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Discovery and Statistical Genotyping of Copy-Number
Variation from Whole-Exome Sequencing Depth
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Douglas M. Ruderfer,1,2,4,5 Robert E. Handsaker,3,6 Steven A. McCarroll,2,3,6 Michael C. O’Donovan,7

Michael J. Owen,7 George Kirov,7 Patrick F. Sullivan,8,9 Christina M. Hultman,9 Pamela Sklar,1

and Shaun M. Purcell1,2,3,4,5,*

Sequencing of gene-coding regions (the exome) is increasingly used for studying humandisease, for which copy-number variants (CNVs)

are a critical genetic component. However, detecting copy number from exome sequencing is challenging because of the noncontiguous

nature of the captured exons. This is compounded by the complex relationship between read depth and copy number; this results from

biases in targeted genomic hybridization, sequence factors such as GC content, and batching of samples during collection and

sequencing. We present a statistical tool (exome hidden Markov model [XHMM]) that uses principal-component analysis (PCA) to

normalize exome readdepth andahiddenMarkovmodel (HMM) todiscover exon-resolutionCNVandgenotypevariationacross samples.

We evaluate performance on 90 schizophrenia trios and 1,017 case-control samples. XHMMdetects amedian of two rare (<1%)CNVs per

individual (one deletion and one duplication) and has 79% sensitivity to similarly rare CNVs overlapping three ormore exons discovered

with microarrays. With sensitivity similar to state-of-the-art methods, XHMM achieves higher specificity by assigning quality metrics to

the CNV calls to filter out bad ones, as well as to statistically genotype the discovered CNV in all individuals, yielding a trio call set with

Mendelian-inheritance properties highly consistent with expectation. We also show that XHMM breakpoint quality scores enable

researchers to explicitly search for novel classes of structural variation. For example, we apply XHMM to extract those CNVs that are

highly likely to disrupt (delete or duplicate) only a portion of a gene.
Introduction

Copy-number variants (CNVs) have emerged in the last

decade as a category of structural genetic diversity that

plays a key role in human health and common disease.1

A number of studies have implicated deletion and duplica-

tion CNVs in cancer susceptibility, metastasis, gene expres-

sion, and treatment.2 Similarly, rare CNVs are enriched in

individuals with severe neuropsychiatric conditions, such

as autism (MIM 209850), schizophrenia (MIM 181500),

intellectual disability, and epilepsy.3–6 In fact, copy-

number changes are the variants that have the largest

known effect on the risk of schizophrenia possibly as

a result of the constant introduction of de novo germline

mutations.7 However, knowledge regarding the scope of

CNV effects on disease is still incomplete. This results

from the need for additional samples, as well as from

a lack of fine-grained genomic resolution in existing tech-

nologies, such as microarray-based approaches (SNP arrays

or array comparative genomic hybridization [aCGH]), with

which most work on CNV detection has been performed.

Although aCGH has gained resolution over the years, its

widespread use might be limited because of its focus on

CNV discovery at the expense of other variation.
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The introduction of next-generation-sequencing (NGS)

technology has provided a window into the genome at

base-pair resolution and has the advantage of allowing

simultaneous discovery of single-nucleotide, indel, and

structural (translocation, inversion, and copy-number)

variation. In practice, many recent disease studies have

chosen high-depth targeted exome sequencing, i.e.,

focusing on known coding regions of the genome.8,9 The

key reasons for this are the lower cost as compared to that

of whole-genome sequencing, the expectation from

Mendelian disorders that the exome will be enriched for

disease mutations, and the interpretability of a variant’s

effect on gene product. Such studies are likely to continue

into the foreseeable future because exome sequencing of

many individuals will have more statistical power to detect

disease association than will whole-genome sequencing of

fewer individuals. However, to maximize the impact on

disease, these studies need to integrate the full spectrum

of genetic variation ascertainable by using sequencing

even though this is fraught with difficulty.10

Numerous tools exist for discovering CNVs from array

intensities, and recent work has placed CNV calling on

solid ground for whole-genome sequencing data by

utilizing diverse information, including unusual mapping
, NY 10029, USA; 2Stanley Center for Psychiatric Research, Broad Institute,

e Broad Institute of Harvard andMIT, Cambridge, MA 02142, USA; 4Analytic

eral Hospital and Harvard Medical School, Boston, MA 02114, USA; 5Center

02114, USA; 6Department of Genetics, Harvard Medical School, Boston,

ical Research Council Centre for Neuropsychiatric Genetics and Genomics,

f University, Cardiff, CF14 4XN, UK; 8Department of Genetics, University of

Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm

.edu (S.M.P.)

y of Human Genetics. All rights reserved.

an Journal of Human Genetics 91, 597–607, October 5, 2012 597

mailto:menachem.fromer@mssm.edu
mailto:shaun.purcell@mssm.edu
http://dx.doi.org/10.1016/j.ajhg.2012.08.005


Figure 1. XHMM Pipeline for Discovery
and Genotyping of CNVs from Exome
Read-Depth Information
The XHMM framework starts with aligned
exome read BAM files to: (1) calculate
depth of coverage (top left panel), (2)
normalize read depth by using principal-
component analysis (PCA) (top right
panel), (3) train and run a hidden Markov
model (HMM) (bottom right panel), and
(4) output CNV calls and genotype quali-
ties for all samples (bottom left panel).
of read mate pairs to the reference genome, ‘‘split’’ reads

that span breakpoints, and sequencing depth of coverage,

i.e., ‘‘read depth.’’11 In contrast, because exome sequencing

takes aim at a sparse (~1%) set of noncontiguous genomic

targets (the exons), most CNV breakpoints will not be

sequenced, leaving read depth as the predominant indi-

cator of CNVs. However, the quantitative relationship

between true copy number and depth is distorted by

target- and sample-specific biases in exome hybridization

(‘‘capture’’), PCR amplification, sequencing efficiency,

and in silico readmapping, all of which are in turn affected

by GC content of the targets, target size and sequence

complexity, proximity to segmental duplications, nucleo-

tide-level variation (SNPs), DNA concentration, hybridiza-

tion temperature, experimental sample batching, and the

complex interplay among these and various indeterminate

factors (Figure S1, available online). The resulting differ-

ences are dramatic in that the number of reads varies by

an order of magnitude or more (Figure S2), even for diploid

regions (copy number ¼ 2). Hence, whole-genome read-

depth methods are not applicable to targeted sequencing

if the extra biases are not accounted for.

