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Abstract

The aim of this paper is to develop Cook's distance measures for assessing the influence of both 

atypical curves and observations under varying coefficient model for functional responses. Our 

Cook's distance measures include Cook's distances for deleting multiple curves and for deleting 

multiple grid points, and their scaled Cook's distances. We systematically investigate some 

theoretical properties of these diagnostic measures. Simulation studies are conducted to evaluate 

the finite sample properties of these Cook's distances under different scenarios. A real diffusion 

tensor tract data set is analyzed to illustrate the use of our diagnostic measures.
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1 Introduction

Functional data analysis becomes increasingly popular as modern technology enables 

relatively easy access to functional data. For instance, with advanced imaging techniques, 

massive functional data can be observed over both time and space. Such imaging techniques 

include functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and 

diffusion tensor imaging (DTI), among many others. In practice, many scientific questions 

focus on delineating the variability of functional data and their association with a set of 

covariates of interest, such as diagnostic group. A class of varying-coefficient models 

(VCM), which allows its regression coefficients to vary over some predictors of interest, is a 

powerful statistical framework for addressing many scientific questions in biomedical 

sciences (Hastie and Tibshirani, 1993).
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Since VCM was systematically introduced to statistical literature by Hastie and Tibshirani 

(1993), many VCMs have been widely studied and developed for longitudinal, time series, 

and functional data (Yao et al., 2005; Zhang and Chen, 2007; Zhu et al., 2012b). For 

example, Fan and Zhang (2008) provided a comprehensive review of various statistical 

procedures proposed for many varying coefficient models. Yao et al. (2005) proposed a 

nonparametric method to perform functional principal component analysis for sparse 

longitudinal data without considering any covariates. Zhu et al. (2012b) proposed a 

multivariate VCM for regularly sampled functional data and developed several statistical 

inference procedures for MVCM. These statistical methods including both estimation and 

testing, however, can be very sensitive to atypical curves which do not follow the pattern of 

the majority of the data. For this reason, influence analysis should be commonly done to 

detect such atypical curves and to investigate the sensitivity of estimator and test statistic 

with respect to them.

Although there is a large literature on the development of various case-deletion diagnostic 

measures (e.g., Cook's distance) for detecting influential observations or clusters under 

various statistical models for non-functional data (Cook, 1977; Cook and Weisberg, 1982; 

Davison and Tsai, 1992; Wei, 1998; Zhu et al., 2001, 2012a), little has been done on 

developing diagnostic measures for VCMs with functional responses. Therefore, it has been 

common to skip influence analysis completely or to detect outliers visually in functional 

data analysis (Faraway, 1997; Shen and Faraway, 2004). Recently, a few diagnostic 

measures have been developed for VCM with functional responses (Shen and Xu, 2007; 

Chiou and Müller, 2007; Zou et al., 2013). Specifically, Shen and Xu (2007) proposed some 

diagnostic measures including residual and single-case Cook's distance for VCM. Chiou and 

Müller (2007) proposed several diagnostic measures including leverage, residual, single-

case Cook's distance, and a residual process for a large class of functional regression 

models. Zou et al. (2013) considered a class of VCM without any covariate information and 

proposed a novel outlier detection procedure to identify any abnormal profile observations 

from a baseline dataset.

The aim of this paper is to systematically Cook's distance measures for VCM with 

functional responses (Zhu et al., 2012b). Compared to the diagnostic methods in Shen and 

Xu (2007), Chiou and Müller (2007), and Zou et al. (2013), we make several major 

contributions. First, we introduce local and global Cook's distances for quantifying the e ects 

of deleting a set of observed curves. We derive the exact form of local and global Cook's 

distances and then characterize their distributional properties, such as conditional mean and 

variance. Our results also establish a close link between Cook's distances in standard linear 

regression and those in VCM. Second, we introduce Cook's distances for quantifying the e 

ects of deleting observations at multiple grid points. We derive their exact form and their 

distributional properties, such as conditional mean and variance. Third, we introduce scaled 

Cook's distance and its associated diagnostic probability in order to evaluate the relatively 

influential level for different curve subsets across grid points (or subjects).

