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SUMMARY

Human adipose stem cells (hASCs) have the potential to treat patients with a variety of clinical conditions. Recent advancements in
translational research, regulatory policy, and industry have positioned hASCs on the threshold of clinical translation.We discuss the
progress and challenges of bringing adipose stem cell therapy into mainstream clinical use. STEMCELLS TRANSLATIONALMEDICINE

2015;4:974–979

SIGNIFICANCE

This article details the advances made in recent years that have helped move human adipose stem cell therapy toward mainstream
clinical use from a translational research, regulatory policy, and industrial standpoint. Four recurrent themes in translational tech-
nology as they pertain to human adipose stem cells are discussed: automated closed-system operations, biosensors and real-time
monitoring, biomimetics, and rapid manufacturing. In light of recent FDA guidance documents, regulatory concerns about adipose
stem cell therapy are discussed. Finally, an update is provided on the current state of clinical trials and the emerging industry that uses
human adipose stem cells. This article is expected to stimulate future studies in translational adipose stem cell research.

INTRODUCTION

Human mesenchymal stem cells are multipotent adult stem cells
that havebeen isolated fromalmost everymajor tissue in thebody.
Within the last quarter of a century, human mesenchymal stem
cells have garnered much attention for use in tissue engineering,
regenerative medicine, and immunomodulatory applications. The
acronym hMSC is used to refer to human mesenchymal stem cells
or humanmultipotent stem cells and often is within the context of
bone marrow MSCs (BM-hMSCs) [1]. BM-hMSCs were the first
hMSCs to be isolated and have thus receivedmuch attention in ba-
sic and translational research. However, human adipose stromal/
stem cells (hASCs), as defined by the International Society of Cel-
lular Therapy (ISCT) and International Federation for Adipose Ther-
apeutics and Science (IFATS) [2], have been demonstrated to
possess similar therapeutic potential but to have several distinct
translational advantages. These advantages result because hASCs
are derived from a generally undesired and excess tissue source:
fat tissue. This allows hASCs to be obtained in large quantities from
aminimally invasive procedure. Recent advancements in hASC re-
search have capitalized on these advantages to position hASCs on
the threshold of clinical translation. In the past 5 years, thenumber
of clinical trials using hASCs has rapidly risen—from18 to 152 stud-
ies (January 1, 2010 toMarch 9, 2015; clinicaltrials.gov). These clin-
ical trials have addressed a wide range of conditions, including
fistula, musculoskeletal disorders, ischemia, soft tissue damage,
host-versus-graft disease, and many more. In recent years,

a number of reviews have discussed the clinical translation of
hASCs [3–5]. We offer a new perspective to these data by discus-
sing the technology, regulation, and industry that must be consid-
ered to effectively translate hASCs into widespread clinical use.

TRENDS IN TRANSLATION

Although a wealth of innovative and important research in hASC
biology has occurred within the past decade, it has become appar-
ent that to effectively translate hASCs within the near future into
clinical practicewill require great reliance on technologies that can
simplify and engineer around the gaps in our hASC understanding.
We highlight four recurrent themes in translational technology
as they pertain to hASCs: automated closed-system operations,
biosensors and real-time monitoring, biomimetics, and rapid
manufacturing.
Automated closed-system devices will become an essential

component of translating hASCs. They greatly reduce the required
resources for in vitro cell handling and effectivelyminimize human
error. In addition, automated closed-system operations assist in
the implementation of the Food andDrugAssociation (FDA) guide-
lines for “process analytical technology,” a framework for control-
ling and regulating the manufacturing process of pharmaceutical
products. Currently, automated closed-system devices have two
major functions: isolation and expansion. Automated closed-system
isolation devices allow clinicians to isolate a patient’s cells
and readminister the cells back to the patient within the same
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surgery. Several companies already manufacture such devices to
isolate the stromal vascular fraction (SVF) from adipose tissue [6],
and the SVF has been used in a number of clinical trials for soft
tissue repair. In a clinical trial encompassing both breast aug-
mentation and facial reconstruction, the Tissue Genesis Icellator
Isolation System (Tissue Genesis, Honolulu, HI, http://www.
tissuegenesis.com) was used to isolate the SVF. Forty-two pa-
tients were successfully treated by cell-assisted lipotransfer,
a procedure that enriches traditional lipotransfer methods with
the addition of the SVF [7]. Cytori Therapeutics (San Diego, CA,
http://www.cytori.com) and collaborators have also conducted
a number of clinical trials using their Celution System. In a breast
reconstruction study, they reported that SVF-enriched fat grafts
did not elicit any serious adverse effects and showed satisfactory
aesthetic results in 57 of 67 patients [8]. The clinical trials con-
ducted by both TissueGenesis and Cytori Therapeutics have dem-
onstrated that closed-system machines can isolate SVF reliably.
Yet another form of automated closed-system devices is bioreac-
tors used for cell expansion. A number of recent studies have fo-
cused on optimizing bioreactors for hASC expansion [9, 10]. In the
future, automated closed systems for isolation and expansionwill
likely be combined into the same device.
A critical component to the design of closed system devices is

