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Abstract
The transcription factor ΔFosB accumulates and persists in brain in response to chronic stimulation.
This accumulation after chronic exposure to drugs of abuse has been demonstrated previously by
Western blot most dramatically in striatal regions, including dorsal striatum (caudate/putamen) and
nucleus accumbens. In the present study, we used immunohistochemistry to define with greater
anatomical precision the induction of ΔFosB throughout the rodent brain after chronic drug treatment.
We also extended previous research involving cocaine, morphine, and nicotine to two additional
drugs of abuse, ethanol and Δ9-tetrahydrocannabinol (Δ9-THC, the active ingredient in marijuana).
We show here that chronic, but not acute, administration of each of four drugs of abuse, cocaine,
morphine, ethanol, and Δ9-THC, robustly induces ΔFosB in nucleus accumbens, although different
patterns in the core vs. shell subregions of this nucleus were apparent for the different drugs. The
drugs also differed in their degree of ΔFosB induction in dorsal striatum. In addition, all four drugs
induced ΔFosB in prefrontal cortex, with the greatest effects observed with cocaine and ethanol, and
all of the drugs induced ΔFosB to a small extent in amygdala. Furthermore, all drugs induced ΔFosB
in the hippocampus, and, with the exception of ethanol, most of this induction was seen in the dentate.
Lower levels of ΔFosB induction were seen in other brain areas in response to a particular drug
treatment. These findings provide further evidence that induction of ΔFosB in nucleus accumbens
is a common action of virtually all drugs of abuse and that, beyond nucleus accumbens, each drug
induces ΔFosB in a region-specific manner in brain.
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INTRODUCTION
Acute exposure to cocaine causes the transient induction of the transcription factors c-Fos and
FosB in striatal regions (Graybiel et al., 1990; Hope et al., 1992; Young et al., 1991), whereas
chronic exposure to the drug results in the accumulation of stabilized isoforms of ΔFosB, a
truncated splice variant of the fosB gene (Hiroi et al., 1997; Hope et al., 1994; Moratalla et al.,
1996; Nye et al., 1995). Once induced, ΔFosB persists in these regions for several weeks due
to the unusual stability of the protein. More recent research has shown that ΔFosB’s stability
is mediated by the absence of degron domains found in the C-termini of full-length FosB and
all other Fos family proteins (Carle et al., 2007) and by the phosphorylation of ΔFosB at its N-
terminus (Ulery et al., 2006). In contrast, chronic drug administration does not alter the splicing
of fosB premRNA into ΔfosB mRNA nor the stability of the mRNA (Alibhai et al., 2007),
which further indicates that the accumulation of ΔFosB protein is the predominant mechanism
involved.

Growing evidence indicates that ΔFosB induction in striatal regions, in particular, the ventral
striatum or nucleus accumbens, is important in mediating aspects of addiction. Overexpression
of ΔFosB in these regions of inducible bitransgenic mice, or via viral-mediated gene transfer,
increases an animal’s sensitivity to the locomotor-activating and rewarding effects of cocaine
and of morphine, whereas expression of a dominant negative antagonist of ΔFosB (termed
Δc-Jun) has the opposite effects (Kelz et al., 1999; McClung and Nestler, 2003; Peakman et
al., 2003; Zachariou et al., 2006). ΔFosB overexpression has also been shown to increase
incentive motivation for cocaine (Colby et al., 2003). Moreover, ΔFosB is preferentially
induced by cocaine in adolescent animals, which may contribute to their increased vulnerability
to addiction (Ehrlich et al., 2002).

