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Abstract

In longitudinal research, interest often centers on individual trajectories of change over time.

When there is missing data, a concern is whether data are systematically missing as a function of

the individual trajectories. Such a missing data process, termed random coefficient-dependent

missingness, is statistically non-ignorable and can bias parameter estimates obtained from

conventional growth models that assume missing data are missing at random. This paper describes

a shared-parameter mixture model (SPMM) for testing the sensitivity of growth model parameter

estimates to a random coefficient-dependent missingness mechanism. Simulations show that the

SPMM recovers trajectory estimates as well as or better than a standard growth model across a

range of missing data conditions. The paper concludes with practical advice for longitudinal data

analysts.
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Missing data can be difficult to avoid in longitudinal research. One type of missing data that

is uniquely troubling for longitudinal research is when the probability of a data point being

missing at a given occasion of measurement is related to the latent individual trajectory of

change on the outcome under study. Commonly used growth modeling approaches, such as

multilevel growth models and latent curve models, are vulnerable to bias resulting from this

type of missing data. Our goal is to introduce and evaluate a new model, the shared

parameter mixture model (SPMM), that avoids many of the drawbacks of existing methods

for handling non-ignorable missing data,.
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Our paper is organized in the following way. As a point of contrast and to define our

notation, we begin with a short description of the conventional latent curve modeling (LCM)

framework. After laying the groundwork, we describe the assumption of random

missingness that is inherent in traditional growth models, and the implications of this

assumption. Second, we introduce the SPMM, evaluating its strengths and weaknesses.

Because little is known regarding the performance of the SPMM, we then present results

from a simulation study comparing results obtained from this model with a standard growth

model, under a variety of real-world data conditions. Finally, we discuss the practical

implications of our findings.

The Latent Curve Model

In the LCM, the observed repeated measures for an individual are posited to reflect an

underlying (or latent) growth trajectory (see Bollen & Curran, 2006; McArdle & Epstein,

1987; Meredith & Tisak, 1990). Formally, the LCM can be defined as

(1)

where Yi is a T × 1 vector of repeated measures for individual i over T measurement

occasions and ηi is a m × 1 vector of latent growth parameters (e.g., intercept, linear slope,

quadratic slope) that are linked to the repeated measures via the T × m factor loading matrix

Λ. The columns of Λ are often set to predefined functions of time to specify a particular

form for the individual trajectories (e.g., linear or quadratic growth). In turn, the growth

parameters are regressed on a q × 1 vector of covariates Xi such that α defines a m × 1

vector of intercepts, Γ is a m × q matrix of regression coefficients capturing systematic

variability in ηi due to Xi, and ζI is a m × 1 vector that captures random (unexplained)

variability in ηi. Last, the T × 1 vector εi contains the time-specific residuals, or variability in

the observed repeated measures not accounted for by the individual’s latent trajectory.

Conventionally, the random components of the model are assumed to be normally

distributed and are allowed to covary with one another (i.e., ζi ~ N(0,Ψ)). Time-specific

residuals are also assumed to be normally distributed and (often) independent (i.e., εi ~ N(0,
Θ), where Θ is a diagonal matrix), though the assumption of independence can be relaxed.

Further, it is assumed that the residuals are uncorrelated with the growth factors.

Ignorable and Non-Ignorable Missing Data Mechanisms

Rubin (1976) showed that one of the most important characteristics of missing data is

whether they are ignorably or non-ignorably missing. Missing data are usually ignorable if

they are Missing at Random (MAR) or Missing Completely at Random (MCAR). In

contrast, missing data that are Missing Not at Random (MNAR) are non-ignorably missing.

To help explicate these different missing data processes, we must first define several terms.

Let Yi be a T × 1 vector of potentially observed repeated measures for individual i, including

as subsets the observed repeated measures  and the missing repeated measures . In

turn, let Ri be a T × 1 response pattern vector of missing data indicators for individual i,

where rit = 1 if an observation is missing, rit = 0 if an observation is observed. MAR,

MCAR and MNAR processes can then be defined with respect to the distribution of Ri
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given , the predictors Xi, and the random coefficients ηi. The conditional

distribution for Ri can then be expressed as:

(2)

Ignorable missingness occurs when (Schafer, 1997):

(3)

What we can see from this expression is that missing data are ignorably missing if the

probability of missingness depends only on the observed data  and Xi, and not on any

unobserved data. Thus the probability of an observation being missing, given the observed

data, is the same for all observations. If a study were designed such that participants

dropped out of a study after having reached a particular observed value on the dependent

variable, then this would be a MAR missingness mechanism in a longitudinal context.

Missing data are MNAR and non-ignorable when the simplification in Equation 3 is not

possible; that is, when the conditional probabilities for observations to be missing are not

equal even after accounting for observed data (Xi and ). The probability that a given

observation is missing thus depends directly upon  (and, by extension, also indirectly on

the unobserved random parameters in the model, ηi or εi). This type of missingness might

occur if participants dropped out of a study due to unobserved scores on the dependent

variable. For instance, a participant might drop out of a study immediately prior to reaching

a value on the dependent variable, or due to of a slower-than-average rate of change on the

dependent variable, in each case contributing to non-ignorable missingness.

When the missing data process is ignorable and the causes of missingness are included

within the analysis model of interest, current strategies for analyzing longitudinal data using

LCMs or other multilevel, hierarchical or mixed models will result in unbiased inferences.

The missingness mechanism can be statistically ignored when the full information maximum

likelihood fitting function is used (Arbuckle, 1996; Enders, 2001; Wothke, 2000). If the

missing data process is MAR but the observed causes of missingness are not included in the

analysis model, pre-processing of the data and post-processing of the results using multiple

imputation procedures will also result in unbiased parameter inferences if the reasons for

missingness are included in the imputation model (Collins, Schafer, & Kam, 2001; Rubin,

2004; Schafer, 2003).

