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Abstract

We used theoretical and simulation-based approaches to study Type I error rates for one-stage and 

two-stage analytic methods for cluster-randomized designs. The one-stage approach uses the 

observed data as outcomes, and accounts for within cluster correlation using a general linear 

mixed model. The two-stage model uses the cluster specific means as the outcomes in a general 

linear univariate model. We demonstrate analytically that both one-stage and two-stage models 

achieve exact Type I error rates when cluster sizes are equal. With unbalanced data, an exact size 

α test does not exist and Type I error inflation may occur. Via simulation, we compare the Type I 

error rates for four one-stage and six two-stage hypothesis testing approaches for unbalanced data. 

With unbalanced data, the two-stage model, weighted by the inverse of the estimated theoretical 

variance of the cluster means, and with variance constrained to be positive, provided the best Type 

I error control for studies having at least 6 clusters per arm. The one-stage model with Kenward-

Roger degrees of freedom and unconstrained variance performed well for studies having at least 

14 clusters per arm. The popular analytic method of using a one-stage model with denominator 

degrees of freedom appropriate for balanced data performed poorly for small sample sizes and low 

intracluster correlation. Since small sample sizes and low intracluster correlation are common 

features of cluster-randomized trials, the Kenward-Roger method is the preferred one-stage 

approach.
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1. Introduction

In cluster randomized designs, also known as group-randomized designs, scientists 

randomize clusters of research participants to the intervention of interest [1, 2, 3]. Common 

clusters include communities, schools, or families. Cluster randomized designs often 

improve efficiency of intervention delivery, and reduce the effect of treatment contamination 

[2, 4]. Observations on participants within a cluster are correlated, due to the common 

experiences and characteristics of research participants within a cluster. Analytic approaches 

which do not account for within-cluster correlation yield artificially reduced standard errors 

and inflated Type I error [5, 1, 2].

In a balanced design, in which every cluster is the same size, ordinary least squares methods 

give a Type I error rate that is exactly the rate specified in the design. However, Type I error 

inflation may occur when statistical methods appropriate for balanced data are applied to 

data with unbalanced cluster sizes.

Murray [1] suggested that clustered data can be analyzed either via a “one-stage” or a “two-

stage” model. In the one-stage model, observations on individual research participants are 

analyzed with a linear mixed model. Within-subject correlation is handled with a random 

intercept for cluster. In the two-stage analysis, cluster means are analyzed using a general 

linear model. Since the analysis is performed at the cluster level, the assumption of 

independence holds. Murray [1] noted that the one-stage and two-stage model appropriately 

account for within-cluster correlation. Donner and Klar [2] and Murray et al. [6] provided 

full details on statistical methods for cluster randomized trials.

A variety of statistical methods have been applied to clustered data. In a review of 60 group 

randomized trials, Varnell et al. [7] found that 54% of studies reported only appropriate 

statistical methods, 25% had a mix of appropriate and inappropriate methods, and 20% used 

inappropriate methods which did not adequately account for within-cluster correlation. For 

the studies which used appropriate methods, 68% used the one-stage approach, and 32% 

analyzed cluster means or a similar summary statistic [7]. In cluster randomized trials of 

cancer screening, Crespi et al. [4] found that only 60% of trials published between 2007 and 

2010 used appropriate statistical analyses. In addition, the authors suggested that use of 

appropriate methods for cluster randomized designs increased in the early to mid-2000’s, but 

that usage had declined in recent years.

The manuscript is organized as follows. In Section 2, we review the one-stage and two-stage 

models, hypothesis testing approaches, and causes of possible Type I error inflation with 

unbalanced data. In Section 3, we demonstrate analytically that one-stage and two-stage 

models yield exact Type I error rates when cluster sizes are balanced. In Section 4, we use a 

simulation study to compare the Type I error performance of four one-stage and six two-
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stage hypothesis testing methods across a wide range of study designs. Section 5 provides 

guidance on selecting an analytic method.