the ability to monitor internal conditions through the use of bio-
sensors and real-timemonitoring technologies. Biosensors are al-
ready incorporated into commercial stirred tank bioreactors to
ensurebatch control for commercial fermentationor pharmaceu-
tical applications. However, the use of cell lines from different
donors presents a new layer of complexity to the biomanufactur-
ing process. It is known that hASCs isolated from different donors
havedifferingproliferationanddifferentiationpotentials [11, 12].
Thus, interest has been increasing in quantifying and monitoring
the variability between cell lines to generate reproducible results
from variable input. A technology that has the potential to be in-
tegrated into hASC expansion to monitor donor cells is Raman
spectroscopy, which can be used to noninvasively quantify bio-
chemical changes within a cell line. It has been shown that cell
source-dependent variations in bone formation capacities can
be monitored using Raman spectroscopy [13]. We have also
shown that Raman spectroscopy can be used to noninvasively
measure lipid production during hASC adipogenesis within as lit-
tle as 1 day after the onset of adipogenesis [14]. Mass spectros-
copy also holds promise for these types of applications. Mass
spectroscopy has previously been used to monitor the proteome
[15] and secretome [16]of hASCs andhas thepotential tomonitor
the hASCmetabolome in real time. The use ofmass spectroscopy
to track hASCs allows for the use of a minimal amount of con-
ditioned medium to provide a rapid, comprehensive, and po-
tentially quantitative method of assessing hASCs throughout
expansion and differentiation. Finally, electrical impedance spec-
troscopyholds similar promise, having alsobeenused to track adi-
pogenic and osteogenic differentiation of hASCs in real time [17].
The likely integration of biosensors into closed-system devices
will allow for real-time monitoring and, if needed, the correction
of conditions within such devices for the desired hASC response.
Biomimetics is essential to effective in vitro hASC technologies,

in particular when extended in vitro culture or manipulation is
required. Soluble chemical signals have long been used to dif-
ferentiate and manipulate stem cells. However, it has become
increasingly clear that mechanical and other physical stimuli also
play a key role in directing stem cell fate. A wealth of recent

research has been performed on the use of biomimetic mechan-
ical loading to direct hMSC and hASC fate. We, and others, have
used biomimeticmagnitudes of cyclic tensile strain [12, 18–20] or
fluid shear stress to promote osteogenesis [21, 22], hydrostatic
pressure to promote chondrogenesis [23], oscillatory shear
stress to alter actin organization and differentiation potential
[24], and unloading to promote adipogenesis [25, 26] ormaintain
the stemness of hASC spheroids [27]. Electrical stimulation has
been shown toenhancehASCdifferentiation for cardiac [28], neu-
ronal [29], and osteogenic [30] applications. The use of biomi-
metics to direct stem cell fate will likely be incorporated into
automated closed-system devices through physiologic chemical,
mechanical, and electrical stimuli to further optimize hASC per-
formance for specific applications.
Another theme that canbeobserved throughout current trans-

lational tissue engineering and regenerative medicine research is
the use of rapid manufacturing technologies such as three-
dimensional (3D) printing. The advantages of these techniques
include automation, ease of generating patient-specific designs,
reduced manufacturing costs, tunability, and three-dimensional
tissue architecture. Numerous options and considerations are
available for generating bioprinted tissues [31], many of which
have not yet been used in hASC applications. However, a few
recent publications have incorporated hASCs into rapid man-
ufacturing technologies. Patient-specific reconstruction of man-
dibular ameloblastoma resection defects using computer-aided
additive manufacturing of b-tricalcium phosphate constructs
seeded with a hASC biologic component was recently reported
[32]. Rapid manufacturing has also been used for cartilage
applications, and it has been demonstrated that hASCs seeded
on 3D printed chitosan scaffolds could be induced to differen-
tiate down the chondrogenic lineage [33]. In an effort to gen-
erate a more biologically relevant scaffold, Pati et al. recently
demonstrated that hASCs and other cell lines could be printed
in a cell-laden extracellular matrix bioink to generate adipose,
cartilage, and heart tissue [34]. These rapidmanufacturing tech-
nologies are expected to gain even more momentum as hASC
translation moves forward into patient-specific applications in
the coming years.
Althoughmany advances haveoccurred inhASC research in the

past few years, fully successful hASC translation still requires sig-
nificantly more innovation. The entire process of autologous
hASC therapy and the potential barriers to translation are illus-
trated in Figure 1. Research and the development of technologies
that simplify, standardize, and enhance quality control within this
process will be particularly instrumental in facilitating hASC
translation.