When missing data are non-ignorable, however, fitting a trajectory model under the

assumption that the missing data are ignorable will result in estimates that are biased to an

indeterminate degree. This bias arises because the unobserved or unmeasured process

responsible for the missing data is related to the longitudinal process underlying change in

the repeated measures over time. Excluding information about the missing data from the

likelihood function ignores important information about the trajectory process, resulting in

incorrect estimates for the trajectory model of interest (Little, 1995; Little & Rubin, 2002).

Unfortunately, no test exists to empirically distinguish between ignorable and non-ignorable

missingness, so a data analyst who relies on maximum likelihood or multiple imputation to
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make inferences about a longitudinal process must be confident that the MAR assumption is

correct. It is therefore incumbent upon the researcher to consider the possibility that missing

data are MNAR as well as potential options for appropriately analyzing change over time in

the presence of MNAR missing data.

Random Coefficient-Dependent and Outcome-Dependent MNAR Processes

Little (1995) noted the importance of distinguishing between two types of MNAR

mechanisms. The first, Outcome-Dependent MNAR (OD-MNAR), occurs when missingness

is caused by the unobserved values of the repeated measures themselves (e.g., a person fails

to respond to a wave for any reason that has to do with the outcome of interest). This might

occur, for example, if an individual did not respond to a daily diary study of substance use

on days when they used a substance. This mechanism can be expressed as:

(4)

The second type of MNAR mechanism, Random Coefficient-Dependent MNAR (RC-

MNAR), occurs when missing data is related to individuals’ unobserved trajectories (i.e., or

an underlying latent trajectory process that is imperfectly measured, as well as potential

future observations arising from this process; Demirtas & Schafer, 2003). For example, this

type of missingness could occur in a longitudinal assessment of cognitive functioning in

older adults in which diseases status is unknown. In this case, individuals with the most

dramatic decline might be the most likely to be missing, thereby providing an overly

optimistic picture of average cognitive functioning in aging adults. The RC-MNAR

mechanism can be expressed as:

(5)

RC-MNAR mechanism can be construed as a sub-type of OD-MNAR in the longitudinal

setting. Equation 1 shows that Yi (and  by extension) is partially due to ηi; RC-MNAR is

therefore a special case of OD-MNAR where the only unobserved component of variation in

 that influences the probability that observations are missing is ηi (and not also εi).

Because we regard RC-MNAR as a potentially common missingness mechanism in

longitudinal data, the current study focuses primarily on conducting sensitivity analyses to

test for bias related to this specific MNAR process.

Modeling Growth in the Presence of Non-Randomly Missing Data: The

Shared Parameter Mixture Model

All methods for handling non-randomly missing data must incorporate information about the

missing data process into the model for the data. An in-depth review and illustration of

several approaches for accomplishing this goal within longitudinal models was recently

provided by Enders (2011), Gottfredson (2011), and Muthén, Asparouhov, Hunder, and

Leuchter (2011). Readers are encouraged to refer to these papers for an overview of

alternative missing data models. There are two general classes of models: selection models
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and shared parameter models. The Shared Parameter Mixture Model (SPMM) is a flexible

hybrid of these approaches.

The SPMM achieves three objectives. First, the model does not require the explicit

specification of the missing data mechanism (unlike selection models and traditional shared

parameter models). The assumption underlying the first objective is that an analyst may

have difficulty forming a correctly specified shared parameter model for the process

underlying their missing data. Second, in order for inference to be less contingent on

assumptions about the missing data patterns, the SPMM specifies the growth model to be

conditionally independent from the missing data indicators after accounting for exogenous

variables and shared parameters (the idea behind traditional shared parameter models). This

specification contrasts with traditional pattern mixture models that condition parameter

estimates directly on the observed patterns of missing data. Third, the SPMM minimizes

dependence on the missing data model by utilizing a shared parameter that is distinct from

the growth parameters and that has a flexible (i.e., semi-parametric) distribution, as

discussed below.

The shared parameter is a central part of the model because of its role in creating conditional

independence between the repeated measures and the missing data indicators (Tsonaka et

al., 2009). Traditional shared parameter models rely on growth parameters (random effects)

as the shared parameters, which are typically specified to be normally distributed.

Misspecification of the shared-parameter distribution and its relation to other variables may

lead to violation of the conditional independence assumption, leading to bias in trajectory

estimates (Tsonaka et al., 2009). The SPMM circumvents this problem by conditioning the

growth factors and the missing data patterns on discrete latent classes (the new shared-

parameters) in order to approximate the unknown joint distribution between the growth

factors and the missing data patterns. Indeed, latent mixture distributions are often used to

semi-parametrically approximate unknown continuous densities (Heckman & Singer, 1984;

e.g., Nagin, 1999, suggested using discrete ‘points of support’ to recover an unknown

random effect distribution, rather than assuming normality of these effects).

Mathematically, the way that the SPMM factors the joint likelihood for the repeated

measures and the missing data indicators can be expressed as follows:

(6)

where Ri is the usual vector of binary missing data indicators and Ci is a set of latent,

discrete shared-parameter variables for the non-ignorable missing data mechanism. Note that

both the growth parameters and the missing data patterns are conditioned on the latent class

variables, Ci, as well as on the covariates Xi.1 The effects of observed predictors may be

1In the SPMM, covariates influence growth factors and missing data indicators directly, rather than indirectly via latent class
probabilities. Although similar models presented in the literature allow covariates to affect class probabilities (e.g., Morgan-Lopez &
Fals-Stewart, 2007), this practice is not recommended for the SPMM because it complicates computation of the aggregate model
parameters. Allowing covariates to predict class membership implies that marginal covariate effects depend on the values of the
covariates themselves (Dantan, Proust-Lima, Letenneur, & Jacqmin-Gadda, 2008). Although averaged effects of covariates could be
computed with some effort, estimation of the standard errors for covariate effects is intractable (Dantan et al., 2008).
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included in the conditional distribution for Ri to account for a MAR mechanism, in order to

make the model more statistically efficient.