2. Notation, Models, and Hypothesis Testing

2.1. Notation

We define matrix operations for one-stage and two-stage models. Let a denote an (n × 1) 

column vector, A = {aij}, i ∈ {1, 2,... n}, j ∈ {1, 2,... m} indicate a (n × m) matrix with 

transpose A′ = {aji}, and D = {Dij} a supermatrix [8, p.3] containing smaller matrices Dij. 

For a matrix , let . Let (A1, A2,..., 

An) denote an ordered list of matrices, and (a1, a2,..., an) denote an ordered list of vectors. 

Define the list creation operator as . Note that 

. For arbitrarily sized matrices, Ai, 

define  with Dij = Ai for i = j, and 0 otherwise. Let 1n denote an n × 1 

column vector of ones, and . Define the Kronecker product of two matrices 

A and B as A ⊗ B = {aijB} [8, p.7]. Define  (a) as the covariance of a.

We consider study designs with one level of clustering and a single fixed effect of interest, 

which we refer to as treatment. Let h ∈ {1,..., g} index treatment groups, i ∈ {1,..., mh} 

index clusters within treatment group h, and j ∈ {1,..., nhi} index observations within 

treatment cluster i and treatment group h. Denote the total number of clusters by 

, the number of observations in treatment group h by , and the 

total number of observations by .

2.2. The one-stage model for clustered data

The one-stage model is a general linear mixed model with Gaussian errors [9]. Define yhi as 

the vector of outcomes for individual research participants in treatment h and cluster i, with 

the complete (N × 1) outcome vector y = vec (yhi). Using cell mean coding [10], define the 

(N × g) design matrix of individual-level treatment effects . Let β be the 

(g × 1) vector of treatment means. Account for within cluster correlation using a single 

random effect for cluster, so that the (N × m) matrix . Let 

 be the (m × 1) vector of random cluster offsets, independently distributed 

from the (N × 1) vector of residual errors . The one-stage model is

(1)
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Define the total variance by  and the within-cluster correlation coefficient by 

. The random effect for cluster induces a compound symmetric form for the 

variance of yhi, so that the covariance of y, Σ, is given by

(2)

The covariance can be equivalently expressed in terms of ρ and  as

(3)

For balanced data, we define nhi ≡ n ∀ h ∈ {1,..., g}, i ∈ {1,..., mh}. In this case, the 

covariance reduces to

(4)

In terms of ρ and , the covariance for balanced data is

(5)

2.3. The two-stage model for clustered data

The two-stage model is a general linear univariate model with Gaussian errors [8, Chapter 

2]. The outcomes are the means for each cluster h and treatment i, denoted ȳhi. The two-

stage model is obtained by transforming the one-stage model by the (m × N) matrix

(6)

We denote elements of the two-stage model using the subscript T and corresponding 

elements from the one-stage model with no subscript. Let yT be the (m × 1) vector of cluster 

means, with yT = Ty. Using cell mean coding, define the (m × g) design matrix of cluster-

level treatment effects , with XT = TX. Let β be the (g × 1) vector of 

treatment means. Notice that population treatment means, β, are equivalent for both the one-

stage and two-stage models. Define eT to be the (m × 1) vector of residual errors, with eT = 

Te. The two-stage model is
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(7)

Define ΣT to be the (m × m) covariance of yT. Since yT = Ty, ΣT = TΣT′. The covariance can 

be expressed in terms of  and  as

(8)

The covariance can be equivalently expressed in terms of ρ and  as

(9)

For balanced data, we have nhi ≡ n ∀ h ∈ {1,..., g}, i ∈ {1,..., mh}. In this case, the 

covariance reduces to

(10)

In terms of ρ and , the covariance for balanced data in the two-stage model is

(11)

In practice, true values for  and  are unknown. The corresponding estimates,  and , 

can be obtained by fitting a one-stage model (see Appendix B for details). When restricted 

maximum likelihood estimation is used to estimate the covariance parameters,  and  are 

commonly constrained to be positive. However, allowing the variance components to be 

negative allows ρ̂, the estimate of ρ, to be negative. As described by Muller and Stewart [8, 

p. 37–38], a negative value for ρ̂ may be required to ensure that the resulting compound 

symmetric covariance is positive definite. If ρ were exactly zero, then ρ̂ would have a 

symmetric distribution about zero. Thus, half the time, ρ̂ would be negative. If ρ were near 

zero, a substantial fraction of estimates of ρwould be negative. Therefore, constraining ρ̂ to 

be positive would fail to represent the true sampling distribution of ρ̂.