The rest of this paper is organized as follows. In Section 2, we briefly review VCM and its 

associated estimation method. In Section 3, we propose Cook's distances and scaled Cook's 
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distances. In Section 4, we carry out simulation studies and real data analysis using diffusion 

tensor imaging (DTI) tract data.

2 Methods

2.1 Model Setup

We consider a functional response yi(s) and a set of p × 1 random covariates xi for subject i 

= 1, . . . , n. It is assumed that yi(s) is measured at the same L location points s1, . . . , sL and, 

without loss of generality, sl's are independently and identically distributed random variables 

with a common density f(s) on the support interval [0, 1]. Our varying coefficient model 

(VCM) is defined as

(1)

where β(s) = (β1(s), . . . , βp(s))T is a p × 1 unknown vector of functionals of s, εi(s) denotes 

the measurement error, and ηi(s) characterizes individual curve variations. The εi(s) is an 

independent and identical copy of a Gaussian stochastic process with mean zero and 

covariance Σε(s, t), whereas i(s) is an independent and identical copy of a Gaussian 

stochastic process with mean zero and covariance Ση (s, t). Moreover, εi(s) and ηi(s) are 

mutually independent and εi(s) and εi(t) are independent for s ≠ t.

Under some conditions, ηi(s) admits the Karhunen-Loève expansion as given below. It is 

assumed that the covariance function Ση(s, t) can be eigen-decomposed as

where λ1 ≥ λ2 ≥ . . . ≥ 0 are the ordered eigenvalues and {ϕj(s)}j≥1 are the corresponding 

orthonormal eigenfunctions satisfying  and  for k ≠ j. 

When , it follows that . If Ση (s, t) is continuous on [0, 1], 

then we have the Karhunen-Loève expansion as follows:

where ξij are independent normal random variables with mean zero and variance λj for i = 

1, . . . , n.

We briefly review some key results of a three-stage estimation procedure proposed by Zhu 

et al. (2012b). Let  for any vector a, ⊗ denote the Kronecker product of two 

matrices, and . The β(s) can be estimated by using the 

local linear regression (LLR) (Fan and Gijbels, 1996) and given by
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(2)

where Ip is a p × p identity matrix, zh1(sl − s) = (1, (sl − s)/h1)T , and 

is a scaled kernel function with the bandwidth h1 selected by using a leave-one-curve-out 

cross-validation criterion. Moreover, Σ(s, h1) is given by , where 

 and . Under some conditions, 

it can be shown that  converges weakly to a 

centered Gaussian process G(·) with covariance matrix  (Zhu et al., 

2012b).

To estimate Ση (s, t) and its associated eigenvalues and eigenfunctions, we employ the local 

smoothing technique to calculate a local linear estimate of ηi(s), denoted by  (Zhu et 

al., 2012b). After obtaining , we estimate Ση (s, t) by using the empirical covariance of 

the estimated  as follows:

Then, we have the spectral decomposition of  as follows:

where  are the estimated eigenvalues and the  are the estimates of 

corresponding principal components. Moreover, it is common to choose the first N 

eigenvalue-eigenfunction pairs such that the cumulative proportion of eigenvalues, 

, is greater than a threshold, say 90%. Finally, we use the 

local constant method to estimate σ2(s) as follows:

where  and a bandwidth h2 is selected by using a cross-

validation score method.
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2.2 Cook's Distance Measures

We introduce Cook's distance for deleting multiple curves, Cook's distance for deleting 

observations at multiple grid points, and their scaled Cook's distances in order to assess the 

influence of deleting a set of observations on the parameter estimates.

2.2.1 Cook's Distance for Deleting Multiple Curves—In practice, outlying curves 

are frequently found not only in observational studies but also in designed experiments. We 

propose Cook's distance to quantify the effects of deleting a set of observed curves, denoted 

by YI(s), on the estimate of β(s), where I = {i1, × × × , inI} denotes a set of indices of nI 

subjects. We consider the deletion of a set of curves in order to address the issue of masking 

and swamping effects when multiple outlying curves are present. It is well known that the 

single-case Cook's distance is not very efficient for addressing such issue. A subscript ‘[I]’ 

denotes the relevant quantity of all observed curves with I deleted. Let Y = (Y1, × × × , Yn)T, 