Previously, researchers tailored CNV methods to tar-

geted sequencing and used read-depth normalization to

account for a small set of predefined factors, including

background depth, GC content, and analysis window

size.12 When ‘‘split’’ read evidence exists, it has been used

for augmenting detection of CNVs,13 as well as other

structural variants, indels, and copy-number-polymor-

phic-processed pseudogenes.14 Cancer studies have af-

forded themselves the use of per-sample case-control

matching (tumor versus normal) to simplify depth normal-

ization.15

To augment the repertoire of tools for ‘‘variation

hunting,’’ we developed XHMM (exome hidden Markov

model, Figure 1), a statistical toolset for detecting exon-
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resolution CNVs from exome

sequence data with a disease-moti-

vated focus on rare (<5%) events

(see Material and Methods). XHMM

extracts copy-number signal from

noisy read depth by leveraging the

large-scale nature of sequencing

projects to discern patterns of read-
depth biases. Specifically, we ran a principal-component

analysis (PCA) on the sample-by-target-depth matrix by

‘‘rotating’’ the high-dimensional data to find the main

modes in which depth varies across multiple samples and

targets, and we removed the largest of such effects. This

resulted in rigorous data-driven normalization (Figure S2)

without the requirement of detailed knowledge of the

particular confounders, although we did observe correla-

tion with expected ones such as GC content (Figure S3).

After this, we used a hidden Markov model (HMM) to

discover CNVs spanning adjacent targets, where depletion

or enrichment in normalized read depth implies a deletion

or duplication, respectively. Our model takes into account

genome-wide CNV rates, length, and distance between

exome targets. Next, we derived HMM-based quality scores

that measure the certainty we have regarding a CNV,

its breakpoints, not having a CNV, and other metrics

(see Material and Methods), which we implemented as

a multisample quantitative genotyping module that

estimates which samples show some (or no) evidence of

a CNV discovered in another sample. Thus, XHMM is

uniquely suited to detect de novo CNVs and other events

requiring high-confidence accuracy, e.g., CNVs whose

breakpoints fall within a gene and leave only a partial

segment16 where such ‘‘gene disruptions’’ have been impli-

cated in disease.6,17,18,19

Material and Methods

Primary CNV-Calling Pipeline
We now detail the six steps in the XHMM framework for CNV

detection from exome sequencing data.

Coverage: Per-Sample, Per-Target Depth

To start, XHMM requires sequencing reads aligned to the refer-

ence genome (in a BAM file), for which we use the Picard/

Genome Analysis ToolKit (GATK) NGS data-processing pipeline



implemented at the Broad Institute, as previously described.20 In

brief, the Burrows-Wheeler Aligner (BWA)21 was used for read

mapping and was followed by local realignment around known

indels, marking of PCR duplicates, and base-quality-score recali-

bration. Next, XHMM uses GATK to calculate raw depth-of-

coverage values across the exome. Specifically, at a given genomic

position, the depth of coverage is defined as the number of

sequenced reads aligning to that base (Figure 1, top left), and

a minimum read mapping quality of 20 is required by default.

This quality threshold is intended for the removal of reads that

are spuriously mapped to a target or that have the potential to

equally map to multiple genomic loci (MQ0 reads), but this value

can be changed without grossly affecting results. For each exon

target, the depth-of-coverage values are averaged over its extent,

yielding a raw read-depth matrix of samples by targets (Figure S1);

the value of a matrix entry is the mean number of reads covering

each base in the corresponding target for a particular sequenced

sample.

Filter I: Extreme Targets and Samples

The purpose of this prenormalization step is to ensure relative

homogeneity in the samples and targets and prevent deviant

values from adversely affecting the subsequent PCA. To do this,

XHMM performs an outlier removal step, in which it filters out

targets with extreme GC content (<0.1 or >0.9), targets with

a significant stretch of low-complexity sequence (>10% of target

bases soft masked by RepeatMasker22 in the hg19 human reference

sequence), targets less than 10 bp or larger than 10 kb, or

targets with very low coverage (<103 averaged over all samples)

or very high coverage (>5003) in our experiment. Because the

samples here were sequenced to an average coverage of 100–

1503, we next removed samples with coverage values that

were empirical outliers with respect to the full set of samples—

those with unexpectedly low coverage (<503 averaged over all

targets), high coverage (>2003), or extreme variance (standard

deviation > 120 over all targets). As an example, the read-depth

distributions for individual samples and targets are plotted in

Figure S4. For other studies, we recommend examining the read-

depth distributions and removing appropriate outliers.

PCA Normalization of Read Depth

The read depth of exome sequencing for an exon target is a

function of a number of biochemical properties of the genome,

in addition to experimental and bioinformatic steps including

genomic fragmentation, array hybridization (‘‘capture’’), PCR,23

sequencing,24 and in silico alignment to the reference genome

(‘‘mapping’’).25,26 Direct readout of copy number from depth of

coverage is not possible because of local genomic-context effects

(e.g., GC content,27 repeats, or low-complexity sequence), the

inherent biases in each experimental step, and the dynamic range

of ambient conditions during the handling of different sample

batches.

