival), whereas the ER� subtypes
(HER2þ and basal-like) are difficult to treat and are asso-
ciated with poor prognosis (approximately 50% to 60%
5-year survival).

The ability of patients with ERþ breast cancers to survive
their disease reflects the availability of effective targeted
1116
therapy in the form of anti-estrogen treatment (eg, tamoxifen).
However, among the ERþ breast cancers, the luminal B
neoplasms are associated with a significantly worse prognosis,
compared with the luminal A subtype.38 The differences in
patient outcomes are due in part to variations in response of
luminal A and luminal B breast cancers to anti-estrogen
treatment.47 Therapy targeted to HER2-overexpressing breast
cancers (including the luminal B subtype) with trastuzumab
(Herceptin; Genentech), either concurrent or sequential with
adjuvant chemotherapy, has improved survival for these
breast cancer subtypes.48

HER2þ Breast Cancers
HER2 is a member of the human epidermal growth factor
receptor family, which also includes EGFR (alias HER1),
HER3, and HER4. In breast cancer and some other cancers,
HER2 behaves as an oncogene, exerting its oncogenic
effects through overexpression, either via the normal gene
or secondary to gene amplification.49 Amplification in
breast cancer of the HER2 gene, ERBB2 (alias CD340,
HER-2, HER2, NEU, and NGL), was first reported in
1987.50 More recently, this subset of breast cancers was
rediscovered through transcriptomic analyses that identified
a cluster of breast cancers with strong expression of the
ERBB2 proto-oncogene.15 HER2þ breast cancers represent
approximately 17% of all breast cancers, with a frequency
of 12% to 21% across different data sets.44 HER2 over-
expression (HER2þ) in breast cancer is associated with poor
clinical outcomes,50 but is also predictive of positive ther-
apeutic responses to anti-HER2 drugs (eg, trastuzumab).49

HER2þ breast cancers are typically ER�, so treatment for
these cancers does not include anti-estrogenic hormonal
therapies. Rather, therapies for the HER2þ breast cancers
are based on combinations of targeted drugs (eg, trastuzu-
mab) and cytotoxic chemotherapy.51 Since the introduction
of targeted therapy for HER2þ breast cancers, the long-term
outcomes for these patients have improved dramatically.52

Basal-Like and Claudin-Low Breast Cancers
Together, the basal-like and claudin-low molecular subtypes
represent subsets of triple-negative breast cancers (as clas-
sified by immunohistochemistry), lacking expression of ER
and PR (ER�/PR�) and also lacking amplification of ERBB2
(HER2�).53 The basal cell phenotype of breast cancer was
first described in immunohistochemical studies,54 and since
then has reemerged through more recent transcriptomic
analyses.15,16,38e42 The basal-like subtype is typically
HER2� and exhibits some characteristics of breast myoepi-
thelial cells.55 Basal-like breast cancers represent approxi-
mately 15% of all breast cancers.44 The basal-like breast
cancers have high rates of cell proliferation and extremely
poor clinical outcomes.16,38 These cancers are associated
with distinct risk factors, including early-onset menarche,
younger age at first full-term pregnancy, high parity
combined with lack of breast feeding, and abdominal
adiposity.56 Basal-like breast cancers have been shown to be
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


49%

30%

8%
7%

6%

3%
21%

Breast Cancer Personalized Medicine
over-represented in patients of certain age and ethnic groups,
specifically young Black women.57 However, this linkage is
not related to genetics, and these cancers affect women of
every age and ethnic group or continental origin.56 Basal-like
breast cancers respond to preoperative chemotherapy.58,59

Despite the observation of pathological complete response
in some patients with basal-like breast cancers, overall these
patients have a very poor prognosis, perhaps related to
a higher likelihood of relapse in those patients in whom
pathological complete response was not achieved.59

Claudin-low breast cancers represent approximately 10%
of all breast cancers.44 These breast cancers are enriched for
markers of epithelial-to-mesenchymal transition and stem
cell-like and/or tumor-initiating cell features.60 Similar to
the basal-like cancers, claudin-low breast cancers respond to
some chemotherapeutic agents, but patients have poor
recurrence-free and overall survival outcomes. This obser-
vation may reflect the fact that these cancers exhibit
mesenchymal properties and may not be sensitive to stan-
dard chemotherapy treatment.60

