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Summary
The de novo design of globular β-sheet proteins remains largely an unsolved problem. It is unclear
if most designs are failing because the designed sequences do not have favorable energies in the
target conformations or if more emphasis should be placed on negative design, i.e. explicitly
identifying sequences that have poor energies when adopting undesired conformations. We tested if
we could redesign the sequence of a naturally occurring β-sheet protein, tenascin, with a design
algorithm that does not include explicit negative design. Denaturation experiments indicate that the
designs are significantly more stable than the wild type protein and the crystal structure of one design
closely matches the design model. These results suggest that extensive negative design is not required
to create well-folded β-sandwich proteins. However, it is important to note that negative design
elements may be encoded in the conformation of the protein backbone which was preserved from
the wild type protein.
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Introduction
Approximately one quarter of all protein domains are made entirely from β-strands and
connecting loops (Orengo et al., 1997). β-sheets and β-barrels form relatively rigid structures
that serve as excellent scaffolds for loops that can evolve new molecular recognition
capabilities; antibodies are an excellent example of this. Despite the obvious importance of β-
sheet proteins, we still do not understand them well enough to design them from first principles.
Most de novo designed β-sheet proteins are prone to aggregation, and there are no de novo
designs of an all β-sheet protein with more than three β-strands that have been validated with
a NMR or crystal structure (Hughes and Waters, 2006; Kortemme et al., 1998; Kraemer-Pecore
et al., 2003; Ramirez-Alvarado et al., 1999; Searle and Ciani, 2004). In contrast, several de
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novo designs of all helical or mixed α/β proteins have been validated with high resolution
structures (Harbury et al., 1998; Kuhlman et al., 2003; Walsh et al., 1999; Wei et al., 2003).

There may be several reasons why designed globular β-sheet proteins are prone to misfolding
and aggregation. Many β-sheet proteins have greater sequence separation between contacting
residues (high contact order) and therefore fold more slowly than helical and mixed α/β proteins
(Plaxco et al., 1998). Slower folding rates may allow more time for misfolding, domain
swapping and aggregation. β-sheet proteins (designed and naturally occurring) are generally
enriched in amino acids with a high intrinsic propensity to form β-strands (Chou and Fasman,
1974; Koehl and Levitt, 1999; Minor and Kim, 1994a, b; Nagano, 1973; Smith et al., 1994).
While these amino acids are energetically favorable for the target β-sheet structure, they also
have a high propensity to aggregate into fibrils or form undesired strand-strand interactions
(Fernandez-Escamilla et al., 2004; Garcia-Castellanos et al., 2005; Pawar et al., 2005). β-
strands in two-layer β-sheet proteins often have an alternating repeat of hydrophobic and
hydrophilic residues; this type of repeat is known to promote undesired strand-strand
interactions (Hecht, 1994). β-sheet proteins that do not form barrels have exposed β-strands
that may be well suited for forming edge-to-edge interactions. Indeed, it has been observed
that naturally occurring β-sheet proteins contain negative design elements that protect them
from unwanted edge-edge interactions (Richardson and Richardson, 2002). These include
placing charged residues on both sides of the edge strand, using bulges and prolines to prevent
optimal hydrogen bonding, and protecting the edge with other portions of the protein.

How many negative design elements are needed to create a well-folded globular β-sheet
protein? Is it necessary to explicitly destabilize associations between non-native strand pairings
or does the identification of a low free energy sequence for a target structure implicitly
destabilize most competing states? In one study on de novo designed β-sheet proteins, the
placement of a charged residue on the inward side of putative edge strands was shown to
stabilize the monomer versus the aggregated state (Wang and Hecht, 2002). This result suggests
that negative design elements may not need to be spread throughout the entire sequence.
However, high resolution structures have not been solved for these designs, so it is not known
if they are adopting the target structure. Other studies in de novo β-sheet design have also
produced monomeric proteins, but in these cases it is also not certain if the proteins are adopting
the target topology (Lim et al., 2000; Quinn et al., 1994; Yan and Erickson, 1994). A recent
design of a Rubredoxin mimic is most likely adopting the target fold, but in this case the energy
gained from metal binding may preclude the need for extensive negative design (Nanda et al.,
2005).