Despite this evidence, important questions remain. Although chronic administration of several
other drugs of abuse, including amphetamine, methamphetamine, morphine, nicotine, and
phencyclidine, have been reported to induce ΔFosB in striatal regions (Atkins et al., 1999;
Ehrlich et al., 2002; McDaid et al. 2006b; Muller and Unterwald, 2005; Nye et al., 1995; Nye
and Nestler, 1996; Pich et al. 1997; Zachariou et al., 2006), little or no information is available
concerning the actions of ethanol and Δ9-tetrahydrocannabinol (Δ9-THC, the active ingredient
in marijuana). Two prior studies showed that FosB-like immunoreactivity is induced in
hippocampus and certain other brain areas during ethanol withdrawal, but it remains uncertain
whether this immunoreactivity represents ΔFosB or full-length FosB (Bachtell et al., 1999;
Beckmann et al., 1997). Study of ethanol and (Δ9-THC are particularly important, because
these are two of the most widely used drugs of abuse in the US today (SAMHSA, 2005).
Moreover, although stimulant or opiate drugs of abuse have been shown to induce ΔFosB in
certain other isolated brain regions, which, in addition to nucleus accumbens and dorsal
striatum, include prefrontal cortex, amygdala, ventral pallidum, ventral tegmental area, and
hippocampus (Liu et al., 2007; McDaid et al., 2006a,2006b; Nye et al., 1995; Perrotti et al.,
2005), there has not been a systematic mapping of ΔFosB induction in brain in response to
chronic drug exposure.

The goal of the present study was to use immunohistochemical procedures to map the induction
of ΔFosB throughout brain after chronic administration of four prototypical drugs of abuse:
cocaine, morphine, ethanol, and Δ9-THC.

MATERIALS AND METHODS
Animals

All experiments were conducted using male Sprague Dawley rats (Charles River, Kingston,
250–275 g). Animals were housed two per cage and habituated to the animal room conditions
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for one week before experiments commenced. They had free access to food and water.
Experiments were conducted according to protocols reviewed by the Institutional Animal Care
and Use Committee at The University of Texas Southwestern Medical Center at Dallas.

Drug treatments
Chronic cocaine—Rats (n = 6 per group) received twice-daily injections of cocaine
hydrochloride (15 mg/kg i.p.; National Institute on Drug Abuse, Bethesda, MD) dissolved in
0.9% saline for 14 days. Control rats (n = 6 per group) received i.p. injections of 0.9% saline
under the same chronic procedure. All injections were given in the animals’ home cages. This
treatment regimen has been shown to produce robust behavioral and biochemical adaptations
(see Hope et al., 1994).

Cocaine self-administration—Animals (n = 6 per group) were trained to press a lever for
a 45 mg sucrose pellet. After this training, the animals were fed ad libitum and surgically
implanted under pentobarbital anesthesia with a chronic jugular catheter (Silastic tubing, Green
Rubber, Woburn, MA) as described previously (Sutton et al., 2000). The catheter passed
subcutaneously to exit the back through a 22-gauge cannula (Plastics One, Roanoke, VA),
embedded in cranioplastic cement, and secured with Marlex surgical mesh (Bard, Cranston,
RI). Self-administration was conducted in operant test chambers (Med Associates, St. Alban,
VT) that were contextually distinct from the animal’s home cage and located in a different
room. Each chamber was enclosed in a sound-attenuating cubicle equipped with an infusion
pump assembly consisting of a Razel Model A pump (Stamford, CT) and a 10 ml glass syringe
connected to a fluid swivel (Instech, Plymouth Meeting, PA) by Teflon tubing. Tygon tubing
connected the swivel to the animal’s catheter assembly and was enclosed by a metal spring.
Each operant chamber contained two levers (4 × 2 cm2, located 2 cm off the floor). During
self-administration training, a single 20 g lever-press on the active lever delivered an i.v.
infusion of cocaine (0.5 mg/kg per 0.1 ml infusion) over a 5-s infusion interval. The infusion
was followed by a 10-s time-out period, during which the house light was extinguished and
responding produced no programmed consequences. Illumination of the house light signaled
the end of the time-out period. Lever-press on the inactive lever produced no consequence.
Animals self-administered cocaine during 14 daily 4-h test sessions (6 days/week) during their
dark cycle; average daily intake was ~50 mg/kg. A group of yoked animals were handled
identically only they received cocaine infusions when their self-administering counterparts
received drug. A group of saline control animals were allowed to lever press for saline
infusions. This treatment regimen has been shown to produce robust behavioral and
biochemical adaptations (see Sutton et al., 2000).