Normal-Like Breast Cancers
The normal-like breast cancers are so designated because
they tend to cluster closely with normal breast epithelium in
microarray studies.15 It is not yet clear whether this is
a distinct molecular subtype of breast cancer or simply
a grouping of breast cancers that are not otherwise classi-
fiable because of contaminating normal epithelium. Never-
theless, this subset of breast cancer is routinely reported in
gene expression studies.
ER+/PR+/HER2–

ER–/PR–/HER2+

ER+/PR+/HER2+

ER–/PR–/HER2–

Luminal A
Luminal B
HER2+

Basal-like
Claudin-low
Normal-like

3%

27% 15%

61%71%

33%

6% 8%

25%18%

6%
3%

Figure 3 Correspondence between immunohistochemical and molecular
classification of breast cancer. This analysis reflects data from a cohort of
breast cancers for which complete immunohistochemical staining results
for ER, PR, and HER2 were known (no missing values) and for which
molecular classification had been performed based on gene expression
patterns.63 The 381 breast cancers in this cohort were 205 ERþ/PRþ/
HER2�, 33 ERþ/PRþ/HER2þ, 34 ER�/PR�/HER2þ, and 109 ER�/PR�/
HER2� based on immunohistochemical staining and 111 luminal A, 60
luminal B, 57 HER2þ, 80 basal-like, 43 claudin-low, and 30 normal-like
based on gene expression analysis.
Correspondence between Clinical and Molecular
Classifications in Breast Cancer

Molecular classification of breast cancer based on complex
patterns of gene expression provides a link between the
molecular biology of breast cancer and the behavior of
cancer cells in the corresponding subtypes.61 However,
molecular classification of breast cancer has not yet reached
clinical implementation as a routine aspect of patient
management.62 Instead, immunohistochemical staining
proxies for the molecular subtypes have been developed
based on five basic biomarkers: ER, PR, HER2, cytokeratin
5/6, and HER1. The ERþ breast cancers are subclassified as
luminal A-like when they express an ERþ/PRþ/HER2�

pattern and as luminal B-like when they express an ERþ/
PRþ/HER2þ pattern. Similarly, ER� breast cancers are
subclassified as HER2þ when they express an ER�/PR�/
HER2þ pattern and as triple-negative (ER�/PR�/HER2�)
when none of these biomarkers are expressed. Basal-like
breast cancers can be distinguished from other triple-
negative breast cancers by expression of cytokeratin 5/6
(CK5/6þ) and/or EGFR (HER1þ). With this proxy method,
many breast cancers are not classifiable because of mixed
biomarker expression (eg, ERþ/PR� or ER�/PRþ) or lack of
The American Journal of Pathology - ajp.amjpathol.org
expression of all five markers. Clinical classification has
a major influence on treatment decisions for individual
patients. Patients with ERþ breast cancers are typically
treated with anti-estrogenic drugs (eg, tamoxifen) in
conjunction with chemotherapeutic drugs, and HER2þ

breast cancers are treated with anti-HER2 drugs (eg, tras-
tuzumab) in conjunction with chemotherapy.

Although an immunohistochemical staining proxy can be
used to stratify and classify breast cancers in a clinical setting,
the correspondence between clinical (ie, immunohisto-
chemical) and molecular (ie, gene expression) classification
is not very good. This situation is illustrated in Figure 3 for
381 breast cancers for which both immunohistochemical
staining data and molecular classification were available.63

The ERþ/PRþ/HER2� subset contained 100/111 (90%) of
the luminal A breast cancers, but this represents only 49% of
the cancers that were classified as ERþ/PRþ/HER2�

(Figure 3). Thus, more than half of patients with ERþ/PRþ/
HER2� breast cancers have disease that will behave clini-
cally (with respect to therapy response, disease-free
outcomes, and long-term survival) in a manner that is more
similar to the molecular subtypes with poor prognosis
(luminal B, HER2þ, basal-like, and/or claudin-low).
1117
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Luminal A Luminal B HER2+
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98% 99%
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Figure 4 Expression of ER among molecular subtypes of breast cancer.
This analysis reflects data from a cohort of breast cancers for which ER
status based on immunohistochemical staining was known and molecular
classification had been performed based on gene expression patterns.63 The
804 breast cancers in this cohort were 548 ERþ and 256 ER� breast cancers
based on immunohistochemical staining and 195 luminal A, 162 luminal B,
144 HER2þ, 138 basal-like, 89 claudin-low, and 76 normal-like based on
gene expression analysis.