We thus hypothesized that most of the read-depth variation

within a sample and between targets is in fact dominated by

effects unrelated to and independent of copy number. To

normalize out what is effectively noise when looking for CNV

signal, we applied PCA to find the main sources of confounding,

i.e., orthogonal high-dimensional axes in which the read depth

varies (Figure 1, top right). In detail, we first centered the target

read depths about their means and used the singular value decom-

position (SVD) implementation of PCA on the individual-by-

target read-depth matrix. To better understand the nature of the

systematic biases on target depth, we calculated the correlation

between the top 100 principal components and various signals
The Americ
that we expected to possibly be involved in determining the

read depth of exome sequencing, and we observed the strongest

correlations with sample batch, exome-wide mean sample and

target depths, target GC content, population, and combinations

of these factors (Figure S5). Importantly, some of the highest

components were not apparently correlated with any of these pre-

defined phenomena, yet they clearly were not indicative of CNV

levels. In practice, a scree plot (Figure S6) is often statistically infor-

mative for visually aiding the selection of components with high-

est variance if one looks for an ‘‘elbow’’, i.e., a sharp drop in the

read-depth variance contributed by later principal components,

in the plot.

More formally, to find the high-variance components that are

presumed to explain most of the read-depth variation (due to

systematic biases), XHMM follows the empirical rule of thumb

by calculating the relative variance of each component and

removing the K components with a value of 0.7 / n or higher,28

where n is the number of components (in this case, number of

samples) and 0.7 is a user-tunable XHMM parameter. To remove

these K components, we subtract them out from the matrix of

all samples’ read depths R to obtain the normalized read-depth

matrix R*:

R� ¼ R�
XK

i¼1

cic
T
i R; (Equation 1)

where ci is the i
th principal component of R to be normalized out of

the depth signal.

As an example, the left panel of Figure S2 demonstrates the large

positional and sample effects of the raw readdepths for 500 samples

in a region of 26 targets across almost 200 kb; the most striking

observation is that each target has a characteristic mean shift of

sequencing coverage. Furthermore, particular samples show con-

sistently higher (or lower) coverage possibly as a result of batch-

ing effects, global extent of sequencing for that sample, or a real

signal of CNVs. The read depths for a number of samples sus-

pected of having duplication events are highlighted in green, but

these CNVs can be directly read off only after normalization (right

panel).

Filter II: Extremely Variable Targets

After the PCA normalization, there were still a number of targets

with extreme variability in normalized depth. Thus, by default,

XHMM filters out targets with a standard deviation of normalized

read depth > 30 in an effort to ensure homogeneity in the input

for the next stage and remove any outliers not normalized in

previous steps. The filtering performed at this stage might need

to be adapted to the features of a particular experiment.

Discovery: Per-Sample CNV Detection with a HMM

In the next step, XHMM discovers CNVs in each sample by using

a HMM algorithm for segmentation of the exome into ‘‘diploid,’’

‘‘deletion,’’ or ‘‘duplication’’ regions, which correspond to average,

below-average, and above-average read depth, respectively. To do

this, XHMM first transforms the PCA-normalized read depths by

using a Z score calculation for each sample separately so that

target-depth values are on a similar scale. These Z scores are used

as input to a 3-state HMM (Figure 1, bottom right) that is concep-

tually similar to that used for whole-genome methods,29 but it

takes into account exome-wide CNV rates and length distribu-

tions, as well as the distance between exome targets (this makes

it more likely to continue a CNV within a single gene than across

distant genes). The underlying homogeneous HMM state-transi-

tion matrix is given in Table 1, where 0 < p < 1 is the exome-

wide CNV rate, q ¼ 1 / T, and T > 0 is the mean number of targets
an Journal of Human Genetics 91, 597–607, October 5, 2012 599



Table 1. Basic HMM Transition Matrix

From Y To / Deletion Diploid Duplication

Deletion 1 � q q 0

Diploid p 1 � 2p p

Duplication 0 q 1 � q

This matrix takes into account the exome-wide CNV rate (p) and the mean
number of targets in a CNV (1 / q).

Table 2. Distance-Dependent HMM Transition Matrix

From Y To / Deletion Diploid Duplication

Deletion f(1 � q) þ
(1 � f)p

fq þ (1 � f)(1 � 2p) (1 � f)p

Diploid p 1 � 2p p

Duplication (1 � f)p fq þ (1 � f)(1 � 2p) f(1 � q) þ
(1 � f)p

For two exons located d base pairs apart, this matrix takes into account exome-
wide CNV rate, the mean number of CNV targets (see Table 1), and the atten-
uation of CNV rates at distance d (f ¼ e�d/D, where D is the mean distance
between targets in a CNV).
in a CNV (geometrically distributed with parameter q). Note that,

for simplicity, this model is symmetric with respect to deletions

(copy number < 2) and duplications (copy number > 2), although

it need not be so. In order to take into account the distance

between targets in the exome (denoted by d), we overlay onto

the matrix in Table 1 a distance-dependent exponential attenua-

tion factor, f ¼ e�d/D, where D is the expected distance between

targets in a CNV (in bases). For longer distances between targets

(weighted by 1 � f), we want the probability of being in a CNV

to approach that of starting a CNV from a previously diploid state

(middle row). This results in the final nonhomogeneous state-tran-

sition probabilitymatrix for two targets at a distance of d base pairs

(Table 2).

Because we normalize the read-depth values into Z scores, the

read-depth emission probability function is symmetrically taken

to be a normal distribution of variance 1 centered at �M, 0,

and þM, for deletion, diploid, and duplication, respectively.