Chronic morphine—Morphine pellets (each containing 75 mg of morphine base; National
Institute on Drug Abuse) were implanted s.c. once daily for 5 days (n = 6). Control rats
underwent sham surgery for 5 consecutive days (n = 6). This treatment regimen has been shown
to produce robust behavioral and biochemical adaptations (see Nye and Nestler, 1996).

Δ9-THC—Δ9-THC were dissolved in a 1:1:18 solution of ethanol, emulphor, and saline. Mice
were injected subcutaneously twice daily with Δ9-THC, or vehicle for 15 days. Initial dose of
Δ9-THC was 10 mg/kg and the dose was doubled every three days to final dose of 160 mg/kg.
We used mice for Δ9-THC, because this treatment regimen has been shown to produce robust
behavioral and biochemical adaptations in this species (Sim-Selley and Martin, 2002).

Ethanol—Ethanol (from 95% stock; Aaper, Shelbyville, KY) was administered by means of
a nutritionally complete liquid diet. This standard dietary ethanol procedure involves
administration of 7% [weight/volume (wt/vol)] ethanol in a lactalbumin/dextrose-based diet
for 17 days, during which time rats generally consume ethanol at 8–12 g/kg/day and achieve
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blood ethanol levels up to 200 mg/dl (Criswell and Breese, 1993; Frye et al., 1981; Knapp et
al., 1998). The diet was nutritionally complete (with concentrations of vitamins, minerals, and
other nutrients derived from ICN Research Diets and calorically balanced (with dextrose)
across ethanol-treated rats and control rats. Intake matching was achieved by giving the control
diet-treated rats a volume of diet equivalent to the average intake of the ethanol diet-treated
rats the day before. Both groups readily gained weight during the ethanol exposure period (not
shown). This treatment regimen has been shown to produce robust behavioral and biochemical
adaptations (see Knapp et al., 1998).

Immunohistochemistry
Eighteen to 24 h after their last treatment, animals were deeply anesthetized with chloral
hydrate (Sigma, St. Louis, MO) and intracardially perfused with 200 ml of 10 mM phosphate-
buffered saline (PBS) followed by 400 ml of 4% paraformaldehyde in PBS. Brains were
removed and stored overnight in 4% paraformaldehyde at 4°C. The next morning, brains were
transferred to a 20% glycerol in 0.1 M PBS solution for cryoprotection. Coronal sections (40
µm) were cut on a freezing microtome (Leica, Bannockburn, IL) and then processed for
immunohistochemistry. ΔFosB and FosB immunoreactivities were detected using two
different rabbit polyclonal antisera. One antiserum, raised against the FosB C-terminus that is
absent in ΔFosB (aa 317–334) recognizes full-length FosB, but not ΔFosB (Perrotti et al.,
2004). The other antiserum, a “pan-FosB” antibody, was raised against an internal region of
FosB and recognizes both FosB and ΔFosB (s.c.−48; Santa Cruz Biotechnology, Santa Cruz,
CA).

FosB-like staining was revealed by use of the avidin-biotin peroxidase complex method. For
this procedure, brain sections were first treated with 0.3% H2O2 to destroy endogenous
peroxidases and then incubated for 1 h in 0.3% Triton X-100 and 3% normal goat serum to
minimize nonspecific labeling. Tissue sections were then incubated overnight at room
temperature in 1% normal goat serum, 0.3% Triton X-100 and pan-FosB antibody (1:5000).
Sections were washed, placed for 1.5 h in 1:200 dilution of biotinylated goat-antirabbit
immunoglobulin (DakoCytomation, Carpinteria, CA), washed, and placed for 1.5 h in 1:200
dilution of avidin–biotin complex from the Elite kit (Vector Laboratories, Burlingame, CA).
Peroxidase activity was visualized by reaction with diaminobenzidine (Vector Laboratories).
Coded slides were used to count the number of FosB-immunoreactive cells. The code was not
broken until analysis of an individual experiment was complete.