Rivenbark et al
Among luminal B breast cancers, 55/60 (92%) were clas-
sified as ERþ/PRþ/HER2� (representing 27% of this classi-
fication) and only 5/60 (8%) were classified as ERþ/PRþ/
HER2þ (representing 15% of this classification) (Figure 3).
This is in conflict with what might be expected, that most
luminal B breast cancers would be clinically classified as
HER2þ. The ER�/PR�/HER2þ subset was enriched for
HER2þ breast cancers (71% of this subset), but this accounted
for only 24/57 (42%) of all HER2þ breast cancers. The
remaining 58% of HER2þ breast cancers were assigned other
clinical classifications, with 23% (13/57) in the ERþ/PRþ/
HER2� subset and 16% (9/57) in the ER�/PR�/HER2�

subset. Thus, 39% of patients with HER2þ breast cancers
would be misclassified clinically into HER2� subsets and
would be unlikely to receive anti-HER2 therapy.

As might be predicted, the majority of basal-like (67/80,
or 84%) and claudin-low (27/43, or 63%) breast cancers fell
within the ER�/PR�/HER2� subset (together accounting for
86% of this clinical classification), but some of these
aggressive cancers fell into other clinical subsets (Figure 3).
These very aggressive and difficult-to-treat breast cancers
may contribute to adverse patient outcomes (with respect to
relapse and survival) among clinical subsets of breast cancer
(eg, ERþ/PRþ/HER2�) in which an excellent long-term
prognosis is predicted. This analysis strongly suggests,
consistent with the observations of others,32 that molecular
classification of breast cancer cannot be reliably inferred
based on an immunohistochemical staining surrogate.

The most commonly used targeted therapies in breast
cancer treatment are anti-estrogenic (eg, tamoxifen) or anti-
HER2 (eg, trastuzumab).64 Clinical classification of these
biomarkers therefore affects the therapeutic strategy applied
to every patient. The frequency of ER positivity and ER
negativity (based on immunohistochemical staining) varies
for each of the molecular subtypes of breast cancer
(Figure 4).63 The luminal A and B subtypes are considered to
be ERþ breast cancers, and indeed these are rarely ER�.
Likewise, normal-like breast cancers are more often ERþ. In
contrast, HER2þ, basal-like, and claudin-low breast cancers
are considered ER� breast cancers, but these breast cancer
subtypes are clinically classified as ERþ with some
frequency (Figure 4). The HER2þ breast cancers are most
heterogeneous for ER expression, exhibiting positivity in
approximately 56% of cases, whereas the basal-like and
claudin-low breast cancers are ERþ in 17% and 35% of
cases, respectively (Figure 4). The frequency of HER2
positivity and negativity (based on immunohistochemical
staining) also varies for each of the molecular subtypes of
breast cancer (Figure 5).63 Luminal B and HER2þ breast
cancers are considered HER2þ, but the majority of luminal B
breast cancers (90%) are HER2� by immunohistochemical
staining, and although the HER2þ molecular subtype is
enriched for HER2þ breast cancers (based on immuno-
staining), 39% are classified as HER2� (Figure 5). The basal-
like and claudin-low breast cancers are typically HER2�

(Figure 5). The normal-like breast cancers are most often
1118
HER2� (69%), but a substantial fraction (31%) are classified
as HER2þ.
Application of Molecular Signatures to Predict
Outcomes in Breast Cancer