In practice, SPMMs can be specified as Structural Equation Mixture Models (Arminger,

Stein, & Wittenberg, 1999; Dolan & van der Maas, 1998; Jedidi, Jagpal, & DeSarbo, 1997;

Yung, 1997), and they can be estimated by maximum likelihood with the expectation

maximization algorithm using conventional software. A path diagram is shown in Figure 1

and sample Mplus syntax is provided in an online appendix.2 With maximum likelihood

estimation, the optimal number of classes is determined by fitting a series of Structural

Equation Mixture Models, varying the number of latent classes present in each model, and

comparing model fit using measures such as Akaike’s Information Criterion (AIC; Akaike,

1974) or Bayesian Information Criterion (BIC; Schwarz, 1978). To estimate a SPMM, one

specifies a mixture of latent curve models (i.e., a Growth Mixture Model; Verbeke &

LeSaffre, 1996; Muthén & Shedden, 1999) with the form of growth that characterizes the

individual trajectories (e.g., linear, quadratic, piecewise), as shown below:

(7)

where ζi ~ N(0,Φ), εi ~ N(0,Θ), and the k subscript indicates a class-varying parameter.

Unlike a conventional Growth Mixture Model, the SPMM jointly includes missing data

indicators for the shared latent class variables via the equation

(8)

where νi is a vector of values for the linear predictor of Ri, βk is a vector of intercepts and Κ

is a matrix containing the direct effects of the covariates Xi on the missingness indicators.

For instance, if binary missing data indicators are present, then νi might be specified as a

vector of logits.

Note that the class-varying parameters in the SPMM of Equations (7) and (8) are αk and βk.

Allowing these parameters to vary across classes enables the model to capture the

dependence of the individual trajectories and the missing data. That is, joint differences in

these parameter vectors allow K average trajectories (represented through αk) to be

associated with K average patterns of missing data (represented through βk). In principle,

other parameters could also be permitted to vary across classes, but limiting the number of

class-varying parameters helps to retain parsimony, makes interpretation more

straightforward (Dantan et al., 2008), and reduces the likelihood of some estimation

problems (Hipp & Bauer, 2006).

When the number of repeated measures becomes large, estimation of SPMMs with binary

indicators of missingness may become difficult. For this reason, Roy (2007) suggested

replacing binary missing data indicators with summary measures in a related model.

Examples of potential summary indicators are the number of total observations for

individual i or the occasion of dropout for individual i.3

2Available at <website to be determined>
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When fitting a SPMM, one question is how many classes to include in the analysis.

Numerous fit indices, including the AIC, the BIC, and many others, have been compared via

simulation to determine the index with the optimal performance for Growth Mixture Models

(Lubke & Muthén, 2007; Tofighi & Enders, 2007). However, these studies have examined

direct applications of mixtures and class recovery when true classes exist, whereas the goal

of class enumeration is quite different here. The primary purpose of the latent classes in the

SPMM is to explain the dependence between missing data patterns and growth parameters;

the aim of class enumeration is to include enough latent classes to achieve this goal, but to

also estimate as few as possible to maximize efficiency. The goal is not to determine the

“correct” number of latent classes. Simulation work by Morgan-Lopez and Fals-Stewart

(2008) and by Gottfredson (2011) has shown that it is preferable to take a conservative

approach to class enumeration when relying on SPMM-type models for accommodating

missing data; thus, the BIC is a better metric than the AIC because the efficiency lost by

over-extracting classes is larger than the marginal reduction in bias that is gained.

Computation of Aggregate Effect Estimates

Although Roy (2003) initially viewed the latent classes as a pattern reduction device, within

more recent work on SPMM-type models the latent classes have sometimes been interpreted

to represent natural subgroups of individuals who differ qualitatively with respect to both

their missing data patterns and their growth trajectories. A more conservative strategy,

however, may be to focus interpretation on the across-classes average (similar to

conventional pattern mixture models), given mounting evidence that seemingly distinct

latent groups can often be estimated even when heterogeneity is strictly continuous in nature

(Bauer & Curran, 2003; Sampson, Laub, & Eggleston, 2004; Bauer, 2007). Therefore, once

the number of classes has been selected, the next step in an SPMM analysis is to aggregate

over class estimates to obtain population level effects (i.e., growth factor means and

variances; the parameters that would be obtained in a standard LCM if missing data were

missing due to a MAR process). Aggregate values for the growth parameter means or

intercepts are calculated by applying the following formula (Vermunt & van Dijk, 2001;

Bauer, 2007):

(9)

where K is the total number of latent classes and πk represents the class probability (mixing

proportion, or weight) for class k. That is, class-specific means (for unconditional models) or

intercepts (for conditional models), αk, are weighted by their associated class probabilities,

πk, to obtain a population-average vector of growth factor means/intercepts.