Once FosB-like immunoreactivity was detected, double fluorescent labeling with the FosB-
specific (C-terminus; 1:500) antibody and pan-FosB antibody (s.c.−48; 1:200) was conducted
to determine if the induced protein was indeed ΔFosB. A published protocol was used (Perrotti
et al., 2005). The proteins were visualized using CY2 and CY3 fluorophore-labeled secondary
antibodies (Jackson ImmunoResearch Laboratories, West Grove, PA). Localization of protein
expression was performed on a confocal microscope (Axiovert 100; LSM 510 with META
emission wavelengths of 488, 543, and 633; Zeiss, Thornwood, NY). Images presented here
were captured on this system and represent a 1 µm-thick section through a Z-plane.

Statistical analysis
Significant induction of ΔFosB+ cells was assessed using t-tests or one-way ANOVAs
followed by Newman-Keuls test as post hoc analysis. All analyses were corrected for multiple
comparisons. Data are expressed as mean ± SEM. Statistical significance was defined as P <
0.05.
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RESULTS
Induction of ΔFosB in brain

To directly compare the patterns of ΔFosB induction in brain in response to different types of
drugs of abuse, we administered four prototypical drugs, cocaine, morphine, ethanol, and Δ9-
THC, and examined ΔFosB expression 18–24 h after the last drug exposure. We used standard
drug treatment regimens, which have been demonstrated in the literature to produce behavioral
and biochemical sequelae of chronic drug exposure (see Materials and Methods section).
Levels of ΔFosB were quantified by immunohistochemistry, with a focus on midbrain and
fore-brain regions implicated in drug reward and addiction. This fine mapping of ΔFosB
induction was performed with a pan-FosB antibody, which recognizes both ΔFosB and full-
length FosB. However, we know that all of the immunoreactivity observed, for each of the
drugs, is due solely to ΔFosB, since an antibody selective for full-length FosB (see Material
and Methods section) detected no positive cells. Moreover, all immunoreactivity detected by
the pan-FosB antibody was lost in fosB knockout mice, which confirms the specificity of this
antibody for fosB gene products as opposed to other Fos family proteins. These controls are
shown for cocaine in Figure 1, but were observed for all other drugs as well (not shown). These
findings are not surprising, because at the 18–24 h time point used in this study all of the full-
length FosB, induced by the last drug administration, would be expected to degrade, leaving
the more stable ΔFosB as the only fosB gene product remaining (see Chen et al., 1995; Hope
et al., 1994).

A summary of the overall findings of this study is provided in Table I. Each of the four drugs
was found to significantly induce ΔFosB in brain, although with partly distinct patterns of
induction seen for each drug.

Induction of ΔFosB in striatal regions
The most dramatic induction of ΔFosB was seen in the nucleus accumbens and dorsal striatum
(caudate/putamen), where all four drugs induced the protein (Fig. 2–Fig. 4). This is shown
quantitatively in Figure 5. ΔFosB induction was seen in both the core and shell subregions of
the nucleus accumbens, with marginally more induction seen in the core for most of the drugs.
Robust induction of ΔFosB was also observed in the dorsal striatum for most of the drugs. An
exception was Δ9-THC, which did not significantly induce ΔFosB in the nucleus accumbens
shell or dorsal striatum despite strong trends (see Fig. 4; Table I). Interestingly, ethanol
produced the greatest induction of ΔFosB in the nucleus accumbens core compared to the other
treatments.

Induction of ΔFosB by volitional versus forced drug exposure
Given the dramatic induction of ΔFosB in striatal regions, we were interested in determining
whether the ability of a drug to induce the protein in these regions varied as a function of
volitional versus forced drug exposure. To address this question, we studied a group of rats
that self-administered cocaine for 14 days and compared ΔFosB induction in these animals to
those that received yoked infusions of cocaine and those that received saline only. As shown
in Figure 6, self-administered cocaine robustly induced ΔFosB in the nucleus accumbens (both
the core and shell sub-regions) and dorsal striatum, with equivalent degrees of induction seen
for self-administered versus yoked-administered drug. The extent of ΔFosB induction seen in
these two groups of animals was greater than that seen with i.p. injections of cocaine (see Fig.
5), presumably due to the much larger of amounts of cocaine in the self-administration
experiment (daily doses: 50 mg/kg i.v. vs. 30 mg/kg i.p.).
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Induction of ΔFosB in other brain regions
Beyond the striatal complex, chronic administration of drugs of abuse induced ΔFosB in several
other brain areas (see Table I). We should emphasize that the data presented in Table I are
semiquantitative, and do not represent precise quantification of ΔFosB induction, as performed
for striatal regions (Fig. 5 and Fig. 6). Nevertheless, we are confident of ΔFosB induction in
these nonstriatal regions: ΔFosB is virtually undetectable in these regions under basal
conditions, such that the consistent detection of ΔFosB after chronic drug exposure is
statistically significant (P < 0.05 by χ2).