Prediction of outcome in breast cancer is very difficult.
Numerous clinicopathologic parameters can be used to
predict outcomes for individual breast cancer patients, but
many of these have limited predictive power.65 Since the
introduction of gene expression analysis using micro-
arrays, and comparable massively parallel technologies,
molecular assays have been developed for use in pre-
dicting breast cancer outcomes. Several such molecular
assays are currently used in the clinical assessment of
breast cancer, including MammaPrint (Agendia), oncotype
DX (Genomic Health), Ipsogen MapQuant Dx (Qiagen
Marseille), PAM50 (PAM50 Breast Cancer Intrinsic
Classifier; ARUP Laboratories), and Breast Cancer Index
(bioTheranostics).32,66 Each of these assays attempts to
provide reliable measures of outcome risk based on
complex gene expression signatures. For example, Mam-
maPrint is a 70-gene prognosis profile, approved by the
Food and Drug Administration, that is offered as a prog-
nostic test for breast cancer patients who are ERþ or ER�,
lymph node-negative (stage IeII), and under the age of
61.67 This assay stratifies patients at low or high risk for
metastasis based on a gene expression score.67,68 Patients
at high risk for metastasis are recommended for aggressive
chemotherapy, with more conservative therapy for those
with a lower score.
ajp.amjpathol.org - The American Journal of Pathology
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HER2 Positive (HER2+) HER2 Negative (HER2–)

Luminal A Luminal B HER2+
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Figure 5 Expression of HER2 among molecular subtypes of breast
cancer. This analysis reflects data from a cohort of breast cancers for which
HER2 status based on immunohistochemical staining was known and
molecular classification had been performed based on gene expression
patterns.63 The 498 breast cancers in this cohort were 101 HER2þ and 397
HER2� breast cancers based on immunohistochemical staining and 128
luminal A, 90 luminal B, 92 HER2þ, 96 basal-like, 53 claudin-low, and 39
normal-like based on gene expression analysis.

Breast Cancer Personalized Medicine
In similar fashion, the oncotype DX is a 21-gene prog-
nostic and predictor assay based on a continuous variable
algorithm that is used to predict the likelihood of relapse
among patients with ERþ, lymph node-negative early-stage
breast cancer.69e71 The predictive gene expression signature
is identified through supervised analysis of microarray
data.69 The recurrence score generated using oncotype DX
reflects the potential for recurrence among patients with
early-stage breast cancer for whom the clinicopathological
assessment suggests good prognosis, stratifying the patients
who require aggressive therapy (ie, those likely to experi-
ence recurrence despite other, favorable predictive factors)
versus those for whom conservative treatment will suffice.
PAM50 is a 50-gene predictive assay that is based on qPCR
for assessment of gene expression levels.43 This assay
stratifies breast cancers according to intrinsic molecular
subtype predictive of outcome.16,38 Ongoing clinical trials
are expected to provide insight into the clinical utility of
these various molecular assays in the management of breast
cancer patients.66
Figure 6 Heterogeneity of HER2 expression in a single invasive breast
cancer. Heterogeneity for HER2 positivity but uniform positivity for ER
expression is observed in a single cancer in a single patient. A: H&E staining
of an ERþ/HER2þ region of an invasive breast cancer. B and C: This region of
the cancer demonstrates strong (3þ positivity) HER2 expression (HER2þ) by
immunostaining (B) and uniform strong ER expression (C). D: H&E staining
of an ERþ/HER2� region of the same invasive breast cancer. E and F: This
region of the cancer demonstrates weak (1þ positivity) HER2 expression
(HER2�) by immunostaining (E) and uniform strong ER expression (F).
Original magnification: �10 (A and D); �40 (B, C, E, and F).
Cellular Heterogeneity among Breast Cancers

The majority of breast cancers are morphologically classi-
fied as invasive ductal carcinoma. Although these cancers
are not perfectly uniform with respect to cellular charac-
teristics and growth patterns, they are remarkably consistent
with respect to histopathological features. Despite the
common morphological appearance of these cancers, their
clinical behaviors are extremely disparate. Clinical stratifi-
cation of this group of breast cancers has been achieved
The American Journal of Pathology - ajp.amjpathol.org
primarily in terms of hormone receptor (ER/PR) status and
HER2 status (Figure 2). The clinical outcome of breast
cancers has been linked to ER status, with patients having
ERþ breast cancers faring better than those having ER�

breast cancers. In the case of ERþ/luminal A breast cancers,
the excellent patient outcomes are likely to reflect the
molecular character of these cancers (ie, lack of aggressive
features associated with cell proliferation),15 as well as the
general responsiveness of these cancers to anti-estrogenic
therapies.72 Likewise, HER2 status has also been linked to
patient outcomes. ERþ/HER2� breast cancers are associated
with good prognosis, and HER2þ breast cancers are typi-
cally responsive to anti-HER2 drugs. Thus, despite the
aggressiveness and poor outcomes associated with HER2þ

breast cancer, the availability of targeted therapies has
fundamentally altered outcomes for these patients.51