To perform CNV discovery, XHMMmakes copy-number calls by

using the standard HMM Viterbi algorithm, which provides the

most likely copy-number state given all of the sample’s read-depth

data (Figure 1, bottom left) and fixed HMM parameters. To choose

HMM parameters, we used the trio samples to perform a grid

search to find a combination of all parameters minimizing both

the number of putative ‘‘de novo’’ CNVs and the deviation from

a 50% transmission rate. We considered p to be between 10�4

and 10�8, T to be between 1 and 6, D to be between 103 and 5 3

105, andM to be between 1 and 6. On the basis of the trio data, we

chose CNV rate p ¼ 10�8, mean targets per CNV T ¼ 6, mean

within-CNV target distance D ¼ 70,000 (70 kb), and depth Z score

threshold M ¼ 3. These parameters, although by no means the

‘‘optimal’’ ones, are reasonable in nature, and we expect them to

be broadly applicable for similar experimental exome data sets

without significant fine tuning. Importantly, these parameters still

give a liberally large CNV call set that should maximize sensitivity

toward finding almost all CNV calls for which there is sufficient

read-depth signal, whereas we use the quality metrics defined

below to achieve higher specificity.

Genotype: Assign HMM-Based Quality Metrics to All Samples for

Discovered CNVs

After running the per-sample HMM Viterbi algorithm to discover

CNV in each sample, we leveraged the HMM framework to

‘‘genotype’’ each such event across all samples in the data set.

Specifically, we derived metrics from the rich field of HMMs to

calculate posterior probabilities of, for example, having the whole

delineated region as deleted, having some deleted target in the

region, not having any deleted targets at all, or having the break-

point occurring exactly as called in the discovery step. These quan-

tities can be calculated efficiently with the HMM chain structure

and can be used for defining quality scores regarding the event

occurring (or not occurring) in a particular sample. The important
600 The American Journal of Human Genetics 91, 597–607, October
point is that these can be applied to any sample with read-depth

data and not just the sample in which the CNV was originally

discovered.

As a concrete example, let us assume that a deletion was discov-

ered in some sample ranging between targets t1 and t2, and we

would like to genotype this event in a different sample, whose

normalized read-depth Z score and underlying copy-number

vectors we denote by y1:E and x1:E, respectively (E is the number

of exome-wide targets). For simplicity, we denote deletion, diploid,

and duplication states as 1, 2, and 3, respectively.

Now, running the standard HMM forward-backward algorithm

on this sample gives the quantities:

Forward probability of copy number xt at target t:

ftðxtÞ ¼ Pr
�
y1:t ; xt

�

Backward probability of copy number xt at target t:

btðxtÞ ¼ Pr
�
ytþ1:E j xt

�

Data likelihood:

Pr
�
y1:E

� ¼
X3

xt¼1

ftðxtÞ$btðxtÞ;c1%t%E:

With HMM theory, it can be shown that the probability of copy-

number sequence xt1 :t2 given the sample’s read depths is

Pr
�
xt1 :t2 j y1:E

� ¼
ft1
�
xt1

�
$

Yt2

t¼t1þ1

Prðxt j xt�1Þ$
Yt2

t¼t1þ1

Pr
�
yt j xt

�
$bt2

�
xt2

�

Pr
�
y1:E

� ;

where Pr(xt j xt�1) and Pr(yt j xt) are the transition and emission

probabilities, respectively, defined above. We thus obtain

Prðxt1 :t2 ¼ 1jy1:EÞ, Prðxt1 :t2 ¼ 2jy1:EÞ, and Prðxt1 :t2 ¼ 3jy1:EÞ as the

probabilities of the sample’s copy-number state being deletion,

diploid, orduplication, respectively, for all targets between t1 and t2.

Another quantity of interest is the probability of the copy

number being restricted to certain categories (in this case, no

duplications):

Pr
�
xt1 :t2˛f1;2g j y1:E

� ¼ Pr
�
xts3; t1%t%t2 j y1:E

�

¼ Pr
�
y1:E; xts3; t1%t%t2

�

Pr
�
y1:E

� ;

where the denominator is the standard likelihood defined above

and the numerator is a modified likelihood that we calculate by

locally rerunning the forward-backward algorithm with the added
5, 2012



Figure 2. Calibration of XHMM CNV
Quality Parameters with 90 Schizophrenia
Trio Samples
We calibrate the XHMM parameters by
considering how the number of rare
CNVs per child (left panel), putative de
novo events (middle panel), and parent-
to-child transmission rates (right panel)
vary as a function of increasingly stringent
quality filtering. Boxes denote the inter-
quartile range over all 90 trios. Horizontal
solid lines indicate the median, and whis-
kers extend to the most extreme data
points at most 1.53 the interquartile range
from the box.
constraint that Prðyt jxt ¼ 3Þ ¼ 0;ct1%t%t2 (no duplications

allowed).

Finally, we define the relevant CNV genotyping qualities as:
Exact deletion ¼ EQ ¼ Phred
�
Pr
�
xt1 :t2 ¼ 1 j y1:E

��

Some deletion ¼ SQ ¼ Phred
�
Pr
�
xt1 :t2˛f1; 2g j y1:E

�� Pr
�
xt1 :t2 ¼ 2 j y1:E

��

No deletion ¼ NQ ¼ Phred
�
Pr
�
xt1 :t2˛f2; 3g j y1:E

��

Left deletion breakpoint ¼ LQ ¼ Phred
�
Pr
�
xt1�1 ¼ 2; xt1 ¼ 1 j y1:E

��

Right deletion breakpoint ¼ RQ ¼ Phred
�
Pr
�
xt2 ¼ 1; xt2þ1 ¼ 2 j y1:E

��

Not Diploid ¼ NDQ ¼ Phred
�
1� Pr

�
xt1 :t2 ¼ 2 j y1:E

��

Diploid ¼ DQ ¼ Phred
�
Pr
�
xt1 :t2 ¼ 2 j y1:E

��
;

where given the probability of a particular CNV genotype quantity

c, the Phred-scaled quality of c not being an error is

Phred½PrðcÞ� ¼ �10 log10ð1� PrðcÞÞ;

and a higher quality score implies greater probability that the

quantity is supported by the data. Note that it always holds that

SQ R EQ because SQ is the CNV deletion quality based on the

probability that at least one of the targets is deleted, whereas EQ

requires that all targets in the range be most likely deleted.