Aggregate variance and covariance estimates for the random effects can be calculated by

combining the between-class covariance matrix (created by mean differences across classes)

3Rose, von Davier, and Xu (2010) found empirical support for the practice of using summary indicators when implemented with a
traditional PMM and Gottfredson (2011) found similar support for their use in a SPMM context.
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with the within-class covariance matrix, as shown below (Vermunt & van Dijk, 2001;

Bauer, 2007):

(10)

For both Equations (9) and (10), aggregate estimates are obtained by substituting sample

estimates for population parameters. Standard errors for the aggregate estimates can be

computed via the delta method (e.g., Raykov & Marcoulides, 2004). Because all other

parameters of the SPMM (e.g., predictor effects) are assumed to be class-invariant they can

be interpreted immediately as across-class averages without further computations.

Modeling Limitations of SPMM

Enders (2011) showed that different approaches for accommodating MNAR data can

provide widely varying substantive results. This is true in part because of the different

assumptions required by each model, and in part because some models were created to

handle slightly different forms of missingness (e.g., traditional selection models were

intended for outcome-dependent missingness and shared parameter and pattern mixture

models were intended for random coefficient-dependent missingness).

In this vein, it should be emphasized that SPMM is intended to assess or ameliorate

parameter bias specifically due to random-coefficient-dependent missing data. Where

SPMMs may fail is with the type of outcome-dependent missing data that includes time-

varying residuals as a cause of missingness (as opposed to strict random coefficient-

dependent missing data; e.g., a participant fails to respond to a daily diary survey of alcohol

use only on evenings when they drink). SPMMs cannot be expected to mitigate parameter

bias associated with this type of problem entirely because, although the repeated measures

are in part due to covariates and random coefficients, they are also a function of residual

error that includes omitted, systematically time-varying information. Latent classes only

vary between persons, and not within, and hence cannot capture this information. A similar

observation may be made concerning more traditional pattern mixture models (with

observed patterns) and it is noteworthy that these models have sometimes performed poorly

with outcome-dependent missingness (Yang & Maxwell, 2009; Maxwell & Yang, 2010).

Evaluating the Performance of the SPMM

Existing research indicates that SPMMs are a useful tool for modeling MNAR data;

however, the sparse prior literature evaluating this model leaves several questions

unaddressed regarding its performance. Morgan-Lopez and Fals-Stewart’s (2008) evaluation

of SPMM-type models was an important first step for showing that the model could work

under ideal conditions, but it was somewhat circular in that data were first generated to be

maximally consistent with a SPMM (i.e., discrete missingness groups literally exist in the

population) and then the fitted SPMMs were shown to recover the model parameters well. A

more challenging and realistic test of the SPMM is to determine how well the model

performs when it is not literally true but rather serves as an approximation, for instance,
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when the MNAR missing data process is characterized by continuous variability rather than

discrete missingness groups.

Hypotheses

The SPMM is designed to accommodate random coefficient-dependent missingness. Thus,

we hypothesized that SPMMs ought to provide less biased trajectory estimates than LCMs

when the true missing data mechanism is a model-consistent mechanism (i.e., varying across

latent classes, as in Morgan-Lopez & Fals-Stewart, 2008). Similarly, we expected that the

SPMM would also outperform the traditional LCM when a continuous random coefficient

mechanism is monotonically linked to the probability of missingness (i.e., the probability of

missingness either monotonically increases or monotonically decreases; the traditional

conception of random coefficient dependent missingness, e.g., Little, 1995).

The SPMM may have somewhat greater difficulty approximating non-monotonic random-

coefficient missing data mechanisms. For instance, it could be the case that both high and

low values of the random coefficients are related to an increased probability of missingness,

so that there is a U-shaped association between random coefficients and the probability of

missingness. Such an association might occur in a treatment study where drop out could be

higher among those who fail to improve, on the one hand, and those who improve most

rapidly, on the other. We expect that the SPMM might have difficulty approximating this

relationship with the available information. Our reasoning is as follows: if a mid-ranged

random effect value is related to the lowest probability of missing data, with high

probabilities of missingness on either tail of the random effect distribution, then the number

of missing observations will be virtually uncorrelated with the growth factors. SPMMs can

be expected to perform most poorly with outcome-dependent missingness when the

outcome-dependent processes are driven more by the error term(εi) rather than by the

random coefficients (ηi). The SPMM may, however, still provide superior parameter

estimates than the LCM to the extent that the random coefficients (ηi) contribute to the

variance in . Finally, it is reasonable to expect that the LCM might provide more

efficient parameter estimates than the SPMM when the MAR assumption is met because it is

a more parsimonious model in this case. However, both the SPMM and the LCM should

result in unbiased growth parameter estimates when the missing data process is ignorable.

Data Generation

SPMM performance was evaluated under a variety of missing data mechanisms, including

MAR (i.e., ignorable) missingness, latent class-dependent missingness (i.e., SPMM-

consistent missingness), random (growth) coefficient-dependent missingness that is either

monotonic (RC-MNAR-M) or nonmonotonic (RC-MNAR-NM), and a more general

outcome-dependent missingness (OD-MNAR). Five hundred replicated samples of size 300

were generated for each missing data mechanism condition. For most of the conditions, data

generation occurred in two steps. First, complete data (Yi) were generated, and then the

observed repeated measures  were selected based on the missingness mechanism. To

maximize ecological validity, parameter generating values were based on a longitudinal

analysis of psychotherapy outcomes that was analyzed in Baldwin, Berkeljon, Atkins, Olsen,

and Nielsen (2009). An overall probability of 35% missingness was retained across all study
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conditions, and missingness was intermittent. To test the robustness of results obtained using

an intermittent missingness process, data were also generated under a monotone dropout

mechanism (with details on data generation available in an online appendix, address to be

determined). Data on ten repeated measures were generated to be consistent with the

following conditional LCM with a linear form:

(11)

where yti denotes complete data at time t for individual i, η0i denotes the random intercept,