Classification of breast cancer based on these immuno-
histochemical biomarkers is extremely important to the
routine management of the individual patient. In some
cases, however, classification is complicated.73 At the
extreme, breast cancers can have a mixed immunohisto-
chemical phenotype, making classification of the cancer
impossible. This is illustrated in Figure 6 by routine
immunohistochemical staining of ER and HER2 in two
different aspects of a single breast cancer occurring in an
individual patient. This breast cancer contained elements of
tissue that were ERþ/HER2þ, but also distinct elements of
tissue that were ERþ/HER2�, thus exemplifying variable
overexpression of HER2 in a single breast cancer. Addi-
tional examples of cellular heterogeneity within breast
cancers have been documented, including variable expres-
sion of ER, as well as cancers exhibiting regions of tissue
that are triple negative.74 These mixed-phenotype cancers
present a challenge to clinicians, because use of targeted
anti-estrogenic drugs or anti-HER2 drugs in breast cancers
that contain ER� or HER2� regions cannot treat the entire
1119
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disease (although it may effectively target a portion of the
disease). Using a single or a few protein biomarkers can
reveal marked variability in a given breast cancer. Of greater
significance may be the underlying molecular heterogeneity,
which is much more difficult to observe. With clonal
evolution of a developing breast cancer, it is likely that
multiple subpopulations of cells with specific molecular
alterations will emerge and persist in the clinical cancer.

The presence of cellular heterogeneity within a breast
cancer likely reflects the natural history of the lesion and the
successive outgrowth of subpopulations of altered cells
during carcinogenesis.13 An enduring paradigm of cancer
biology is that cancer is a complex multicellular disease that
originates from a single cell. The clonal evolution of breast
cancer, beginning with a normal epithelial cell and ending
with a clinical metastatic cancer, occurs through many steps,
with numerous molecular alterations (both genetic and
epigenetic) and multiple emergent cellular populations with
altered phenotypic characteristics. During this protracted
process of breast carcinogenesis, successive populations of
altered cells emerge; some persist and others decline.
However, the appearance of a new dominant clonal pop-
ulation is not necessarily accompanied by the disappearance
of other subpopulations of cells. Clonal outgrowth of
successive populations of nascent cancer cells results in
a complex cellular landscape in the tissue, reflecting the
molecular and cellular heterogeneity of the subpopulations
of cells contained therein.26

Throughout carcinogenesis, tumorigenesis, and progres-
sion, individual cells acquire molecular alterations, whether
genetic mutations or epimutations (ie, epigenetic alter-
ations), that confer new cellular phenotypes and behaviors.
Thus, activation of a given growth pathway or inactivation
of a tumor suppressor pathway (or some combination of
these) confers growth advantages in affected cells, compared
with neighboring cells without the same molecular alter-
ation. The end result is a heterogeneous mixture of altered
cell populations with adjacent normal cells, only some of
which will acquire all of the necessary changes to produce
a cancerous mass lesion. The cellular heterogeneity observed
in breast cancer has important implications for patient
management. Subpopulations of breast cancer cells can
represent cancer stem cells (or tumor-initiating cells) and/or
treatment-resistant cells.26 The presence of cancer stem cells
may account for regrowth of a breast cancer in which
pathological complete response was achieved through initial
clinical interventions. Furthermore, resistant cell populations
(cancer stem cells or other) may give rise to cancer recur-
rence, despite good therapeutic response by the bulk cancer.
Molecular Heterogeneity among Breast Cancers