2.4. The General Linear Hypothesis

The general linear hypothesis for the one-stage and two-stage models is θ = Cβ, where C is 

an (a × g) matrix of between-subject contrasts, and θ is the (a × 1) vector of observed 
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contrast values. We study the two-sided general linear hypothesis, which compares H0 : θ = 

θ0 to H1 : θ ≠ θ0. In most cases, θ0 = 0. We require that X have full rank to ensure that θ is 

estimable. We also require that C have full row rank [rank (C) = a] to ensure the general 

linear hypothesis is testable [10].

2.5. Tests of Fixed Effects in One-stage Models with Unbalanced Data

In the one-stage model, restricted maximum likelihood estimation [11] is commonly used to 

obtain estimates of the covariance, Σ̂, and estimates of the regression parameters, β̂. Since β̂ 

depends on Σ̂, an iterative optimization procedure, such as the EM algorithm [12], must be 

used to obtain the estimates. Consequently, no closed form expression exists for (β̂). 

Analysts typically use the estimated variance 𝒱̂(β̂) = (X′Σ̂−1X)−1 to form the Wald statistic

(12)

where θ̂ = Cβ̂. Kackar and Harville [13] and Dempster et al. [14] previously demonstrated 

that 𝒱̂(β̂) underestimates the variance of β̂.

Since the exact distributions of β̂ and θ̂ are unknown, the exact distribution of T is unknown. 

Under the null, the distribution of T is approximated by a noncentral F (a, ν2, ω) 

distribution. In the method proposed by Kenward and Roger [15], T is multiplied by a scale 

factor to account for the additional variability in (β̂) introduced by estimating Σ. 

Satterthwaite-style [16] degrees of freedom are then computed for the scaled statistic. 

Another common choice for denominator degrees of freedom is (m − g), by analogy to the 

result for balanced data.

Four common testing approaches for the one-stage model are: 1) the Wald test with Kenward 

and Roger denominator degrees of freedom [15] and variance components constrained 

positive, 2) the Wald test with Kenward and Roger denominator degrees of freedom [15] and 

unconstrained variance components, 3) the Wald test with denominator degrees of freedom 

(m − g) and variance components constrained positive, and 4) the Wald test with 

denominator degrees of freedom (m − g) and unconstrained variance components. 

Regardless of the testing approach, the distribution of T is not exact and, consequently, the 

Type I error rate may not equal α.

2.6. Tests of Fixed Effects in Two-stage Models with Unbalanced Data

For the two-stage model with unbalanced data, unequal cluster sizes violate the assumption 

of homoscedasticity required for the general linear univariate model. Therefore, we make the 

less restrictive assumption that ΣT ≈ σ2W−1 [17]. Model estimates are obtained via weighted 

least squares with . Covariance estimates are obtained 

using the weighted restricted maximum likelihood estimate for σ2
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(13)

The variance of the corresponding general linear hypothesis, θ̂WLS = Cβ̂WLS, is 

. When W is known, a uniformly most powerful, 

size-α test is given by

(14)

For the unbalanced two-stage model, the weight matrix W is typically unknown. When W is 

unknown, TT has an approximate F distribution. Three common weighting schemes for 

cluster means in the two-stage model [18] are: 1) no weighting, 2) weighting by cluster size, 

and 3) weighting by the inverse of the estimated variance of the sample means. Another 

approach is to obtain estimates of covariance parameters from a one-stage model fit and 

form the estimated theoretical variance of the cluster means. This weighting scheme 

preserves the original scale of the outcomes. Finally, some analysts, in error, weight the 

cluster means by the inverse of the cluster size. Regardless of the choice of weights, the 

distribution of TT is not exact and, consequently, the Type I error rate may not equal α. 

Analytic approaches for the one-stage and two-stage models are summarized in Table 1.