INTO THE REGULATORY UNKNOWN

Although impressive progress has been made in hASC research
and translation, since hASCs were first isolated in the early
2000s, major challenges remain in the standardization, regula-
tion, and quality control of hASC therapies.
In 2013, a major step toward standardization of hASC research

was taken when the International Federation for Adipose Thera-
peutics and Science and the ISCT released a joint statement to de-
fine both adipose tissue-derived SVF and culture-expanded
adipose tissue-derived stromal cells [2]. The three criteria that
IFATS and ISCT used to define hASCs are plastic adherence, a spe-
cific surface antigen expression profile of greater than 80%
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expression of CD13, CD29, CD44, CD73, CD90, and CD105 and less
than2%expressionofCD31, CD45, andCD235a, andacapacity for
trilineage differentiation into osteoblasts, adipocytes, and chon-
droblasts. This definition has been adopted by many hASC inves-
tigators and could serve to standardize the diverse field of hASC
research. Beyond the international standardization of hASC re-
search, the field must also work toward international harmoniza-
tion of translational aspects of hASC therapy. As materials and
biologics from hASC therapies begin to cross international bor-
ders, national and international regulatory agencies will need
to coordinate to define policies that can safely and effectively
moderate the global effort toward hASC translation.
The regulatory guidelines for hASC products have been ambig-

uous as companies have begun to enter the hASC industry. To ad-
dress this problem, in December 2014, the U.S. FDA released
a draft guidance document for industry, outlining the criteria to
determine whether a product derived from adipose tissue is reg-
ulated as a drug, device, and/or biological product [35]. This doc-
ument, currently in draft form, outlines the four criteria that
a product derived from adipose tissue must meet to avoid pre-
market review. The four criteria for such a product are as follows:
(a) be minimally manipulated, (b) be intended for homologous
use, (c) not be combined with most other agents, and (d) be de-
rived from autologous or a first- or second-degree blood relative
(unless it doesnothave a systemic effect or dependon theactivity
of living cells). Adipose tissue is defined by the FDA as a structural
tissue; hence, if this document is approved, it will require adipose
therapies that are intended to serve functions other than
structural to undergo the entire FDApremarket approval process.
This is of particular concern for breast augmentation and

reconstruction therapies that currently transplant subcutaneous
adipose tissue to the breast, which has other functions than
structural (i.e., lactation). A wealth of evidence has shown that
adipose tissue serves numerous functions other than structural,
including participating in endocrine, hematopoietic, immunolog-
ical, and regenerative functions within the human body [36, 37].
The FDA is currently revising this guidance document and is
expected to include these topics within the final document.
Another important regulatory concern is the standardization of

quality control practices in hASC therapies. In order to ensure that
a safe and effective hASC product is administered to the patient,
quality control must occur throughout the hASC processing
shown in Figure 1. After an adipose tissue sample has been taken,
it is desirable to perform an initial test to determine whether the
tissue will be an acceptable donor source for the desired proce-
dure. Karyotyping the sample to screen for any major chromo-
somal abnormalities has been suggested [38]. Other testing
procedures that are often performed on initial isolation are
colony-forming unit assays and flow cytometry cell marker anal-
yses, based on recommendations from the IFATS and ISCT, as pre-
viously discussed [2]. During the expansion process, some have
suggested performing phenotypic analysis, cytogenetics, sterility,
trilineage differentiation potential testing, and colony-forming
unit assays after each split [38]. This testing should also be per-
formed after removing cells from cryopreservation. Before ad-
ministering the cell product to a patient, testing often includes
all or a subset of the following tests: cell number, viability, purity
and identity based on cell markers, cytogenetics, bacterial and
fungal sterility, endotoxin, andmycoplasma [38–40]. Quality con-
trolmust also be considered for bothmanufacturing facilities and