The development of breast cancer occurs in response to an
accumulation of genetic and epigenetic abnormalities that
drive uncontrolled growth of breast epithelial cells (Figure 1).
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The primary manifestations of the genetic and epigenetic
abnormalities occurring in breast cancer are reflected in the
cellular behaviors observed in cancer cells (autonomy of
growth control, resistance to growth suppression and
apoptosis, and ability to invade local and metastasize to
distant sites) and in the underlying gene expression patterns.
However, the genetic and epigenetic alterations occurring in
breast cancer cannot be fully understood and represented in
gene expression patterns alone.
In 2012, the Cancer Genome Atlas Network published

results related to analyses of gene expression patterns, gene
mutations, DNA copy number, DNA methylation, and
miRNA expression patterns among a large cohort of
approximately 800 breast cancers.29 This study demonstrated
clearly that breast cancer is a heterogeneous disease with
multiple distinct molecular subtypes and that there is great
diversity among the recognized major molecular subtypes.29

It follows that the molecular processes governing the path-
ogenesis of breast cancers of a given molecular subtype can
vary, involving different mechanisms for gene activation or
inactivation and different genes representing positive and
negative mediators of neoplastic development and progres-
sion, and that, therefore, no singular molecular mechanism of
breast cancer pathogenesis exists. Further investigation will
be required to elucidate the various pathways that can lead to
breast cancer development and the key molecular events that
contribute to tumorigenesis and progression (driver versus
passenger genetic and epigenetic events).
Using multiple platforms for gene expression analysis,

including microarrays and next-generation, high-throughput
sequencing, the Cancer Genome Atlas Network study
reproduced the well-recognized ERþ and ER� molecular
subtypes of breast cancer.29 In addition, certain molecular
subtypes of breast cancer were found to be associated with
specific genetic alterations. For instance, HER2þ and basal-
like breast cancers exhibit a high rate of somatic mutation in
the TP53 tumor suppressor gene (72% to 80%), whereas
other molecular subtypes exhibit TP53 gene mutations
much less frequently (12% to 29%).29 Luminal A, luminal
B, and HER2þ subtypes exhibited significant rates of
mutation in the PIK3CA gene (45%, 29%, and 39%,
respectively), whereas basal-like breast cancers are rarely
associated with mutation of this gene (9%).29 It is notable
that very few genes were found to be mutated at greater than
10% frequency within or across the molecular subtypes of
breast cancer, but numerous genes (including at least 177
cancer-associated genes) were mutated in smaller numbers
of cancer (>20,000 nonsilent somatic mutations among 510
breast cancers).29 Copy number variations reflecting gene
deletions and amplifications were found to affect numerous
genes and gene regions, including amplifications in PIK3CA
and ERBB2 chromosomal regions and deletions in TP53 and
MAP2K4 chromosomal regions, among others.29

Cancer-associated alterations in DNA methylation
include global hypomethylation and gene-specific hyper-
methylation.75e77 Recent evidence suggests that these
ajp.amjpathol.org - The American Journal of Pathology
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epigenetic mechanisms play a major role in breast
carcinogenesis.78e85 Genes that have been determined to be
directly silenced by DNA methylation in breast cancer
include cell-cycle control genes (CDKN2A), steroid receptor
genes [ESR1 (alias Era, NR3A1), PGR (alias PR, NR3C3),
and RARB (alias HAP, NR1B2, RRB2)], tumor suppressor
genes (BRCA1), genes associated with cancer metastasis
(CDH1, TIMP3), and many others.86e90 Loss of expression
of ER is frequently associated with hypermethylation of the
ESR1 gene. In addition to hypermethylation of specific
genes, hypomethylation affecting large chromosomal
regions can be associated with aberrant or inappropriate
expression of genes that contribute to cancer development
and progression. Furthermore, genome-wide demethylation
contributes to chromosomal instability by destabilizing
pericentromeric regions of certain chromosomes.91e93 Thus,
epigenetic mechanisms operating in breast cancer may
contribute to altered expression of specific genes, altered
expression of genes located in common chromosomal
regions, and/or genetic instability resulting in copy number
alterations.
The Future of Personalized Breast Cancer
Therapy