YI = (Yi1, × × × , YinI)T and Y[I] be a subsample with YI deleted from Y, where Yi = (yi(s1), · 

· · , yi(s ))T is a L × 1 vector for i = 1, · · · , n. Let  be the LLR estimator of β(s) based 

on the subsample Y[I]. Similar to (2), it can be shown that

where  and . Furthermore, for any s and 

bandwidth parameter h1, we introduce a smoothed response given by

(3)

where K̃
h1(sl − s) = (1, 0)ΩZ(s, h )−1Kh1(sl − s)zh1(sl − s) and K̃

h1(s) = K̃
h1(s1) − s), · · · , 

K̃h1(sL − s))T is an L × 1 vector. Therefore,  and  can be, respectively, rewritten 

as

(4)

For a given set I, we introduce a local Cook's distance at each s (denoted by CDI(s)) and a 

global Cook's distance over [0, 1] (denoted by CDI), which are defined as, respectively,

(5)

where M[I](s) is a p × p known matrix setting to be the inverse of . 

Alternatively, we may use Y[I] to estimate Ση (s, s) and in turn M[I](s). More generally, 

suppose that one is interested in a subset of β(s), say p1 linearly independent combinations of 

β(s) given by CTβ(s), in which C is a p×p1 matrix with rank(C) = p1 (Cook and Weisberg, 
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1982). We denote the local and global partial Cook's distances for quantifying the influence 

of deleting the subset I on  by CDI,C(s) and CDI,C, respectively, which can be defined 

as

Throughout the paper, we do not distinguish CDI(s) and CDI from CDI,C(s) and CDI,C for 

notational simplicity, even though we may focus on a subset of β.

The local and global Cook's distances can be used to assess the influential level of the subset 

I at each location s or across [0, 1]. We may regard a subset I as being influential if either 

the value of CDI(s) (or CDI) is relatively large compared with other Cook's distances or the 

magnitude of CDI(s) (or CDI) is greater than the critical value of a distribution, which will 

be derived below.

We define some notation as follows. Let X = (x1, · · · , Xn)T be an n × p matrix, 

 is an n × n matrix, Ỹ(s, h1) = (ỹ1(s; h1), · · · , ỹn(s; h1))T is an n × 1 vector, 

and  is an n × 1 vector. Let DI 

= [ei1, · · · , einI] be an n × nI matrix, where ek is an n × 1 vector being 1 at the k-th element 

and 0 elsewhere for k ∈ I, and S = (s1, · · · , sL)T denotes a vector of grid points. We obtain 

the following theorems, whose detailed assumptions and proofs can be found in the 

Appendix A1.

Theorem 1 We have the following results:

(a) , where , 

, and .

(b) , where 

.

(c) , where tr(A) is the trace of a matrix A 

and .

Theorem 1 establishes the exact form of , CDI(s), and CDI for an arbitrary set 

I. These results for our VCM are close to those for the classical linear regression model 

(Cook and Weisberg, 1982) except that the smoothed response is used. When nI = 1 and I = 

{i},  and CDI(s), respectively, reduce to  and ûi(s, 

h1)2Pi/{Ση(s, s)(1 − Pi)2}, . Moreover, for I = {i}, CDI 

reduces to 
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. Large 

CD{i} values correspond to curves with large residual line {ûi(s, h1) : s ∈ [0, 1]} and/or high 

leverage Pi, which have a large effect on the estimate of β(s). Furthermore, inspecting 

CD{i}(sl) can reveal the influence level of the i-th curve at location sl.

To determine the magnitude of CDI(s) and CDI, we need to characterize the distributional 

properties of CDI(s) and CDI as follows.

Theorem 2 We have the following results:

(a) Let ΣY be the covariance matrix of Yi. Then, CDI(s) and CDI can be rewritten as

and

where  is an nL×1 vector with zero mean, InL covariance matrix, 

Vec(·) denotes the matrix vectorization, and B = [β(s1), . . . , β(sL)] is a p × L matrix of 

unknown true parameters.

(b) The conditional means of CDI(s) and CDI are, respectively, given by

and

where .