However, only LQ and RQ explicitly require that the particular

breakpoints at t1 and t2 be highly likely. Note that similar metrics

are of course defined for duplication events.

Applications of Genotype Quality Metrics
When we wish to know whether a particular individual carries the

event in question or a similar event (e.g., any deletion in a region),

we apply the above-defined genotype qualities depending on the

context. For example, we used the trios to calibrate the XHMM

parameters and genotype quality thresholds to enable us to

converge to accurate, yet sensitive, CNV calls by considering the

number of calls, the implied de novo CNV rates, and Mendelian

transmission rates from parent to child (Figure 2). We will denote

by Q a global quality threshold (in this paper, a value of 60 was

ultimately derived from the trio data). We now step through

some typical use cases in which these scores can be applied for

making statistically informed conclusions about the CNV in ques-

tion despite the presence of noise. Note that these metrics can also

be applied in the case of CNV regions defined externally, where

XHMM will use the overlapping targets in a region to calculate

the full list of metrics above.
The Americ
De Novo CNV

For a deletion CNV event discovered in a child, we would like to

ask whether the parents have strong evidence for being diploid
over the entire span of exon targets (thus implying a de novo dele-

tion). To answer this in the affirmative, we require that SQ R Q in

the child and that NQ R Q in each of the parents so that we are

confident that the read depths support at least some deletion

event existing in the child’s exome and not a hint of a deletion

in either parent.
CNV Transmission from Parents

When a CNV is discovered in a parent sample with the HMM

Viterbi step, we want to test whether this was, or was not, trans-

mitted to the child. For this, we require that SQ R Q in this

parent (to be confident in, at least a portion of, the parental

CNV) and require that the child’s genotype qualities satisfy

SQ R Q (transmitted) or NQ R Q (not transmitted); if the child’s

call does not satisfy either of these criteria, then it is effectively

marked as ‘‘missing’’ and we do not include it in this analysis

because of the uncertainty. The ‘‘missing’’ genotype permits

us to make the important distinction between the absence of a

Viterbi call and actually being confident that a sample is diploid.

Note that we also ensure that NQ R Q in the other parent so

that we know that only one parent could have transmitted this

CNV.
Disruptive CNV

To detect high-quality gene-disrupting CNVs, we use the standard

quality threshold Q to ensure that there is a significant signal

(SQ R Q) of the called CNV. Also, to be certain that at least one

of the breakpoint locations (50 or 30) is of high quality, we require

that LQ R Q0 or RQ R Q0, where Q0 % Q is some more relaxed

threshold (we chose Q0 ¼ Q / 2 ¼ 30 as a reasonable value in this

study). Lastly, we require that the breakpoint with high certainty

actually falls within a gene transcript and not at the edge of

the gene.
an Journal of Human Genetics 91, 597–607, October 5, 2012 601



Comparison of Overlapping CNV

Note that a similar approach to that for finding disruptive CNV

could be used for inferring whether overlapping CNVs in two

different individuals are in fact the same event or not. Specifically,

we would require high-quality CNV breakpoints and would

compare their respective locations for the two samples. This test

can be used for investigating the possibilities of recurrent events

that have different mechanisms, have the same mechanism, or

are identical by descent.

Genotyping an Entire Genomic Interval

Finally, for the case of genotyping a sample as being either diploid,

deleted, duplicated, or ‘‘no call’’ over an entire particular region,

XHMM applies one of the four rules below.

1. Call as diploid if DQ R Q (and SQdel < Q and SQdup < Q).

2. Call as deletion if EQdel R Q (and NQdel < Q).

3. Call as duplication if EQdup R Q (and NQdup < Q).

4. Otherwise, no call is made (‘‘missing’’ genotype).

Note that these determine the actual hard genotype calls present

in the VCF file output by XHMM; in order to correct for the fact

that DQ and EQ will be strongly correlated with the number

of targets in the region, XHMM chooses Q here on a call-by-call

basis as the minimum EQ in the samples in which this call was

discovered.
Focus on Rare Variation
We have optimized XHMM for rare variation (frequency < 0.05)

because of the typical application of exome sequencing for

complex diseases and the fact that common CNVs (copy-number

polymorphisms [CNPs]) do not explain much risk for these

diseases.30 Specifically, the PCA normalization and HMM parame-

ters have been tuned under the assumption that most read-depth

variation at a given locus is due to noise, whereas a CNP would

not fit into this mold. More generally, the user might need to

adjust some of the parameters in the description above in order

to maximize the trade-off between false positives and false nega-

tives. However, under reasonable experimental settings, we expect

the default values noted to give a liberally called (but not too large)

set of CNVs, which can then be easily and effectively filtered

by frequency and with the use of the CNV quality scores output

by XHMM.
Exome Data Sets Used
In this work, we adopted the following two neuropsychiatric data

sets (in the context of large schizophrenia studies currently

underway) as a focus for our methods:

d 90 trios (a child with schizophrenia and his or her parents),

which are part of a larger ongoing sequencing effort of over

600 trios from Bulgaria.7

d 1,017 individuals from a Swedish schizophrenia case-control

sample (50% cases and 50% controls).31

All samples were whole-exome sequenced at the Broad Institute

with the use of whole-blood DNA as previously described.9 One of

the driving forces in deriving a rigorous data-driven normalization

technique, which does not require explicit knowledge of how

systematic effects cause read depth to vary, was the fact that these

data had somewhat varying sequencing coverage and experi-

mental batches; this scenario is typical as workflows are frequently
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updated. Indeed, sample batch was correlated with a few of the

highest variance principal components removed during normali-

zation (Figure S5). The use of human subjects for this research

was approved by an institutional review board.
Comparison with Affymetrix SNP Microarray