In a previous study we used the design module of the molecular modeling program Rosetta to
design a new amino acid sequence for the third FNIII domain of the protein tenascin (Dantas
et al., 2003). This domain has 89 residues and forms a Greek Key fold with three β–strands in
one sheet and four β-strands in the second sheet. Sheet 1 is formed by strands 1, 2 and 5. Sheet
2 is formed by strands 3, 4, 6 and 7. The side chains were removed from the protein and
computational protein design was used to redesign the protein with no explicit knowledge of
the wild type sequence. The only energy gap that was explicitly optimized was between the
folded state and a reference energy that models the unfolded state and is based on amino acid
composition. Rosetta’s energy function is dominated by terms that model van der Waals forces,
steric repulsion, desolvation energies, torsion energies and hydrogen bonds (Kuhlman et al.,
2003; Rohl et al., 2004). Unfortunately, the designed protein, called TEN-D1, aggregated and
we were not able to characterize it. This design may have failed because we did not identify a
favorable sequence for the target state, or it may have failed because we did not sufficiently
destabilize misfolded and aggregated states. Here, we further pursue this question by
characterizing a new set of redesigns for the third FNIII domain of tenascin, but with an energy
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function that has been specifically parameterized for β-sheet design. As before, we do not
include any explicit negative design in the protocol.

Results
Reparameterizing the Rosetta Energy Function

The energy function used by Rosetta for protein design is a weighted sum of a damped 12-6
Lennard-Jones term, an implicit solvation model, an orientation dependent hydrogen bonding
term, knowledge-based torsion energies and a set of reference values that control the relative
favorability of the 20 amino acids (Rohl et al., 2004). The weights on these terms have been
set to maximize the native sequence recovery during the complete redesign of whole proteins
(Kuhlman and Baker, 2000). Our standard training set has a mixture of all helical, mixed α/β
proteins, and all β proteins. For these studies we assembled a set of 121 high-resolution
structures of all β-sheet proteins. The standard Rosetta energy function was used to design
sequences for the proteins in the training set and the sequences were compared to the wild type
sequences. Overall sequence identity was similar to what we have observed previously, but
the fraction of hydrophobic residues in the redesigned sequences was higher than in the
naturally occurring sequences (67% versus 53%, Supplementary Table S1 and Table S2). To
create more native-like sequences, iterative rounds of perturbing the amino acid reference
values and redesigning the proteins were used to arrive at a set of reference values that
accurately reproduce the hydrophobic/hydrophilic preferences of the naturally occurring β-
sheet proteins (Supplementary Table S1 and Table S2). The goal of our fitting procedure is to
improve our ability to perform positive design and find low energy sequences for target
structures. However, by adjusting the amino acid reference values and therefore perturbing the
overall amino acid composition of the protein we may be implicitly including negative design
in our protocol. In this regard, our experiments are testing the importance of explicit negative
design with the constraint that overall amino acid composition has been set to resemble
naturally occurring β-sheet proteins.

Computational Redesign of Tenascin
Tenascin ( pdbcode : 1ten ) was used as the starting model for fixed backbone design. All the
sidechains were removed from the protein except Tyrosine 869. Tyrosine 869 was not allowed
to vary because it forms a sidechain backbone hydrogen bond that is important for the stability
of the protein (Hamill et al., 2000). Rosetta prefers to put a phenylalanine at this position
because the tyrosine rotamers used during the simulation do not allow for a low energy
hydrogen bond. This residue was mutated to a phenylalanine in our previously published
redesign of tenascin TEN-D1. 100 independent design trajectories were used to look for low
energy sequences. The Rosetta full atom energies in the redesigned models varied between
-220 and -215 kcal / mol. The lowest energy model, called TEN-D2, was chosen for
experimental characterization.