λt is time (λt = {0,1,…,9}), η1i is the random slope, and εit is the time-varying residual term,

εti ~ N(0,180). The baseline intercept was set to α0 = 69 and random slope intercept was set

to α1 = −2.5. Both were conditioned on the same binary time-invariant covariate, xi (xi ~

Bernoulli(.5)), where the effect of the covariate is measured by regression parameters γ0 =

10 (a moderate Cohen’s d effect size of .52) and γ0 = −1.13 (a moderate Cohen’s d effect

size of .42). Each growth factor was influenced by a randomly distributed disturbance term,

ζ0i and ζ1i, respectively. The disturbances were distributed as follows:

(12)

Data for the SPMM-consistent, discrete missing data process were generated somewhat

differently. Data in this condition were generated from three groups, each with a different

probability of missingness (retaining an overall missingness probability of 35%). Each

group also differed with respect to the average slope, but not with respect to the average

intercept or covariate effects. Each group comprised 1/3 of the population, and the overall

population mean trajectory for this condition matched other conditions. Also, the

population-level observed rate of change was −3.58, which is equivalent to the observed rate

of change in the RC-MNAR-M condition.

Data deletion to produce intermittent missingness for the four SPMM-inconsistent

conditions is as follows: (1) MAR. Within each replication, the probability that a repeated

measure was missing depended only on time (where t = 0 to 9), (2) Outcome dependent

MNAR (OD-MNAR). The probability of missingness increased as the value of yti increased,

(3) Random coefficient dependent MNAR - monotonic process (RC-MNAR-M). The odds

that a repeated measure was missing increased as a function of the individual slope, and (4)

Random coefficient-dependent MNAR - nonmonotonic process (RC-MNAR-NM).

Information on both tails of the random effect distribution was more likely to be missing. To

achieve this, a piecewise, U-shaped distribution was used to select observations.

Data Analysis

One- through five- class SPMMs were estimated for each replicate dataset. A summary

indicator, the number of repeated measures observed for individual i, was used to provide

information on the missingness process. The summary indicator was treated as a continuous

indicator and was assumed to be normally distributed within class. The assumption of

normality is known to be violated because the summary indicator is a count measure, but
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with ten repeated measures the assumption violation is not egregious, and this assumption

assists with computational feasibility (which is the impetus for using a summary indicator in

the first place). Modeling the conditional distribution of the summary indicator as Poisson

made no meaningful difference in pilot research.

For each replication, a class solution was removed if it was not positive definite, if the

solution was a clear outlier upon visual inspection, or if the solution contained a class with

probability less than .10.4 Aggregate point estimates and delta-method standard error

estimates were generated by Mplus (version 6) using Equations 9 and 10. Class enumeration

was determined on a replication-by-replication basis; the models with the lowest BIC values

were selected for comparison. A standard LCM, which assumes MAR, was also estimated

for each replicate dataset for comparative purposes.

For the sake of brevity, we present results exclusively for intermittent missingness, but

meaningful differences between dropout and intermittent missingness are indicated in the

text at the end of the results section and more detailed results for drop out mechanisms are

available in an online appendix (address to be determined). Table 1 reports rates of

convergence to a positive definite (proper) solution and frequencies of positive definite

solutions removed due to being an outlier or having a low class probability, by missing data

mechanism for the SPMM solutions. The frequency with which one-through five-class

solutions were selected by the BIC are also reported in Table 1. As shown, estimating up to

five classes appears to have been more than sufficient for reaching conditional independence

between growth factors and missing data indicators, at least as suggested by the BIC. Many

high-class solutions were removed due to low class proportions, particularly when the

missing data mechanism was MAR or OD-MNAR. It is encouraging to note that a single

class was very rarely selected when the missing data mechanism was SPMM Consistent or

RC-MNAR-M.

Standardized bias and root mean squared error (RMSE) were used as performance criteria

for evaluating bias and precision of the fixed effect and variance component estimates from

the LCM and SPMM. Standardized bias was calculated as follows, where θĵ is the estimate

for θ in the jth repetition, and N is the total number of replications that are properly

converged:

(13)

Standardized bias measures the magnitude of parameter bias as a percentage of the standard

error for each parameter. It can be interpreted as the amount (in percentage of standard

deviation units) that the average estimate differs from the true parameter value (Collins et

4Solutions with small class proportions tend to produce very large standard error estimates that would in practice be rejected in favor
of a solution with fewer classes, regardless of information criteria. Preliminary analyses indicated that solutions containing very small
classes produced variance component estimates that were more upwardly biased than the estimates produced by solutions with more
equal class proportions.
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al., 2001). According to Collins et al., standardized bias within ± 40%, or ± .4 SD units, are

considered ‘acceptable.’

RMSE is a measure of the variation or imprecision of estimation that was calculated as

follows:

(14)

Accuracy of inferences related to predictor effects and growth factor means were further

assessed by examining the ratio between the standard error estimates and the true, empirical

standard deviations of the sampling distribution for each point estimate.

Results

Trajectory Recovery under MAR

We posited that both LCM- and SPMM-implied trajectories would be equivalently unbiased

in the fixed effects under a MAR mechanism, but that the LCM would be more precise than

the SPMM. Table 2 compares SB and RMSE of fixed effect trajectory estimates implied by

the LCM, and by the SPMM, and Figure 2 shows that the average LCM- and SPMM-

implied trajectories are both indistinguishable from the generating model. Table 2 illustrates

that both the LCM and the SPMM produce fixed effect and variance component estimates

with little bias; the RMSE values presented in Table 2 also indicate that LCM is slightly

more efficient in recovering variance components than the SPMM, but that efficiency is

about equivalent for fixed effect estimates.