(c) The conditional variances of CDI(s) and CDI are, respectively, given by

and
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Theorem 2 characterizes the distributional properties of CDI(s) and CDI. Theorem 2 (a) 

shows that both CDI(s) and CDI can be represented as a quadratic form of G. When G ~ N(0, 

InL), both CDI(s) and CDI follow a weighted χ2 distribution. Theorem 2 (b) and (c) give the 

conditional means and variances of CDI(s) and CDI given covariates. Although the means of 

Cook's distances do not depend on the distribution of G, their variances depend greatly on 

the distribution of G. When h1 = o(1) and Lh1 → ∞, it can be shown that

where  is the correlation function of ηi(s). 

Moreover, for I = {i}, we have

2.2.2 Cook's Distance for Deleting Observations at Multiple Grid Points—In 

practice, observations at multiple grid points may be abnormal due to varying amounts of 

noise of diverse origins, such as numerous physiological processes, rigid body motion, and 

nonrigid motion. Hence, we propose Cook's distance for quantifying the effects of deleting a 

set of observations at multiple grid points on the estimate of β(s). Let IS = {l1, · · · , lLI} 

denote a set of indices of LI grid points. A subscript ‘[IS]’ denotes the relevant quantity of all 

observations at the grid points with IS deleted. Let Y[IS,n] be a subsample of Y with YIS,n = 

{Y(slk) = (y1(slk), . . . , yn(slk))T : lk ∈ IS} deleted. Let  be the LLR estimator of β(s) 

based on the subsample Y[IS,n]. Similar to (2), it can be shown that

(6)

where  and 

.

For a given set IS, we introduce a local Cook's distance at each s (denoted by CDIS,n(s)) and 

a global Cook's distance over [0, 1] (denoted by CDIS,n) defined as
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(7)

and

(8)

respectively.

Furthermore, for any s and h1, we introduce a smoothed response given by

(9)

where K̃
h1[IS](sl − s) = (1, 0)ΩZ,[IS](s, h1)−1Kh1(sl − s)zh1(sl − s). Therefore,  and 

 can be, respectively, rewritten as

(10)

We need some notation as follows. Let Zh1(s) = [zh1)(s1 − s)T, · · · , zh1)(sL − s)TT be an L × 

2 matrix, KD(s, h1) = diag(Kh1(s1−s), × × × , Kh1(sL−s)) be an L×L diagonal matrix, PZ̃(s, h1) 

= KD(s, h1)1/2Zh1(s)ΩZ(s, h1)−1Zh1(s)TKD(s, h1)1/2 be an L × L matrix, and DIS = [el1, · · · , 

elLI] be an L × LI matrix.

We show the distributional properties of CDIS,n(s) and CDIS,n as follows.

Theorem 3 We have the following results:

(a) , where 

 and 

.

(b) .

(c) , where 

.

(d) The conditional means of CDIS,n(s) and CDIS,n are, respectively, given by
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and

(e) The conditional variances of CDIS,n(s) and CDIS,n are, respectively, given by

and

Theorem 3 (a) characterizes the effect of deleting the observations in YIS,n on the i-th 

smoothed curve. This result can be regarded as an extension of an existing result for local 

polynomial regression (Kim et al., 2001). Theorem 3 (b) and (c) show that both CDIS,n(s) 

and CDIS,n can be written as a quadratic form of Vec(Y) and follow a noncentral weighted 

χ2 distribution. Compared with G for CDI(s) and CDI, Vec(Y) in CDIS,n(s) and CDIS,n is not 

mean-centered, since we only delete the observations in Y (slk), not covariates. Theorem 3 

(d) and (e) give the conditional means and variances of CDIS,n(s) and CDIS,n given 

covariates. Although the means of Cook's distances do not depend on the Gaussianity of 

Vec(Y), their variances depend on the Gaussian distribution of Vec(Y).

2.2.3 Scaled Cook's Distances—A major size issue regarding Cook's distance is that 

the magnitude of Cook's distance is positively associated with the amount of perturbation to 

VCM introduced by deleting a subset of observations. Specifically, a large value of Cook's 

distance can be caused by deleting a subset with a larger number of observations and/or 

other causes, such as the presence of influential observations in the deleted subset (Zhu et 

al., 2012a). To delineate the cause of a large Cook's distance, Zhu et al. (2012a) proposed 

several types of scaled Cook's distances and their associated diagnostic probabilities to 

account for different degrees of perturbation introduced by deleting subsets with different 

numbers of observations.