A second round of design simulations were performed with an additional surface area-based
packing score (SASAprob) included in the optimization procedure (Leaver-Fay et al., 2007).
The SASAprob score examines the difference in solvent accessibility computed with a 0.5 Å
probe and a 1.4 Å probe (the size of water). The difference in these two terms will be greater
for underpacked proteins. The score is formulated as a probability based on average values
measured for naturally occurring proteins. To optimize this score during a design simulation
we have developed a rapid algorithm for computing solvent accessible surface areas during
protein design simulations. Our design picked from the first round of simulations, TEN-D2,
has a SASAprob score of 0.46, indicating that it is more tightly packed than 46% of the proteins
in the PDB. From the second round of simulations, we chose a design called TEN-D3, with a
SASAprob score of 0.52 and a total score of -216 kcal / mol.
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TEN-D2 has 53 mutations and TEN-D3 has 51 mutations when compared to the wild type
sequence (Figure 1, Table 1). Our previously characterized sequence, TEN-D1, had 58
mutations. Highest sequence similarity is seen in the protein core; out of 20 buried residues, 9
were mutated in TEN-D2, and 8 were mutated in TEN-D3. The number of charged residues
in the redesigns is significantly different than in the wild type protein. 20% of the wild type
residues are negatively charged (Asp or Glu), while only 8% of the redesigns are negatively
charged. The most highly conserved amino acids in the redesigns are proline, glycine and
threonine. Four out of five prolines, three out of five glycines and ten out of 12 threonines are
conserved.

Experimental Characterization
Both TEN-D2 and TEN-D3 were expressed in bacteria and experimentally characterized using
a variety of biophysical methods. Size-exclusion chromatographies of the two redesigns
suggest they are both monomeric (data not shown). There is good dispersion in the one-
dimensional 1H NMR spectra indicating that both redesigns are well-folded (Figure 2), and
there are amide protons with chemical shifts above 8.5 ppm, indicative of β-sheet structure.
Additionally, the circular dichroism (CD) spectra of the proteins are consistent with β-sheet
structure. To probe the stability of the redesigns CD signal was monitored as a function of
temperature and concentration of chemical denaturant at a single wavelength. Both TEN-D2
and TEN-D3 unfold at temperatures that are significantly higher than the wild type protein,
the proteins unfold above 90 °C and 80 °C respectively (Figures 3 and 4, Table 2). The Tm for
wild type tenascin is 58 °C. However, unlike the wild type protein, the thermal unfolding curves
for the redesigns are not reversible at pH 7. It has been shown that high net charges can help
solubilize proteins in the unfolded state (Lawrence et al., 2007). Consistent with this
hypothesis, TEN-D2 refolds reversibly when the pH is dropped below the pKa of the acidic
side chains, increasing the net charge of the design (Figure 3.D).

Denaturation induced by guanidine hydrochloride was monitored with circular dichroism to
measure the stability. Both redesigns fold reversibly in chemical denaturant and are
significantly more stable than the wild type protein. The extrapolated free energies of folding
are -11.9 and -8.7 kcal / mol respectively. The wild type protein has a free energy of folding
of -5.1 kcal / mol. Interestingly, the m-values (slope of free energy versus [GuHCl]) are larger
for the redesigns. This suggests that the redesigns bury more hydrophobic surface area upon
folding than the wild type protein (Myers et al., 1995).

Structure Determination
The crystal structure of the TEN-D3 was determined at 2.4 Å resolution by X-ray
crystallography (Supplementary Table S3) to verify that the structure matches the design
model. Overall, there is a good match between the crystal structure and the design model, the
root-mean-square deviation (RMSD) between the crystal structure and the design model is less
than 0.8 Å for all heavy atoms of the protein (Figure 5). 82 percent of the sidechains have the
same chi1 rotamer as designed and all the rotamers in the core have the same conformation
(chi1 and chi2) as designed. Greater differences were seen on the surface; although several
designed salt bridges on the protein surface were observed in the crystal structure. These
include interacting pairs, Arg 74 and Asp 48, Asp 43 and Arg 37, and Glu 62 and Arg 37.