Investigations into the molecular pathogenesis and biology
of breast cancer have increased our understanding of the
disparate clinical behaviors observed among invasive breast
cancers. Although it is clear that traditional histopatholog-
ical evaluation of breast cancer has value and can be used to
classify these cancers based on fundamental phenotypic
properties, such as ER and HER2 expression status, the
actual complexity of the disease cannot be fully evaluated
without consideration of the breast cancer genome, tran-
scriptome, and proteome. It is clear from the available
literature that there is great diversity among breast cancers
when these measures are considered individually or in
combination.29 The available genomic, transcriptomic, and
proteomic data could be interpreted to suggest that every
breast cancer is a distinct entity. The recent findings of the
Cancer Genome Atlas Network suggest that the molecular
signature of each breast cancer is unique whether compared
with its closest neighbors (based on clustering) or compared
with other breast cancers of the same molecular classifica-
tion or compared across all cases.29 The degree of molecular
diversity observed increases with greater numbers of genes
evaluated. This same observation can be made for gene
mutations, copy number variations, pathway activation, and
proteomics data.29

The molecular alterations observed in any given breast
cancer represent either driver events that are necessary for
cancer development or progression or passenger events that
are secondary to other changes and/or that are not necessary
for disease development or progression. Given the available
data, it is tempting to speculate that there are many drivers
The American Journal of Pathology - ajp.amjpathol.org
and/or driver pathways (rather than only a few major
pathways) leading to breast cancer, and that each driver
pathway accounts for only a small percentage of cancers.
We assume that the driver events and affected driver genes
convey some advantage to the emergent neoplasm, either
through activation of a positive mediator of neoplastic
development (eg, proto-oncogenes) or inactivation of
a negative mediator of neoplastic development (eg, tumor
suppressor genes). In contrast, the passenger events may
represent collateral damage or secondary consequences of
the driver events. However, this is not to suggest that the
passenger events and genes do not contribute to the clinical
behavior of the primary breast cancer and/or progression of
the disease. It is likely that disparate responses to a given
drug regimen among an otherwise similar cohort of breast
cancers reflect underlying molecular alterations that render
the treatment ineffective or promote resistance. Additional
studies will be required to elucidate the complex relation-
ships between the molecular biology of a given breast
cancer and how that cancer responds to a specific thera-
peutic strategy (ie, drug combination, dose, and schedule).

If we accept the premise that every breast cancer is unique
and reflects distinct qualitative and quantitative molecular
traits, then knowledge of the entirety of molecular traits
carried in any given breast cancer and patient is required for
true personalized therapy to be realized. The need to eval-
uate more completely the various omics associated with
a given patient and their breast cancer presents a number of
challenges. The methods used would need to be practical
(rapid and inexpensive), but provide in-depth molecular
information. Next-generation, high-throughput sequencing
technologies offer a technological basis for the rapid and
practical assessment of the comprehensive breast cancer
molecular signature.94 Next-generation sequencing applied
to cancer-derived RNA and DNA provides data that can be
mined for gene expression patterns, copy number variations,
and gene mutation status.95 This technology will surely
provide valuable research tools as investigators address the
contribution of individual molecular lesions to the biology
of breast cancers, and may lead to identification of new drug
targets or new biomarkers for disease detection or prog-
nostication. In addition, detailed molecular data from
patients who have been subjected to specific therapeutic
strategies (drugs or drug combinations) may enable corre-
lation analysis to identify molecular lesions that could guide
treatment (by conferring sensitivity) or might confound
treatment (by conferring resistance).

In the future, data from next-generation sequencing or
comparable technologies of breast cancers from individual
patients may find utility in treatment decisions and choos-
ing appropriate therapeutic strategies.96 However, for any
molecular technology used in this manner, the presence of
cellular and molecular heterogeneity among breast cancers
necessarily presents a significant barrier. Given the biolog-
ical significance of cancer stem cells or other small pop-
ulations of cells within a breast cancer that might influence
1121
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disease recurrence or drug resistance, failure of molecular
methods to detect genomic, transcriptomic, or proteomic
alterations within these cells necessarily results in prog-
nostic failure. For current basic science, clinical, and
translational researchers, the challenge is to evaluate large
numbers of breast cancers (with known treatment and
clinical response measures) to link specific qualitative or
quantitative molecular traits with positive or negative
responses to a variety of targeted and nontargeted drugs.
With advancement of knowledge of comprehensive breast
cancer molecular signatures, personalized medicine can be
incrementally implemented for subsets of patients through
prospective trials that increase the evidence base related to
the pharmacogenomics of breast cancer.
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