Following Zhu et al. (2012a), we introduce a scaled Cook's distance by matching a pair of 

features, mean and standard deviation, for all Cook's distance measures. By matching the 

mean and standard deviation, we can at least ensure that the centers and scales of the scaled 
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Cook's distances for different subsets are the same when the proposed VCM is the true data 

generator. Specifically, we can define the scaled Cook's distances for deleting multiple 

curves as follows:

where ‘E’ and ‘Std’ denote the expectation and standard deviation, respectively. 

Furthermore, we can define the scaled Cook's distances for deleting observations at multiple 

grid points and denote them by SCDIS,n(s) and SCDIS,n. The scaled Cook's distances 

measure the standardized influential level of the set I when VCM is true. Moreover, it is 

possible for SCDI(s) to be negative unlike CDI(s). Since the means and standard deviations 

of Cook's distances have been derived in Theorems 2 and 3, it is computationally 

straightforward to calculate the scaled Cook's distances.

We use SCDI(s) (or SCDI) to evaluate the relatively influential level for different curve 

subsets I across grid points (or subjects). A large value of SCDI(s) (or SCDI) indicates that 

the curves in subset I are relatively influential. Therefore, for any two curve subsets I1 and 

I2, the probability of observing the event {SCDI1(s) > SCDI2(s)} should be reasonably close 

to that of observing the event {SCDI1(s) < SCDI2(s)}. Similar comments are applicable to 

SCDI. Thus, the SCDI and SCDI(s) are roughly comparable.

We can employ diagnostic probabilities associated with the Cook's distances as an 

alternative approach to deal with the size issue. Let  be the VCM model in (1) proposed 

to fit the data. Specifically, we define the local and global diagnostic probabilities for 

deleting multiple curves as follows:

where  and  denote local and global random Cook's distances, respectively, 

and  denotes the conditional probability when  is the true generator and X is 

fixed. Furthermore, we can define local and global diagnostic probabilities for deleting 

observations at multiple grid points and denote them by pIS,n(s) and pIS,n, respectively. 

Compared with the scaled Cook's distances, since the diagnostic probabilities vary in a fixed 

interval [0, 1], it is much easier to assess their magnitude. We regard a subset I as being 

influential if the value of pI(s) (or pI) is close to 1. However, the diagnostic probabilities 

strongly depend on the distributions of ηi(s) and ∈i(s) in model (1). In practice, based on 

Theorem 2, pI(s) and pI can be approximated by simulation method. For example, we 

generate B samples from NnL(0, I) and then use Theorem 2 (a) to compute  and 

 for b = 1, . . . , B. Finally, pI(s) and pI are approximated by
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respectively, where 1(·) is an indicator function. Similarly, pIS,n(s) and pIS,n can be 

approximated by using the parametric bootstrap random method which is described in 

Appendix A2.

3 Simulations and Real Data Analysis

In this section, we evaluate the finite sample performance of our diagnostic methods through 

the simulated datasets and a real data example.

3.1 Simulations

The goal of our simulations is to examine the finite sample performance of our diagnostic 

measures for detecting influential curves and/or influential observations at multiple grid 

points in functional data. Following Zhu et al. (2012b), we generated data sets according to 

model (1). We set n = 50, L = 40, ηi(s) = ξi1ϕ1(s) + ξi2ϕ2(s), sl ~ U[0, 1], εi(sl) ~ N(0, 0.42), 

and xi = (1, xi1, xi2)T, where xi1 ~ Bernoulli(0.5), xi2 ~ N(0, 1), ξi1 ~ N(0, 0.36), and ξi2 ~ 

N(0, 0.25). Moreover, we set the functional coefficients and eigenfunctions as follows:

We used a normal kernel function and B = 100 for computing diagnostic probabilities.

To add some influential curves or grid points, we modified the simulated data set according 

to four different scenarios, including (i) a single outlying curve; (ii) three outlying curves; 

(iii) a single curve with several outlying observations; and (iv) a single outlying time point. 