3. Theoretical Results

We demonstrate that Type I error rates are exact for one-stage and two-stage models with 

balanced data. For balanced data, the following two theorems hold. Proofs appear in 

Appendix A.

Theorem 1—For balanced data such that nhi ≡ n ∀ h ∈ {1,..., g }, i ∈ {1,..., mh}, and with 

β̂ = (X′X)−1 X′y, θ̂ = Cβ̂, Σ̂ = y′[Im − X (X′X)−1 X′]y/(m−g), and 𝒱̂ (θ̂) = Σ̂[C(X′X)−1 C′], 

the Wald test

(15)

has exact Type I error rate α.

Theorem 2—For balanced data such that nhi ≡ n ∀ h ∈ {1,..., g}, i ∈ {1,..., mh}, and with 

, θ̂T = Cβ̂T, 

, and 
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TT = (θ̂T − θ0)′[𝒱̂(θ̂T)]−1 (θ̂T − θ0)/a, the hypothesis test for the one-stage model is 

equivalent to the hypothesis test

(16)

Theorem 1 implies that an exact size α test can be formed for the one-stage model. As a 

result, the Type I error rate will be exactly the α level specified in the study design. Theorem 
2implies that the balanced one-stage model and balanced two-stage model produce 

equivalent hypothesis tests. Therefore, the balanced two-stage model will also have a Type I 

error rate exactly equal to α. For unbalanced data, Theorem 1and Theorem 2no longer hold.

4. Simulation Study

4.1. Simulation Methods

We performed a simulation study to compare the Type I error performance of four analytic 

methods for the unbalanced one-stage model and six methods for the unbalanced two-stage 

model for cluster randomized designs (see Table 1). The analytic methods were applied to a 

cluster randomized design with two treatment groups and one level of clustering, under 

several scenarios of cluster size imbalance. The majority of cluster-randomized trials 

reviewed by Varnell et al. [7] and Murray et al.[6] used a two group design, indicating the 

study design is commonly used in practice.

One-stage methods were fit using PROC GLIMMIX, and two-stage methods were fit using 

PROC GLM with SAS version 9.3 [19]. We used the double-dogleg optimization method 

[20] with PROC GLIMMIX due to its superior convergence performance. By default, PROC 

GLIMMIX produces variance estimates constrained to be positive. For methods requiring 

unconstrained variance estimates, we used the PARMS statement in PROC GLIMMIX to 

specify a lower bound of −1 for all variance estimates. The bound of −1 effectively provided 

unconstrained variance estimates for the specific combinations of intra-cluster correlation 

and standard deviations used in our simulation study. In general, the NOBOUND option on 

the PARMS statement provides fully unconstrained variance estimates.

4.2. Scenarios of Cluster Size Imbalance

For each analytic method, empirical Type I error was calculated for 9090 different 

experimental scenarios. We restricted our attention to designs with two treatment groups, 

since this covers approximately 88% of all group-randomized trials reviewed by Murray et 

al. [21].

Each scenario was characterized by six parameters: the number of clusters per treatment 

group, denoted as m1 and m2, the average cluster sizes of each treatment group, denoted as 

n̄1 and n̄2, the ratio of maximum to minimum cluster sizes for each treatment group, denoted 

as r1 and r2, and the within-cluster correlation, ρ. We assumed that ρ was equal in both 

treatment groups. The values of m1 and m2 were (m1, m2) ∈ {(2, 4), (3, 4), (4, 4), (6, 8), (7, 

8), (8, 8), (14, 16), (15, 16), (16, 16)}. The values of n̄1 and n̄2 were {8, 16, 32, 64, 128}. 
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Values of r1 and r2 were {1, 2, 4, 8}. The values of ρ were {0.001, 0.01, 0.1}. All values 

were chosen to reflect common study designs used in cluster-randomized trials.

A full factorial design would yield 18000 possible study designs. We restricted our 

simulation to combinations of the parameters which produced unique study designs. Unique 

cases included those for which (m1 < m2), (m1 = m2 and n̄1 < n̄2) or (m1 = m2, n̄1 = n̄2 and r1 

≤ r2).