Trajectory Recovery under MNAR

It was expected that the SPMM would recover trajectory estimates better than the LCM

when the missing data mechanism was random coefficient-dependent, but that neither model

would recover trajectories well under an outcome dependent MNAR process. Table 3

compares standardized bias and RMSE values across MNAR study conditions and models,

and Figure 3 shows the average LCM and SPMM performance under the four MNAR

conditions. Beginning with the condition most favorable to the SPMM relative to the LCM

(SPMM-consistent missingness), Table 3 shows that LCM fixed effect estimates of the

intercept and slope are substantially biased, but that predictor effects are relatively unbiased,

whereas SPMM fixed effect estimates are all within the acceptable range for standardized

bias. RMSE values are also moderately lower for the SPMM fixed effect estimates of the

intercept and slope. Except for estimated variation in the random slope, the LCM variance

component estimates are within the acceptable bias range. The SPMM variance component

estimates are all relatively unbiased and the RMSE is moderately lower for the SPMM

estimates than for the LCM estimates.

Moving to the RC-MNAR-M condition, the next most favorable condition for the SPMM,

the same pattern of results is observed for the LCM (i.e., growth factor means and variance
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component estimates are substantially biased but predictor effects are unbiased). Again,

SPMM fixed effect and variance component estimates are substantially less biased than the

estimates implied by the LCM. Indeed, the bias of SPMM estimates is within the

“acceptable” range for almost all parameters. However, the RMSE of the random slope

variance and the covariance between the random intercept and random slope is more

efficient under the LCM.

Moving next to the RC-MNAR-NM condition, Table 3 shows that the brunt of the bias

induced by this missingness mechanism lies in the variance component estimates, rather

than in the fixed effects. This is expected since the RC-MNAR-NM considered here

removes cases from either tail of the random slope distribution, leaving the mean relatively

unchanged but substantially reducing the observed population variability. In this condition,

bias in both the SPMM fixed effect estimates and variance component estimates is lower

than the bias of the corresponding LCM estimates, but SPMM variance component estimates

never reach an acceptable level of bias.

Finally, with the OD-MNAR missing data process, fixed effect estimates for the intercept

are substantially biased, regardless of whether the LCM or SPMM is used. Variance

component estimates are also biased under OD-MNAR, and SPMM is not useful for

correcting this bias. In this case, RMSE values suggest that LCM performs better than the

SPMM because the estimates are less variable, though neither model performs particularly

well. Indeed the results in this condition are instructive in showing that a lack of difference

between LCM and SPMM estimates does not necessarily entail that the missing data process

is MAR.

Considering the possibility that bias in variance components might lead to bias in the

standard errors of the fixed effects, we computed the ratio of the mean estimated standard

error to the empirical standard deviation of the point estimates (where a ratio of one means

that the estimates are unbiased; see Table 4). As a comparison, the ratios for LCM estimates

under the five different missing data mechanism are presented first, and can be seen to be

close to one under all conditions. The ratios for the SPMM are also generally close to one

and standard errors are generally in the same range as those obtained in the LCM.

Results from Dropout Conditions

We found that the LCM had more trouble accommodating missingness due to non-ignorable

dropout than non-ignorable erratic missingness. This occurred because the observed

repeated measures provide less information about the latent trajectories when the range of

the observations is restricted. See Gottfredson (2011) for an analytical description of this

phenomenon. When the SPMM was applied to the same data, slightly fewer classes were

supported with a dropout mechanism than with erratic missingness. However, relatively few

classes are needed to estimate unbiased fixed effects. Variance component estimates were

more downwardly biased for the dropout conditions compared with erratic missingness

conditions.
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Summary of Simulation Study

Results from this study replicate previous findings that the LCM, which assumes that

missing data are MAR, can produce biased estimates of growth factor fixed effects and

variances when the MAR assumption is violated. Our results also replicate prior research by

showing that the SPMM performs well with missing data that are generated using latent

missingness classes. Extending prior research, we found that the SPMM mitigates bias with

random coefficient dependent processes that are not isomorphic with the fitted model. This

finding suggests that the SPMM may work well under commonly occurring conditions

where the model is not literally correct. Indeed, the only condition for which the SPMM

produced badly biased fixed effect estimates was the outcome dependent MNAR condition

(i.e., when the missing data is partly due to a stochastic within-time process). It is also

noteworthy that the SPMM was not able to recover variance components well when the

missing data mechanism was RC-MNAR-NM. Finally, the SPMM outperforms the LCM

under random coefficient-dependent missingness processes regardless of whether the

missingness process is characterized by intermittent missingness or by dropout.

Under no condition did the SPMM provide more biased parameter estimates than the LCM;

however, variance component estimates were less statistically efficient when the SPMM was

used with MAR missingness. A researcher who obtains effectively identical point estimates

when comparing results obtained using an LCM with results obtained using a SPMM may

thus wish to rely on LCM results for the sake of parsimony because inefficiency in

parameter estimation results in reduced power to detect effects.

Conclusions

A variety of techniques for handling non-randomly missing data have been presented in the

literature (including major developments by Heckman, 1976; Wu & Carroll, 1986; Little,

1993; Diggle & Kenward, 1994; Roy, 2003; Lin et al., 2004, with summaries by Little,

2009, Enders, 2011, and Muthén et al., 2011). Yet, it seems that these techniques are

employed only by those who develop the methods and a handful of other applied

methodologists in the social sciences (e.g., Morgan-Lopez & Fals-Stewart, 2007). Enders

(2011) suggested that the slow uptake of non-ignorable missing data modeling in the social

sciences has been in part due to the lack of availability of user-friendly software programs to

implement these models. Muthén et al. (2011) demonstrated how to implement a variety of

missing data models in available software.