Figure 1 shows a graphical illustration of Scenarios (i)-(iv). For Scenario (i), we changed the 

curve y10(s) into y10(s)+5 sin(πs) in order to create a single atypical curve. For Scenario (ii), 

we changed the curves y10(s), y20(s), and y30(s) into y10(s) + 5 sin(πs), y20(s) − 4 cos(πs), 

and y30(s) + 15s(1 − s), respectively. For Scenario (iii), we added 5 sin(πs) to the values of 

y10(s) at two segments of grid points including {s11, · · · , s20} and {s31, · · · , s35} in order to 

generate an atypical curve with influential observations at several segments of consecutive 

grid points, but not for the whole curve. For Scenario (iv), we added 1 to all observations at 

the 10th grid point in order to result in influential observations at a single grid point.

Figures 2-4, present the diagnostic measures for Scenarios (i)-(iii), respectively. In each 

figure, we include the global Cook's distance, scaled global Cook's distance, and diagnostic 

probabilities for deleting a single case or two cases. It reveals that our diagnostic measures 

are quite effective in all scenarios. Specifically, for Scenarios (i): The maximum global 

Cook's distance is CD10 with the value of 32.3661, whereas the second largest is CD25 with 

the value of 7.1788. Thus, the global Cook's distance for the outlying curve is significantly 

larger those for the non-outlier curves (Figure 2 (a)). To delineate the cause of such large 
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Cook's distance, scaled global Cook's distances are also computed and presented in Figure 2 

(c) such that SCD10 = 17.3043 is much larger than the second largest SCD25 = 2.6105. 

Moreover, the diagnostic probabilities presented in Figure 2 (e) lead to the same conclusion. 

Therefore, the 10th outlying curve can be effectively identified by our diagnostic measures. 

We also included the diagnostic results associated with the deletion of two cases for 

Scenarios (i) in Figure 2 (b), (d), and (f), respectively. Similarly, we presented diagnostic 

results for Scenarios (ii) and (iii) in Figures 3 and 4. Moreover, we computed the local 

Cook's distances, scaled local Cook's distances, and diagnostic probabilities for deleting a 

single case or two cases under the three Scenarios. For the sake of space, we only present the 

local Cook's distances and their scaled local Cook's distances in Figure 5. Figure 5 shows 

that our diagnostic methods perform quite well under the above three Scenarios by 

computing the Cook's distances at each grid point. Figure 6 presents that both global and 

local diagnostic measures can detect an influential grid point for Scenario (iv). Moreover, it 

can be seen that the 10th grid point also a ects nearby observations by the kernel smoothing 

method used in the estimation procedure.

3.2 Real Data Analysis

To apply our diagnostic measures to a real example, we analyze a diffusion tensor imaging 

(DTI) tract data which was reported in Zhu et al. (2010) and Zhu et al. (2011). Since 

diffusion tensor imaging (DTI) can track the effective diffusion of water in the human brain 

in vivo, it can map the structure and orientation of the white matter fiber tracts of the brain. 

From DTI tracts, we often calculate a 3 × 3 matrix, called a diffusion tensor (DT), and its 

tensor-derived quantities to quantify the degree of diffusivity and the directional dependence 

of water diffusion for each voxel. Such diffusion quantities commonly include three 

eigenvalue-eigenvector pairs of diffusion tensor and other related parameters, such as mean 

diffusivity (MD). A wealth of neuroimaging studies has used these diffusion quantities as a 

marker of white matter tract maturation and integrity for neuropsychiatric and neuro-

degenerative disorders.

The data set consists of 263 healthy full-term infants. All infants were younger than one year 

old, and the written informed consent was obtained from their parents before imaging 

acquisition. The gestational ages at MR scanning were 298 ± 17.>6 (Mean±Std) days and 

their range was 262-433. For details about statistical results and imaging processing 

procedure, see Zhu et al. (2010) and Zhu et al. (2011).

We fitted the VCM (1) to the MD values along a Genu tract with 45 grid points obtained 

from all subjects. We used gender and gestational age as covariates. Then, we obtained 

, , and the eigenvalues and eigenfunctions of . Subsequently, we calculated 

various Cook's distance measures for a signal-case deletion. In Figure 7 (a), the global 

Cook's distances detected Case 65 as the most influential subject. Figure 7 (c) shows some 

other influential cases including 28, 31, 64, 199, and 200. In Figure 7 (e), the diagnostic 

probabilities for the global Cook's distances confirm that Cases 28, 31, 64, 65, 199, and 200 

are relatively influential.