Robust induction by all drugs was seen in the prefrontal cortex, with morphine and ethanol
seeming to produce the strongest effects in the most layers (Fig. 4 and Fig. 7). All four drugs
also caused low levels of ΔFosB induction in the bed nucleus of the stria terminalis (BNST),
the interstitial nucleus of the posterior limb of the anterior commissure (IPAC), and throughout
the amygdala complex (Fig. 8). Additional effects, specific to particular drugs, were also
observed. Cocaine and ethanol, but not morphine or Δ9-THC, appeared to induce low levels
of ΔFosB in the lateral septum, with no induction seen in medial septum. All drugs induced
ΔFosB in the hippocampus and, with the exception of ethanol, most of this induction was seen
in the dentate gyrus (Table I and Fig. 9). In contrast, ethanol induced very little ΔFosB in
dentate gyrus and instead induced high levels of the protein in the CA3-CA1 subfields. Cocaine,
morphine, and ethanol, but not Δ9-THC, caused low levels of induction of ΔFosB in the
periaqueductal gray, whereas only cocaine induced ΔFosB in the ventral tegmental area, with
no induction seen in the sub-stantia nigra (see Table I).

DISCUSSION
Numerous studies have demonstrated that chronic administration of several types of drugs of
abuse, including cocaine, amphetamine, methamphetamine, morphine, nicotine, and
phencyclidine, induces the transcription factor, ΔFosB, in nucleus accumbens and dorsal
striatum (see Introduction section for references; reviewed in McClung et al., 2004; Nestler et
al., 2001). Induction of ΔFosB in striatal regions has also been observed after chronic
consumption of natural rewards, such as wheel-running behavior (Werme et al., 2002). In
addition, there have been several reports of lower levels of ΔFosB induction in certain other
brain regions, including prefrontal cortex, amygdala, ventral pallidum, ventral tegmental area,
and hippocampus (Liu et al., 2007; McDaid et al., 2006a,2006b; Nye et al., 1996; Perrotti et
al., 2005), in response to some of these drugs of abuse, however, there has never been a
systematic mapping of drug induction of ΔFosB in brain. Moreover, despite the investigation
of most drugs of abuse, two of the most widely abused substances, ethanol and Δ9-THC, have
not to date been examined for their ability to induce ΔFosB. The goal of the present study was
to carry out an initial mapping of ΔFosB in brain in response to chronic administration of four
prototypical drugs of abuse: cocaine, morphine, ethanol, and Δ9-THC.

The major findings of our study are that ethanol and Δ9-THC, like all other drugs of abuse,
induce high levels of ΔFosB broadly within the striatal complex. These results further establish
ΔFosB induction in these regions as a common, chronic adaptation to virtually all drugs of
abuse (McClung et al., 2004). The pattern of induction within the striatal complex differed
somewhat for the various drugs. All robustly induced ΔFosB in the nucleus accumbens core,
whereas all of the drugs-except for Δ9-THC-significantly induced ΔFosB in the nucleus
accumbens shell and dorsal striatum as well, and there were strong trends for Δ9-THC to
produce similar effects in these latter regions. The nucleus accumbens core and shell are
important brain reward regions, which have been shown to be critical mediators of the
rewarding actions of drugs of abuse. Likewise, the dorsal striatum has been related to the
compulsive or habit-like nature of drug consumption (Vanderschuren et al., 2005). Indeed,
induction of ΔFosB in these regions has been shown to increase the rewarding responses to
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cocaine and to morphine, and to increase responses to natural rewards such as wheel-running
behavior and food intake, as well (Colby et al., 2003; Kelz et al., 1999; Olausson et al., 2006;
Peakman et al., 2003; Werme et al., 2003; Zachariou et al., 2006). Further work is needed to
determine whether ΔFosB induction in these regions mediates similar functional adaptations
in an individual’s sensitivity to the rewarding effects of other drugs of abuse.