CNV Calls
For the case-control data set, all samples were previously geno-

typed on Affymetrix 5.0 or 6.0 arrays and CNVs were called with

Birdsuite32 on the intensity data as previously described.31 The

trio samples were also run on the Affymetrix 6.0 platform, and

array-detectable de novo CNVs were called and validated as

recently described.7
Results

To calibrate XHMM parameters, we used the family-based

data set of 90 schizophrenia trios to estimate HMM transi-

tion and emission parameters on a grid search (see Material

and Methods). We then examined a range of call quality-

score thresholds (Figure 2) and considered only those

CNV calls of two targets or more. As expected, the number

of rare (<5%) CNV events decreases as more stringent (SQ)

quality filtering is applied (Figure 2, left panel). For each

CNV discovered in a child, we used the genotyping quality

scores to detect de novo CNVs in a quantitative fashion,

i.e., by requiring high certainty that the child has a deletion

and the parents do not. That is, applying score filters

results in only a handful of trio offspring that have any

de novo CNVs, as expected given Mendelian inheritance

and a low mutation rate (Figure 2, middle panel). More-

over, when parental CNVs are genotyped in the child,

the median transmission rate from parent to child

converges to 50%, as expected from random Mendelian

segregation (Figure 2, right panel). We repeated these anal-

yses by limiting to shorter CNVs (<100 kb) and had almost

identical results, indicating our confidence in XHMM

CNV calls of various lengths. In addition to globally

ensuring CNV call quality, we note that of the three inde-

pendently validated array-based de novo CNV calls in

these 90 samples (overlapping exome targets),7 XHMM de-

tected two of these with high quality (Figures S7 and S8).

The remaining one overlaps only two exome targets, for

which we observe lower overall concordance rates with Af-

fymetrix (see below), but manual inspection indicates a

subthreshold de novo deletion that is observable only as

a result of the PCA normalization (Figure S9).

Next, we took the trio-calibrated parameters and applied

them to the set of 1,017 schizophrenia case-control

samples. Running XHMM yielded a total of 2,315 rare

(frequency < 1%, calculated by PLINK33) CNVs and a

median of two rare CNVs per individual (one deletion

and one duplication); over 80% of all CNV were <100 kb

(Figure S10). To corroborate our calls, we utilized similarly

rare, reliable (>100 kb) Birdsuite calls that were made on

these same samples with Affymetrix 6.0 arrays and

that overlap one or more exome targets (544 in total;
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Table 3. Sensitivity of XHMM to Affymetrix-Based Calls

t Exome
Targets

Affymetrix-Based
Calls Overlapping R t
Targets

XHMM
Sensitivity to
Affymetrix

Median
Affymetrix CNV
Length (kb)

1 544 367 (67%) 214

2 483 365 (76%) 218

3 452 357 (79%) 219

4 409 330 (81%) 202

5 362 309 (85%) 205

6 321 282 (88%) 232

8 288 260 (90%) 240

10 247 227 (92%) 259

Using the trio-calibrated XHMMquality scores (Figure 2), we applied XHMM to
a sample of 1,017 schizophrenia case-control samples and measured what
fraction of high-quality rare Affymetrix-based CNV calls (that overlap at least
t exome targets) are captured by the XHMM calls.
Table S1). XHMM detected 67% of these, and this rate

increased to 85% for Affymetrix calls overlapping five or

more exome targets (Table 3); see Table S2 for separate

sensitivities to deletions and duplications. We conclude

from the case-control and trio sets that XHMM performs

well in detecting high-quality rare CNVs that span three

or more exons because of its sensitivity of 79% and its

high specificity corresponding to a 50% transmission rate

in trios.

We leveraged the resolution of exome sequencing to

detect CNV events that fall within a gene and disrupt

said gene by requiring high confidence of a copy-number

change within a single transcript; the XHMM CNV in

Figures S7 and S8 are examples of partial gene deletions.

We implement this search by thresholding on the

XHMM-estimated breakpoint quality metrics, LQ and

RQ. When searching the case-control sets, we detected

182 rare, high-quality disruptive deletions and signifi-

cantly greater burden in cases (rate of 0.22 versus 0.14 in

controls, p ¼ 0.007 according to PLINK33), suggesting

that gene-disruptive CNVsmight play a role in the etiology

of schizophrenia. In contrast, we observed no overall

enrichment of CNVs in general (either from exome

sequencing or the Affymetrix calls) in this n ¼ 1,017

subsample. As we continue our sequencing of this cohort,

we will systematically follow up on this result, which is

consistent with the hypothesis that disruptive events are

more likely to be pathogenic.16

While this manuscript was under review, the CoNIFER

method for detection of copy-number changes was pub-

lished.34 The depth-normalization approach in XHMM

and CoNIFER is similar; both effectively use the SVD

implementation of PCA to detect and remove large read-

depth variations due to non-CNV signals. However, the

methods significantly diverge thereafter in their use of

these normalized data. CoNIFER makes calls on the basis

of consecutive runs of at least three targets with values
The Americ
above or below a hard threshold, whereas XHMM takes

advantage of the full power of HMMs to make and assess

the quality of the CNV calls. Moreover, we note the impor-

tant distinction between how the CoNIFER paper and the

present paper use the term ‘‘genotype.’’ In the former,

‘‘genotype’’ is used in the strict sense of determining abso-

lute copy number at common CNP loci, whereas the

‘‘statistical genotyping’’ performed by XHMM is actually

a probabilistic assessment (for a genomic interval) of the

copy-number states (here, diploid, deletion, or duplica-

tion) we consider given the observed read-depth data

across the exome. As in CoNIFER, hard copy-number calls

can bemade from these genotyping scores, althoughwe do

not discard these scores because they play an important

role in the analysis of the data. Our approach differentiates

between notmaking a call and actually declaring with high

certainty that the individual has diploid copy number.