A second reason for the reluctance of applied researchers to implement models for handling

non-randomly missing data is skepticism about the validity of results obtained by these

models. Indeed, just as there have been numerous papers promoting methodological

developments for handling missing data, several papers have pointed out shortcomings of

these models (e.g., Winship & Mare, 1992; Kenward, 1998; Demirtas & Schafer, 2003;

Molenberghs, Beunckens, & Sotto, 2008), and for good reason. There is no question that

every model for handling non-randomly missing data relies on untestable assumptions.

The SPMM, in particular, makes the following assumptions: 1) that non-randomly missing

data is exclusively random-coefficient dependent, 2) that the missing data indicators are
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adequate to summarize the information necessary to account for non-ignorability of the

missing data process, 3) that conditional independence exists between the missing data

indicators and the repeated measures (conditional on the latent classes), and 4) that it is

meaningful to aggregate across missingness patterns to make inferences for the whole

population.

What is less obvious, perhaps, is that the LCM (and similar commonly implemented

techniques for longitudinal data analysis) also relies on an untestable assumption that

missing data are MAR. In many applications, this assumption may be less tenable than those

underlying SPMM or other models for MNAR data. The LCM is therefore not a justifiable

modeling choice when MNAR missingness is possibly present, particularly when the level

of informativeness of the missing data mechanism is potentially high. The problem with

non-randomly missing data lies in its own nature, and not in the models used to handle it. As

a number of methodologists have highlighted, the best way to handle missing data is through

sensitivity analyses with full awareness of the assumptions and limitations inherent in

various models (e.g., Little, 1994; Verbeke, Molenberghs, Thijs, Lesaffre, & Kenward,

2001; Enders, 2011). Contrasting the results of LCM and SPMM represents one such

sensitivity analysis.

Beyond knowing the theoretical limitations of our models, it is also important to understand

their practical limitations under real-world data conditions. This is one of the main

contributions of the present manuscript. The simulation study presented here expanded

Morgan-Lopez and Fals-Stewart’s (2008) earlier finding that latent mixture models work

well with latent class dependent missingness. We demonstrated that SPMMs also work well

with random coefficient dependent missingness that depends on latent continua, not just on

latent classes. That is, this is the first research conducted that shows that the SPMM can

ameliorate bias due to an MNAR process where the model provides an approximation

(rather than literal embodiment) of this process. As expected, the approximation is best with

random coefficient dependent missingness, but is, in general, insufficient with OD-MNAR.

Additionally, the model has some difficulty recovering variance components when non-

random selection operates on both ends of the random effect distribution. Encouragingly,

this study showed that there is no substantial downside to estimating fixed effects using an

SPMM (relative to LCM) even if data are randomly missing.

Practical Advice for Researchers

The SPMM should be used as a tool for carefully and thoughtfully checking of the

sensitivity of traditional growth model results to violations of the MAR assumption. As with

all statistical tools, the SPMM should not be employed mechanically, without regard to the

theoretically plausible mechanisms underlying the missing data. Our primary piece of

practical advice for researchers is to consider the plausibility of various missing data

assumptions within their own data. In our experience, it is rarely the case that MNAR-type

missingness can be safely assumed not to exist. If outcome-dependent missingness is a

possibility, analysts should consider using a selection model, unless it can plausibly be

assumed that it is the underlying trajectory for the outcome that is driving the missingness. If

random coefficient-dependent missingness is possible, then SPMM should be used to check
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the sensitivity of model parameter estimates. The results presented here suggest that, when

LCM-based parameter estimates differ from SPMM-based estimates, there is good evidence

for a non-ignorable missing data process. In this case, the SPMM estimates are less biased

than LCM estimates.

Our simulation study showed that there are three situations that lead to similar fixed effect

estimates in the LCM and SPMM. The first is an MAR process, the second is a non-

monotonic random coefficient-dependent process whereby there is selection occurring from

both sides of the random effect distribution, and the third is an OD-MNAR process. Bias in

variance component estimates is also expected to be similar across all of these conditions. In

other words, when SPMM and LCM results are similar, there is no empirical way to test

whether missingness is approximately conditionally random, whether it is due to a time-

specific, outcome-dependent process, or whether data are missing due to two opposite, but

non-random processes.

If it can reasonably be assumed that the missing data are not OD-MNAR, then it is safe to

rely on the fixed effect estimates that are obtained in the LCM and SPMM. Reliance on

variance component estimates is more uncertain, but the simulation study suggests that it is

safe to say that the variance component estimates represent a lower bound of the true

population variability. True variance components will be larger than the estimates presented

here to the extent that there are non-random forces operating on both sides of the random

slope distribution.

Limitations and Future Directions

As a matter of practicality, simulation studies are always limited in scope. We manipulated

what we regarded as the most critical factors to evaluate, while limiting or holding constant

other factors. One limitation of the simulation studies presented here is that the generating

growth model was linear in form. It is possible, and even likely, that the SPMM will

experience more difficulty efficiently accounting for random coefficient dependent

missingness when the number of growth factors increases. For a related model, the semi-

parametric growth model (Nagin, 1999), Sterba, Baldasaro, and Bauer (in press) found that

the approximation of variance components declines as the number of latent growth factors

increases. Unlike the semi-parametric growth model, however, the SPMM allows for within-

class variability. The approximation afforded by the SPMM may thus be more robust to the

addition of growth factors. Future research on SPMM performance should emphasize more

complex models, both with respect to models of growth and with respect to missing data

mechanisms. Another potential complication that might arise with more complex models for

growth is the possibility of model under-identification. Future research should examine

whether there are circumstances that lead to the need to rely on identification restrictions in

these models.