Discussion
60% of the residues in the tenascin redesigns are not a direct reflection of natural protein
evolution, but rather were chosen solely based on a calculated free energy difference between
the target structure and a reference state that only depends on amino acid composition. Despite
the simplicity of this design criterion, the proteins fold into the target structure. Similar findings
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have been reported for all helical, mixed α/β proteins, and small three stranded β-sheet proteins
(Dahiyat and Mayo, 1997; Dantas et al., 2003; Kraemer-Pecore et al., 2003; Scalley-Kim and
Baker, 2004). Our result suggests that the majority of amino acids in tenascin have not been
explicitly selected to prevent misfolding, but rather selection for a low free energy target
structure is sufficient to destabilize alternative folds. This result is not obvious a priori, given
the fact that small stretches of sequence rich in β-sheet propensity are prone to association and
the possible number of non-native strand pairings is much greater than native pairings.

Our results do not indicate that negative design is not important for de novo β–sheet design,
but they do suggest that it may be sufficient to only focus on a limited number of negative
design elements. For instance, the backbone conformation of tenascin appears to include
negative design elements. Unwanted edge-to-edge β-strand interactions are most likely
destabilized by a β-bulge in strand 1, the shortness of strand 5 and prolines in strand 7. All of
these elements are preserved in our redesigns. Additionally, negative design elements may be
encoded in the residues that are preserved from the wild type sequence. It is interesting that
our designs do not include charged residues on the inward pointing face of the edge strands.
Other design elements, such as the prolines in strand 7, must be preventing association between
edge strands.

It is striking that the redesigned sequences are considerably more stable than the wild type
sequences. Similar results have been observed when redesigning other protein folds with
computational protein design software (Dantas et al., 2003; Malakauskas and Mayo, 1998).
An increase in the m-values for chemical denaturation suggests that the designs bury more
hydrophobic surface area upon folding. This increase is consistent with the addition of extra
hydrophobic residues in the redesigns and may explain the increase in protein stability.

Our results are encouraging in that they suggest that the de novo design of a β-sandwich protein
may be possible without extensive consideration of strand mispairings. Despite this fact, de
novo design is still a very challenging problem. To create a protein from scratch, it is necessary
to identify a protein backbone that allows for tight packing of the side chains and allows for
hydrogen bonding to buried polar groups. It is especially challenging to ensure that backbone
polar groups in the connecting loops have hydrogen bond partners. Many of these polar groups
are removed from solvent, and in naturally occurring proteins are engaged in sidechain-
backbone hydrogen bonds. It will be exciting to see if new techniques in computational protein
design that allow for backbone sampling and sequence design will allow these hurdles to be
overcome.

Experimental Procedures
Sequence Optimization Simulations

Fixed backbone design simulations were performed with svn version 9242 of Rosetta. The
standard full atom energy function was used except for the following changes: the reference
values were reparameterized to maximize the native sequence recovery test, the desolvation
penalty for histidine was increased by varying the ddGfree parameter for histidine nitrogens
from -4.0 to -9.0, and the Lennard-Jones potential was set to a linear slope at 0.85 of the van
der Waals radius (instead of 0.6). Dunbrack’s backbone dependent rotamer library was used
with extra chi 1 torsion angles for all residues and extra chi 2 torsion angles for aromatic
residues. The command line used for the simulations was: Rosetta.gcc -s 1ten.pdb -design -
fixbb -use_bw -ex1 -ex2aro_only -extrachi_cutoff 1 -resfile resfile -ndruns 100 (-
use_sasa_pack_score).
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Protein Expression and Purification
Genes for the redesigned proteins were synthesized in-house with PCR extension of
commercially purchased overlapping oligonucleotides from Operon (Stemmer et al., 1995).
The genes were inserted into E. coli. expression vector pET21b, with a linker “GSLE” followed
by C terminal 6x His tag. The proteins were expressed in the E. coli. BL21 strain at 37 °C with
0.5 mM IPTG used for induction. The proteins were purified with a Ni++ affinity column
followed by size-exclusion chromatography (Superdex-75).

NMR
The two redesigned proteins (~0.4 mM) were equilibrated in 20 mM sodium phosphate, 0.15
M NaCl, pH 7.2 buffer and one-dimensional 1H NMR spectra were recorded at 25 °C on a
Varian Inova 600 MHz spectrometer. NMR data were processed with NMRPipe (Delaglio et
al., 1995).