Induction of ΔFosB in striatal regions is not a function of the volitional intake of the drug.
Thus, we showed that self-administration of cocaine induced the same degree of ΔFosB in
nucleus accumbens and dorsal striatum as seen in animals that received equivalent, yoked
injections of the drug. These results demonstrate that ΔFosB induction in striatum represents
a pharmacologic action of drugs of abuse, independent of an animal’s control over drug
exposure. In striking contrast, we demonstrated recently that self-administration of cocaine
induces several-fold higher levels of ΔFosB in orbitofrontal cortex compared to yoked cocaine
administration (Winstanley et al., 2007). This effect was specific for orbitofrontal cortex,
because equivalent levels of ΔFosB induction were seen in prefrontal cortex under these two
treatment conditions. Thus, although ΔFosB induction is not related to volitional control over
drug intake in striatal regions, it appears to be influenced by such motivational factors in certain
higher cortical centers.

We also present semiquantitative data that all four drugs of abuse induce ΔFosB in several
brain regions outside the striatal complex, although in general to a lesser extent. These other
brain areas included the prefrontal cortex, amygdala, IPAC, BNST, and hippocampus. Drug
induction of ΔFosB in prefrontal cortex and hippocampus may be related to some of the effects
of drugs of abuse on cognitive performance, although this has yet to be investigated directly.
The amygdala, IPAC, and BNST have all been implicated in regulating an individual’s
responses to aversive stimuli. This raises the possibility that ΔFosB induction in these regions
after chronic administration of a drug of abuse mediates drug regulation of emotional behavior
well beyond reward. It will be interesting to examine these possibilities in future investigations.

The four drugs of abuse studied here also produced some drug-specific effects. Cocaine
uniquely induced ΔFosB in the ventral tegmental area, as reported previously (Perrotti et al.,
2005). Likewise, cocaine and ethanol uniquely induced low levels of ΔFosB in the lateral
septum. Δ9-THC was unique for less dramatic effects on ΔFosB induction, compared with
other drugs of abuse, in the nucleus accumbens shell and dorsal striatum, as mentioned earlier.
Δ9-THC was also unique in that chronic exposure to this drug, as opposed to all of the others,
did not induce low levels of ΔFosB in the periaqueductal gray. Given the role of the
hippocampus and septum in cognitive function, and the role of these regions as well as the
periaqueductal gray in regulating an animal’s responses to stressful situations, region- and
drug-specific induction of ΔFosB in these regions could mediate important aspects of drug
action on the brain.