The high sensitivity (79%–85% for CNVs overlapping

three to five targets; see Table 3) that we observed in detect-

ing rare chip-based CNVs by using XHMM is similar to the

estimate (between 76% and 84%) reported in the CoNIFER

paper. With this in mind, we sought to characterize the

differences between XHMM and CoNIFER and particularly

focused on the specificity of the call sets. We started by

comparing the overlap of the rare CNV calls made by the

two algorithms for the 90 schizophrenia trios (Figure 3

and Table 4). For the sake of comparison, we used the

same BWA-mapped reads as input to the two algorithms,

and we ran CoNIFER by using default parameters. A single

low-depth outlier sample that was removed by XHMMwas

also noted by the CoNIFER protocol. For the autosomes, we

used CoNIFER to remove six principal components, and

visual inspection of the singular values confirmed that

this was near the inflection point of the scree plots. Here,

we considered only those XHMMCNVs consisting of three

targets or more for an equal comparison with CoNIFER’s

behavior.

The main findings, which we detail below, are:

d CoNIFER calls possess a high rate of Mendelian viola-

tions, whereas XHMM statistical genotyping leads to

very few (Table 4).

d CoNIFER makes more calls than XHMM, whereas

XHMM provides quality scores to obtain calls with

higher confidence (Figure 3A).

d CoNIFER calls are longer than corresponding XHMM

calls (Figure 3B) and extend into additional genes.

Considering rare (<5% frequency) CNVs, CoNIFER

makes 30% more calls (n ¼ 2,206) than does XHMM

(n ¼ 1,691 raw [Q ¼ 0] calls) (Figure 3A). Going to

higher-quality XHMM calls (Q ¼ 60), 689 (68%) of the

XHMM calls have evidence from a CoNIFER call, whereas

these overlapping calls make up only 31% of the CoNIFER

calls. Thus, the quality scores we have developed serve as

an intrinsic mechanism for selectively obtaining these

reliable calls (with secondary ‘‘confirmation’’) and as
an Journal of Human Genetics 91, 597–607, October 5, 2012 603



A

B

Figure 3. Comparison of XHMM and CoNIFER CNV Calls
(A) Overlap between XHMM and CoNIFER rare (<5%) CNV calls made on the 90 schizophrenia trios, for which XHMM calls are filtered
at progressively higher quality filters (Q). Note that overlapping calls are counted as one event.
(B) Comparison of the properties of the XHMM Q ¼ 60 and CoNIFER CNV calls: genomic length of CNV (left panel), number of exome
targets (exons) in a CNV (middle panel), and the distance between consecutive exons in a CNV (right panel).
a complement to successful filtering based on segmental

duplications or similar genomic features.34

We observed striking differences in the properties of the

XHMM (Q ¼ 60) and CoNIFER CNV sets in terms of size,

number of exons called, and distance between exons in

CNV calls (Figure 3B). We found that, overall, the CoNIFER

calls are longer than the XHMM calls (Figure 3B, left histo-

gram, mean of 82 kb versus 280 kb, t test p ¼ 4 3 10�11).

However, although XHMM does have a higher proportion

of calls consisting of between three and five targets

(Figure 3B, center, first pair of bars), it is not the case that

the CoNIFER calls always include more exons—XHMM

makes relatively more calls of 21 targets or more. This

most likely results from the ability of the HMM caller to

effectively smooth out the normalized read-depth signal

and call some large CNVs spanning noisier genomic

regions. Notwithstanding, CoNIFER has a significant

tendency to include more distant targets within the same

CNV call, as measured by the distance between consecu-

tive exons called in a particular CNV (Figure 3B, right,

mean of 6 kb versus 23 kb, p ¼ 6 3 10�13). These results

are consistent with the implementation of CoNIFER as

making calls across extreme-depth exome targets irrespec-

tive of their relative genomic distance. On the other hand,

XHMM conservatively requires additional evidence (i.e.,
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more extreme normalized read depth) to extend a CNV

call across larger genomic intervals (because parameter D

attenuates the transition probabilities as a function of

distance) while still smoothing out the signal by allowing

calls to sometimes extend across noisier regions.

Restricting the above analysis to the 689 high-quality

CNVs overlapping in the two call sets, we observed

similar significant differences between these intrinsic

CNV-call features. Moreover, whereas we noted above

that CoNIFER often seems to overextend CNV calls by

not regarding intertarget distance, it also inversely tends

to break up XHMM calls at a higher rate than XHMM

does with respect to CoNIFER calls (17 XHMM calls broken

up into two or more separate CoNIFER calls, but only

one CoNIFER call is split in two by XHMM). This presum-

ably results from the lack of CoNIFER smoothing that is

available to XHMM in the form of an HMM calling

procedure. For these CNVs overlapping between XHMM

and CoNIFER, we found the CoNIFER calls to have

a marked mean increase in CNV length (180 kb longer,

paired t test p ¼ 9 3 10�15) and a mean of 3.9 more targets

(p ¼ 4 3 10�15).

We then assessed how the above differences in CNV

sizes between XHMM and CoNIFER affect which genes

are implicated by a particular call. As an example, if one
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Table 4. Mendelian Inheritance Analysis for XHMM and CoNIFER

Median Number
of Child CNVs

Median Number
of De Novo CNVs

Proportion of Children with
One or More De Novo CNVs

Median
Transmission Rate

Hard Calls

XHMM (Q ¼ 60) 3 1 62% 33%

CoNIFER 8 3 91% 29%

CoNIFER (unique) 5 3 88% 23%

CoNIFER (XHMM overlap) 2 0 37% 43%

Statistical Genotyping

XHMM (Q ¼ 60) 3 0 13% 50%

From top to bottom, the high-quality XHMM call set, the CoNIFER set, the calls unique to CoNIFER, the overlap set between XHMM and CoNIFER, and the
statistical genotyping in XHMM were analyzed for Mendelian violations and inheritance patterns. See main text for details.
considers the validated de novo CNVs overlapping

DLGAP1 (MIM 605445) (Figure S7) and EHMT1 (MIM

607001) (Figure S8), the CoNIFER calls seemingly over-

extend the XHMM and validated calls and overlap an

‘‘additional’’ gene in one case (for the DLGAP1 deletion).