Circular Dichroism
CD data were collected on a JASCO J-810/815 CD spectrometer using a 0.1 cm cuvette with
40 uM proteins. The CD signal was monitored at 215 nm as a function of temperature (4 – 96
°C). The fraction of unfolded protein was calculated assuming that the CD signal of the
unfolded and folded protein varies linearly with temperature. GuHCl induced chemical
denaturation experiments were recorded at 222 nm. The free energy calculations were obtained
with a two-state assumption.

Crystallization, X-ray Diffraction and Structure Determination
The hanging-drop vapor diffusion method was used for crystallization trials. TEN-D3 with the
concentration of 12 mg / mL in 100 mM NaCl, 20 mM Tris buffer at pH 7.4, was mixed with
an equal volume of well buffer of 0.1 M sodium dihydrogen phosphate, 0.1 M potassium
dihydrogen phosphate, 0.1 M MES, pH 6.5, 2.2M NaCl and100 mM urea. 20% glycerol was
used as the cyroprotectant. Diffraction data of TEN-D3 were collected at the Beamline x29A
at Brookhaven National Laboratory.

The data were indexed and processed with the program HKL2000 (Otwinowski, 1997). The
structure of TEN-D3 was solved by molecular replacement using the programs MolRep (Vagin
and Teplyakov, 2000) and Phaser (Storoni et al., 2004). Wild type tenascin (PDB code 1TEN)
was used as the initial search model. The model was then refined against the synchrotron data
to 2.4 Å resolution. O (Vagin and Teplyakov, 2000) was used to build the model and CNS
(Brunger et al., 1998) was used to refine the structure. The geometry of the final model was
assessed with the program PROCHECK (Laskowski et al., 1993).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Sequences of the wild type and three redesigned proteins. (TEN-WT: wild type; TEN-D1,TEN-
D2,TEN-D3: redesigned sequences). The TEN-D1 sequence is from a previously published
study (Dantas et al., 2003).
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Figure 2.
One-dimensional 1H spectra of the redesigned proteins. A: TEN-D2. B: TEN-D3.
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Figure 3.
Circular dichroism spectra of the wild type tenascin and the redesigned proteins at neutral and
acidic pH with different temperatures. 20 °C(r) represents that the temperature was cooled back
to 20 °C. A: TEN-WT at pH 7.0, B: TEN-WT at pH 3.0, C: TEN-D2 at pH 7.0, D: TEN-D2
at pH 3.0, E: TEN-D3 at pH 7.0, and F: TEN-D3 at pH 3.0.
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Figure 4.
Temperature and chemical denaturation as monitored by circular dichroism. A: Thermal
unfolding of the wild type tenascin and the redesigned proteins. B: Chemical denaturation of
the wild type tenascin, TEN-D2 and TEN-D3.
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Figure 5.
Structure alignment between the designed model (cyan) and the crystal structure of TEN-D3
(green). A: backbone only, B: buried residues, C: selected surface residues, D: a designed salt
bridge between Asp 48 and Arg 74.
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Table 1
Sequence features of wild type and redesigned tenascin.

Protein TEN-WT TEN-D1 TEN-D2 TEN-D3

MW ( Da ) 9895.9 9729.7 9800.0 9790.1

Theoretical PI 4.15 4.99 5.10 4.72

Fraction of positively charged residues 0.09 0.07 0.07 0.06

Fraction of negatively charged residues 0.20 0.08 0.08 0.08

Fraction of hydrophobic residues 0.38 0.37 0.42 0.42

Sequence identity to WT ( overall ) / 31/89 36/89 38/89

Sequence identity to WT ( buried* ) / 9/20 11/20 12/20

Sequence identity to TEN-D1 ( overall ) 31/89 / 45/89 48/89
*
buried – Buried residues have more than 19 neighbors within 10Å.
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Table 2
Thermodynamic parameters of wild type and redesigned tenascin.

Protein Tm(°C) ΔGU
H2O (kcal mol-1) m-GuHCl (kcal mol-1 M-1)

TEN–WT 58 5.1±1.2 1.7±0.3

TEN–D1 / / /

TEN–D2 >90 11.9±4.7 2.8±1.1

TEN–D3 >80 8.7±2.0 2.1±0.4
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