In summary, ΔFosB induction in striatal brain reward regions has been widely demonstrated
as a shared chronic adaptation to drugs of abuse. We have extended this notion by showing
here that two additional and widely abused drugs, ethanol and Δ9-THC, also induce ΔFosB in
these brain regions. We also identify several other areas of brain, implicated in cognitive
function and stress responses, which show varying degrees of ΔFosB induction in response to
chronic drug exposure. Some of these responses, like the induction of ΔFosB in striatal regions,
are common across all drugs of abuse studied here, whereas responses in other brain areas are
more drug-specific. These findings will now direct future investigations to characterize the
role of ΔFosB induction in these other brain areas. They also help define the potential utility
of antagonists of ΔFosB as a common treatment for drug addiction syndromes.
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Fig. 1.
Double-labeling fluorescence immunohistochemistry using the anti-FosB (pan-FosB, Santa-
Cruz) or anti-FosB (C-terminus) antibody through the nucleus accumbens of animals treated
with acute or chronic cocaine and a control rat. The pan-FosB antibody stains both ΔFosB and
FosB-positive nuclei (note nuclei from acute cocaine treatment stain with this antibody in
green, and double stain with both antibodies “merge” row), whereas the C-terminus antibody
stains FosB-positive nuclei only (note the absence of labeling in chronic cocaine tissue labeled
with this antibody). All nuclei in the chronic cocaine-treated tissue are ΔFosB positive as they
are stained only with the pan-FosB antibody and not with the C-terminal antibody. The inset
shows a nucleus accumbens section from a fosB knockout mouse stained with the pan-FosB
antibody; the lack of staining demonstrates the specificity of the antibody for fosB gene
products. The background on this panel is intensified to demonstrate that no staining (brighter
red) was observed. Scale bar = 50 µm.
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Fig. 2.
Induction of ΔFosB in the rat nucleus accumbens in a control rat (A) or after chronic treatment
with ethanol (B), morphine (C), or cocaine (D). Levels of FosB-like immunoreactivity were
analyzed by immunohistochemistry using a pan-FosB antibody. Labeling with the C-terminus
antibody revealed no positive cells (not shown). Scale bar = 50 µm.
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Fig. 3.
Induction of ΔFosB in the rat caudate putamen in a control rat (A) or after chronic treatment
with ethanol (B), morphine (C), or cocaine (D). Levels of FosB-like immunoreactivity were
analyzed by immunohistochemistry using a pan-FosB antibody. Labeling with the C-terminus
antibody revealed no positive cells (not shown). Scale bar = 50 µm.
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Fig. 4.
Induction of ΔFosB in mouse brain after chronic Δ9-THC treatment. Levels of FosB-like
immunoreactivity were analyzed by immunohistochemistry using a pan-FosB antibody in
control (A, C, E) and chronic Δ9-THC (B, D, F) animals. Note that chronic Δ9-THC treatment
increased FosB-like immunoreactivity in the nucleus accumbens (NAc) core and shell, caudate
putamen (CPu; A, B), and prefrontal cortex (PfC; E, F). Note that ΔFosB induction in striatal
regions reached statistical significance for NAc core only, despite strong trends in the NAc
shell and CPu as shown in the figure (see Fig. 5). Labeling with the C-terminus antibody
revealed no positive cells (not shown). Scale bar = 50 µm.
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Fig. 5.
Quantification of ΔFosB induction in striatal regions after chronic morphine, Δ9-THC, ethanol,
and cocaine treatments. The bar graphs show the mean number of ΔFosB+ cells in control
animals and in animals subjected to chronic morphine, Δ9-THC, ethanol, or cocaine treatments
in the core and shell subregions of the nucleus accumbens (NAc) and in the dorsal striatum
(caudate-putamen, CPu). Data are expressed as mean ± SEM (n = 6–10 animals in each group).
*P < 0.05 by t-test.

Perrotti et al. Page 15

Synapse. Author manuscript; available in PMC 2009 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Quantification of ΔFosB induction in striatal regions after chronic cocaine self-administration.
The bar graphs show the mean number of ΔFosB+ cells in control animals and in animals
subjected to the cocaine treatments, in the core and shell subregions of the nucleus accumbens
(NAc) and the dorsal striatum (caudate- putamen, CPu). Data are expressed as mean ± SEM
(n = 6–10 animals in each group). *P < 0.05 by t-test. Note no significant differences between
self-administering animals and their yoked counterparts.
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Fig. 7.
Induction of ΔFosB in the prefrontal cortex in a control rat (A) or after chronic treatment with
ethanol (B), morphine (C), or cocaine (D). Levels of FosB-like immunoreactivity were
analyzed by immunohistochemistry using a pan-FosB antibody. Labeling with the C-terminus
antibody revealed no positive cells (not shown). Scale bar = 50 µm.
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Fig. 8.
Induction of ΔFosB in the basal lateral and central medial nuclei of the amygdala of a control
rat (A) or in rats given chronic ethanol (B), morphine (C), or cocaine (D) treatments. Levels
of FosB-like immunoreactivity were analyzed by immunohistochemistry using a pan-FosB
antibody. Labeling with the C-terminus antibody revealed no positive cells (not shown). Scale
bar = 50 µm.
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Fig. 9.
Induction of ΔFosB in the hippocampus of a control rat (A) or in rats given chronic ethanol
(B), morphine (C), or cocaine (D) treatments. Levels of FosB-like immunoreactivity were
analyzed by immunohistochemistry using a pan-FosB antibody. Labeling with the C-terminus
antibody revealed no positive cells (not shown). Scale bar = 50 µm.
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