Overall, comparing only calls with some overlap between

XHMM and CoNIFER, we found that the genes implicated

by both algorithms are copy-number variable in 7.2

exons on average, whereas the genes implicated by the

CoNIFER-unique part of the same CNV call include only

4.1 exons (p < 10�16). This is consistent with our assess-

ment that it is critical to account for genomic distance in

callingCNVs so that a small number of targetswith a similar

read-depth trend in a neighboring gene do not artificially

extend a particular CNV call. We thus conclude that

compared with XHMM, CoNIFER might often add extra

targets (as well as extra genes with fewer supporting targets

in the CNV call) and that, overall, XHMMmight give more

accurate CNV breakpoints for its calls. We expect the reso-

lution of exome-based CNV breakpoints to be particularly

critical in: (1) gene-set enrichment analysis of genes hit

by CNVs, where the inclusion of false-positive genes will

decrease testing power by adding noise to the tests; and

(2) gene-disruption analysis, where it is especially impor-

tant to resolve the correct breakpoint in the CNV call, or

at least provide a measure of breakpoint quality (output

by XHMM as LQ and RQ), so that we can know when

a CNV is more likely to affect only part of a gene transcript.

Finally, Table 4 presents the results of Mendelian-inher-

itance analysis (counting putative de novo CNVs and the

fraction of CNVs transmitted from parent to child) for

various subsets of the calls. We found that CoNIFER makes

more de novo calls (91% of children with at least one de

novo call) and fewer transmitted parent calls (29%) than

the quality-filtered XHMM calls with hard genotyping

(33%). When the CoNIFER calls are split into those with

XHMM overlap and those without, the overlapping ones

have much better Mendelian metrics (only 37% of chil-

dren with a de novo and 43% transmission). It is important

to emphasize that both the CoNIFER and Q ¼ 60 XHMM

calls have Mendelian violations that result from the use
The Americ
of hard genotyping without the assessment of the actual

confidence of being diploid. On the other hand, statisti-

cally genotyping the XHMM calls results in a large

majority of trios that have no de novo CNV calls, but the

trios still maintain a median of 50% of parental CNV

that is transmitted to the children (these data are identical

to those in Figure 2 for Q ¼ 60). Thus, we conclude that

both quality filtering and statistical genotyping will play

an important role in constructing a prioritized list of a

smaller number of (de novo) CNV calls that we expect to

be experimentally validated.
Discussion

In this paper, we present a tool (XHMM) to comprehen-

sively normalize sequencing coverage in large-scale exome

sequencing and use this rich information to discover CNVs

while providing quality metrics that indicate how strongly

the data support a particular CNV. We demonstrate that

XHMM has high specificity (few Mendelian violations in

trios) along with high sensitivity to reliable Affymetrix

calls. Using CNV-breakpoint quality metrics, the XHMM

framework also permits high-resolution discovery of

partial gene disruptions, a form of structural variation

potentially involved in disease pathology,16 and we ob-

served a possible burden of gene-disrupting deletions in

schizophrenia.

To use the XHMM suite for smaller-scale targeted

sequencing, themain limitations in decreasing the number

of targets or number of samples are a function of the

PCA normalization step, which will degrade in per-

formance because the read-depth aberrations (due to true

copy-number changes) of any single target or samplemight

be filtered out as ‘‘batch’’ effects. In addition, in order

to detect and remove underlying experimental artifact

(e.g., GC bias), the PCA will need to see a nontrivial subset

of samples or targets with that particular trend. Thus, in

practice, we would recommend using XHMM with on the

order of at least 1,000 targeted regions and 50 (unrelated)

samples. For the case of related samples, we propose using
an Journal of Human Genetics 91, 597–607, October 5, 2012 605



principal components derived from larger sets of samples

sequenced contemporaneously under similar conditions

so that familial CNVs do not dominate the read-depth

signal and are not picked up by PCA. Thus, we explicitly

chose a parameterization of read-depth normalization

(Equation 1) so that the principal components (ci) need

not be derived from the matrix R to be normalized, as

long as they are defined for the same target set.

In terms of coverage, the important point is that the

dynamic range of the read-depth signal be large enough

that decreases can be assigned to underlying deletions

and increases to duplications. Thus, although the

sequencing coverage for the samples here was at least

1003 on average, XHMM could be applied with lower

mean sequencing coverage (say, 503), as long as the

observed coverages do not essentially degenerate into a

discrete all-or-none value. XHMM could also potentially

be adapted in the context of whole-genome sequencing,

e.g., by the division of the genome into ‘‘pseudotargets’’

with the use of a sliding-window approach.13 For

simplicity, XHMM does not explicitly consider homozy-

gous deletions or duplications (or copy number above 3),

although we expect such events to be correctly called as

copy-number variable. These can be modeled by the

augmentation of the HMM with states corresponding to

these copy numbers. Also, although XHMM can work

with sex chromosomes, we performed all analyses herein

on the autosomes to limit cryptic sex-specific effects, for

which additional normalization might be required.

In summary, the distinguishing features of XHMM are:

(1) efficient data-driven whole-exome read-depth normali-

zation with the use of PCA for thousands of individuals (it

does not rely on a single reference sample or any prede-

fined notions of read-depth confounders), (2) incorpora-

tion of genomic distance into the calling procedure for

well-calibrated CNV lengths, (3) use of a HMM for

smoothing over noisy regions and taking into account

exome-wide CNV rates, (4) HMM-based quality scores for

filtering good calls from bad calls, and (5) using these

quality scores and breakpoint metrics for statistically

genotyping discovered CNVs in other individuals and

detecting de novo and gene-disrupting events. We have

demonstrated that these features endow XHMM with

superior performance in the analysis of real data sets, and

we expect exome-based CNV analysis to be a useful

complement to array-based approaches because of their

differential strengths and biases.
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