Gao et al. Page 13

Technometrics. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition, we present various diagnostic measures for two-case deletion in Figure 7 (b), 

(d), and (f). The combinations of Case 65 with all other cases have relatively larger Cook's 

distances and diagnostic probabilities and Cases (31, 65) is the most influential pair. 

Moreover, almost all combinations of Case 28 (or 31) with all other cases have quite larger 

Cook's distances and diagnostic probabilities than others. All results reveal that Case 65 is 

the most influential, while Cases 28, 31, 64, 199, and 200 are comparably influential.

We re-estimated β(s) after deleting each of Cases 1, 28, 31, and 65. Here, Case 1 was 

selected from the un-influential curves. Figure 8 displays the estimated coefficient functions 

before and after deleting each of the four Cases. The β1(s), β2(s), and β3(s) correspond to an 

intercept, gender, and gestational age, respectively. Figure 8 shows that deleting Cases 28, 

31, and 65 have more effects on the estimates of coefficient functions than deleting Case 1.

4 Discussion

We have developed various Cook's distance measures for assessing the influence of both 

atypical curves and observations under varying coefficient model for functional responses. 

Our Cook's distance measures include Cook's distances for deleting multiple curves and for 

deleting multiple grid points, and their scaled Cook's distances. We have systematically 

investigated some theoretical properties of the proposed diagnostic measures. Simulation 

studies and a real DTI tract data have confirmed that our Cook's distances perform well 

under various scenarios.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Graphical illustration of four simulation scenarios.
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Figure 2. 
Cook's distance measures for Scenario (i) with a single outlying curve. Top: global CD (i.e., 

CDI); middle: scaled global CD (i.e., SCDI); and bottom: global di-agnostic probability (i.e., 

p̂I). Left: single-case deletion and Right: two-case deletion. Index of observation stands for 

the index of case deleted and the case 10 is an outlying curve.
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Figure 3. 
Cook's distance measures for Scenario (ii) with three outlying curves. Top: global CD (i.e., 

CDI); middle: scaled global CD (i.e., SCDI); and bottom: global di-agnostic probability (i.e., 

p̂I). Left: single-case deletion and Right: two-case deletion. Index of observation stands for 

index of subject deleted and the cases 10, 20 and 30 are outlying curves.
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Figure 4. 
Cook's distance measures for Scenario (iii) with multiple outlying grid points on a single 

outlying curve. Top: global CD (i.e., CDI); middle: scaled global CD (i.e., SCDI); and 

bottom: global diagnostic probability (i.e., p̂I). Left: single-case deletion and Right: two-case 

deletion. Index of observation stands for case index deleted and the case 10 is an outlying 

curve.
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Figure 5. 
Simulation data results for Scenarios (i)-(iii): local CDs (left panel, i.e., CDI(s)) and scaled 

local CDs (right panel, i.e., SCDI(s)) for a single-case deletion. Index of observations stands 

for the index of subject deleted.

Gao et al. Page 20

Technometrics. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Simulation data results for Scenario (iv). Local (global) CD, scaled local (global) CD and 

local (global) diagnostic probability are denoted as CDIS,n(s), SCDIS,n(s), and p̂IS,n(s) 

(CDIS,n, SCDIS,n, and p̂IS,n), respectively.
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Figure 7. 
Diagnostic measures from real DTI data for single-case and two-case deletions: top: global 

CD (i.e., CDI); middle: scaled global CD (i.e., SCDI); and bottom: global diagnostic 

probability (i.e., p̂I). Left: single-case deletion and Right: two-case deletion.
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Figure 8. 
Estimated coefficient functions after (Red dash line) and before (Blue solid line) deleting 

some cases from real DTI data. The β1(s), β2(s), and β3(s) correspond to intercept, gender, 

and gestational age, respectively. The labels of y-axis Beta1(s), Beta2(s) and Beta3(s) stand 

for β1(s), β2(s), and β3(s), respectively.
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