In addition, future work should compare performance of SPMM with other types of models

for random coefficient dependent missingness. For instance, it would be valuable to

compare performance of the SPMM with traditional pattern mixture models when a small

number of repeated measures are present, and to compare the SPMM with a parametric

selection / shared parameter model in the presence of dropout. It will also be important to
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consider potential difficulties that may arise with categorical repeated measures. The most

interesting future directions for research will involve thoughtful, real-world applications of

SPMM across a range of contexts. It is hoped that the increasing awareness of MNAR and

its implications will cause researchers to stop ignoring non-randomly missing data and to

make use of the many MNAR modeling approaches that now exist. The practice of regularly

conducting sensitivity analyses for missing data assumptions should be encouraged by

editors and reviewers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Path diagram of SPMM with six repeated measures; error terms shown with small circles are

not labeled.
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Figure 2.
Comparison of LCM- and SPMM-Implied Trajectories for xi = 0 and xi = 1 when the

‘missing at random’ assumption is met. The population generating model is shown with a

solid line.
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Figure 3.
Comparison of LCM- and SPMM-Implied Trajectories for xi = 0 and xi = 1 under a variety

of non-random missing data mechanisms: SPMM consistent (top left), RC-MNAR-M (top

right), RC-MNAR-NM (bottom left), and OD-MNAR (bottom right). The population

generating model is shown with a solid line.
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Table 2

Bias and Efficiency of Trajectory Recovery under a MAR Mechanism

LCM SPMM (Best BIC)

SB (%) RMSE SB (%) RMSE

Fixed Effects

Conditional Intercept (α0) 4.89 1.84 −1.64 1.83

Conditional Slope (α1) .00 .33 −2.94 .34

Intercept Predictor (γ0) −1.89 2.65 14.13 2.67

Slope Predictor (γ1) 2.22 .46 .00 .48

Variance Components

Intercept Variance (ψ00) −10.30 37.43 −18.48 61.44

Slope Variance (ψ11) −9.82 1.12 −25.69 1.58

Covariance (ψ01) 2.28 4.82 9.90 6.54

Note. SB ± 40% is acceptable.
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Table 3

Bias and Efficiency of Trajectory Recovery under Several MNAR Mechanisms

LCM SPMM (Best BIC)

SB (%) RMSE SB (%) RMSE

SPMM-Consistent

Fixed Effects

Conditional Intercept (α0) 76.84 2.4 7.73 1.95

Conditional Slope (α1) −128.57 .57 17.65 .34

Intercept Predictor (γ0) −1.85 2.70 −8.89 2.75

Slope Predictor (γ1) 6.25 .48 7.14 .42

Variance Components

Residual Intercept Variance (ψ00) −2.87 43.59 −3.97 45.19

Residual Slope Variance (ψ11) −60.81 5.74 1.85 1.10

Covariance (ψ01) 27.79 6.41 −3.30 5.20

RC-MNAR-M

Fixed Effects

Conditional Intercept (α0) 163.16 3.63 .48 2.09

Conditional Slope (α1) −404.00 1.05 −18.18 .33

Intercept Predictor (γ0) 6.92 2.61 4.87 2.60

Slope Predictor (γ1) −2.70 .37 5.26 .35

LCM SPMM (Best BIC)

SB (%) RMSE SB (%) RMSE

Variance Components

Residual Intercept Variance (ψ00) −21.22 42.26 −21.16 47.78

Residual Slope Variance (ψ11) −335.80 2.84 −34.50 5.37

Covariance (ψ01) 129.86 6.92 14.75 8.90

RC-MNAR-NM

Fixed Effects

Conditional Intercept (α0) 22.60 1.81 8.84 1.81

Conditional Slope (α1) −37.50 .26 −7.14 0.28

Intercept Predictor (γ0) 3.28 2.44 9.64 2.44

Slope Predictor (γ1) −8.82 .34 3.03 .33

Variance Components

Residual Intercept Variance (ψ00) −29.54 38.41 −26.71 53.33

Residual Slope Variance (ψ11) −270.51 2.25 −113.82 3.52

Covariance (ψ01) 130.15 6.52 76.43 7.76

OD-MNAR

Fixed Effects

Conditional Intercept (α0) −152.78 3.29 −117.49 2.87
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Conditional Slope (α1) 28.00 .26 26.92 .27

Intercept Predictor (γ0) −15.66 2.52 −15.56 2.73

Slope Predictor (γ1) 8.33 .36 5.56 .37

LCM SPMM (Best BIC)

SB (%) RMSE SB (%) RMSE

Variance Components

Residual Intercept Variance (ψ00) −85.80 52.03 −61.34 86.63

Residual Slope Variance (ψ11) −55.17 .99 −51.72 1.19

Covariance (ψ01) 14.87 4.64 18.62 5.17

Note. Standardized bias (SB) values above 40% or below −40% are bolded to indicate severe bias

Struct Equ Modeling. Author manuscript; available in PMC 2015 January 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Gottfredson et al. Page 28

T
ab

le
 4

C
om

pa
ri

so
n 

of
 A

ve
ra

ge
 S

ta
nd

ar
d 

E
rr

or
 E

st
im

at
es

 a
nd

 E
m

pi
ri

ca
l S

ta
nd

ar
d 

D
ev

ia
tio

n 
of

 S
am

pl
in

g 
D

is
tr

ib
ut

io
ns

 f
or

 F
ix

ed
 E

ff
ec

t P
ar

am
et

er
s 

by

M
is

si
ng

ne
ss

 C
on

di
tio

n 
an

d 
M

od
el L
C

M
SP

M
M

A
ve

ra
ge

 S
Ē
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