Figure 1. The steps of adipose stemcell therapy. Twomodes of human adipose stemcell (hASC) therapy are highlighted, and examples of some
critical issues at each step are shown (but by nomeans are all inclusive). Inmode 1 of hASC therapy, standardizedmethods should be developed
to prescreen each patient for hASC therapy candidacy and to determine the best method of adipose tissue acquisition (whether resection,
liposuction, or an alternative). Because Current Good Manufacturing Practice facilities for hASCs could be located off-site, technologies for
shipping hASCs should be optimized. Cell isolation technologies should maximize cellular yield. There will be many issues to consider when
manipulating cells, including the high level of hASC variability between donors and the inherently heterogeneous cell population. The devel-
opment of closed-system devices that continually monitor cells and adjust culture conditions to deliver a consistent hASC output might be
especially useful in achieving this goal. In addition, if the patient would prefer to bank cells for future procedures, long-term storage methods
must be validated for safety and efficacy. An ideal mode of hASC administration would be both condition-specific and patient-specific. After
hASC treatment, standard methods are needed to monitor a patient for adverse side effects. In mode 2, hASCs are isolated, processed, and
administered back to the patient at the point of care. This method will require the optimization of closed-system isolation devices and the
determination of whether the stromal vascular fraction or hASCs will be the final cell therapy delivered back to the patient.
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reagents[41].Additional informationonsuchCurrentGoodManufactur-
ing Practice facilities and regulations for cell therapy has been pre-
viously reviewed [42]. As hASCs enter clinical translation, standard
quality control measures must be developed to ensure that the
hASC products are safe and effective for patient treatment.

THE BIG FAT INDUSTRY

With the transition of hASCs from the laboratory bench to wide-
spread clinical application, the emergence of an hASC-based in-
dustry will naturally occur. The beginnings of such an industry
can already be identified from clinical trial and patent data. As
of March 9, 2015, after steadily increasing for the past decade
(Fig. 2A), 152 results could be found on clinicaltrials.gov with

the search term “adipose stem cell.” Most of these trials are in
phase I (18%), phase II (13%), or phase I and/or II (41%) (Fig.
2B). Most of the studies are still in the process of recruiting, al-
though 37 trials have already been completed (Fig. 2C). The total
enrollment capacity of these 152 trials includes 11,162 patients.
Of the current clinical trials, 49% have been sponsored by the pri-
vate sector and 51% by noncommercial entities. Clearly, signifi-
cant interest exists from the private sector in hASC research. As
of March 9, 2015, 25 companies were the primary sponsor of
hASC clinical trials or patents specifically pertaining to hASCs reg-
istered with the U.S. government (Fig. 2D). These companies in-
clude a mixture of established companies expanding into hASC
research and new companies specifically focused on hASC ther-
apy. One of the advantages to industrial translation of hASC

Figure 2. Human adipose stem cell (hASC) clinical trials and the emerging global industry. (A): The number of hASC clinical trials registered on
clinicaltrials.govhasbeengainingmomentumfor thepastdecade. AsofMarch9, 2015,most trialswere still inphase I and II (B)and in theprocess
of recruiting (C). (D): In addition to clinical trials, a global industry has emerged. The 25 mapped companies throughout the globe are current
leaderswithin hASC commercialization as identified by hASC-related clinical trials and patents. These companieswere identified fromeither the
152previouslymentionedclinical trialsor aU.S. patent search (ABST/(adiposeANDstemANDcells) or TTL/(adiposeANDstemANDcells)),where
ABST indicates “abstract” and TTL indicates “title,” on http://patft.uspto.gov on March 9, 2015. General mesenchymal stem cell patents and
patents held by noncommercial institutions were not included within this industry map, although a number of universities and hospitals have
also performed clinical trials andhold patents. Company locations andURLs canbe found in the supplemental online data. Abbreviation: NA, not
available.
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comparedwith other stem cell sources is that it is possible to per-
form simple, low-risk procedures such as isolating fat tissue from
apatient and retransplanting it intoapatientwithin the samepro-
cedure. This hasprovideda relatively low-risk entrypoint for firms
seeking to enter the field. However, as regulatory agencies imple-
ment higher regulatory standards on nonhomologous and allo-
genic hASC products, entry into this field is becoming more
complex. Nevertheless, if the wide range of clinical trials is any in-
dication of the coming industry trends, the industry is likely to ex-
pand and diversify in the future. For now, it is clear that hASC
companies have emerged across the globe and no sign exists of
this trend slowing down.

CONCLUSION

Translational research pertaining to hASCs is advancing rapidly
and could soon allow clinicians to treat patients with hASC ther-
apies for a variety of conditions ranging fromtissueengineering to
immunomodulatory applications. As hASCs find their way into
clinical practice, it is essential that researchers, industry, physi-
cians, and regulatory agencies work together to bring promising
hASC therapies to patients in a safe and effective manner.
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