4.3. Calculation of Empirical Type I Error Rate

We calculated the empirical Type I error rate for each scenario of cluster imbalance and 

analytic method. First, cluster sizes were generated as follows. For each treatment group, we 

selected mh evenly-spaced points, pi, on the interval {0.025, 0.975}. Cluster sizes were then 

computed as

(17)

rounded to the nearest integer. Equation 17 assumes that cluster sizes follow a doubly 

truncated normal distribution, with mean n̄h and variance proportional to the mean. Second, 

we simulated 20, 000 replicates of e* = Zd + e with variance as given in Equation 2. We then 

computed y as in Equation 1, with β selected such that there was no difference between the 

treatment groups. For each replicate, we tested the null hypothesis of no difference between 

the treatment groups. The empirical Type I error for each scenario and analytic method was 

calculated as the proportion of replicates in which the null hypothesis was rejected.

4.4. Four Metrics for Evaluating the Type I Error Performance

We expect a method with good Type I error properties to achieve the nominal Type I error 

rate of 0.05. For an exact test, the null and non-null distribution of the test statistic are 

known without error, and one can show analytically that the analytic method will behave 

reasonably for any data set. However, for the ten analytic methods considered in this paper, 

none are exact. Thus, any evaluation of Type I error, or other characteristics of the analytic 

method is dependent on the choice of experimental scenarios.

We use four metrics to assess the Type I error performance of the analytic methods over all 

9090 experimental scenarios. First, we give a box-plot of the observed Type I error values. 

Second, we provide a lookup table. The lookup table allows scientists to investigate the Type 

I error performance of the analytic methods in scenarios which best match their intended 

design. Third, we use a general linear multivariate model to assign significance to the 

comparison of the analytic methods. Fourth, we identify methods which reliably generated a 

Type I error rate between 0.04 and 0.06, which defines a 20% tolerance around the desired 

rate of 0.05. We refer to this metric as the “20% tolerance” metric.

We use the general linear multivariate model for several reasons. First, in large samples, we 

expect that the Type I error of an exact size α test will follow an approximately normal 

distribution, as shown in Appendix A. Since our simulation included 9090 experimental 
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scenarios, the assumption of normality should hold. Second, because each experimental 

scenario is independent, the general linear model assumption of independence is valid. 

Lastly, the results of the ten analytic methods are correlated, since the analytic methods are 

applied to the same data sets. The general linear multivariate model allows us to account for 

this correlation.

We considered, and rejected, using the Kolmogorov-Smirnov test [22] to compare the 

analytic methods. The Kolmogorov-Smirnov test would have allowed us to compare the 

observed Type I error distributions of the ten tests with a theoretical binomial distribution. 

However, for large sample sizes, the Kolmogorov-Smirnov test [23] tends to reject for minor 

deviations from the theoretical distribution. Given our simulation sample size of 9090, we 

decided that the Kolmogorov-Smirnov would be ineffective at identifying methods with 

reasonable Type I error properties.

The choice of which metric to use depends on the view of the researcher. Researchers who 

want a gestalt recommendation will be best served by looking at the box plot in Figure 1. If 

a scientist knows what the anticipated cluster sizes and correlation will be for a specific 

design, the scientist should consult the lookup table, and choose a method which has the best 

Type I error properties for her specific study design. Researchers who want a method that 

performs well for a general class of study designs should examine the results of the 

modeling approach. Finally, some investigators prefer methods with Type I error rates which 

do not “exceed the nominal size by 20 per cent or more” [24]. For those investigators, we 

suggest the “20% tolerance metric”.

4.5. Methods for the Four Metrics

Box-plot—We produced a box-plot (see Figure 1) showing the Type I error rate results for 

the 10 analytic methods and all experimental scenarios. The upper and lower hinges of the 

box represent the 75th and 25th quantiles of the distribution. Error bars extend to the 

maximum and minimum observed Type I error rate for the analytic method.

Lookup Table—The lookup table is available on the SampleSizeShop.org website. A set 

of dropdown menus allows users to select experimental design parameters. To access the 

table, either click the hotlink above, or go to SampleSizeShop.org and click on the 

“Downloads” tab.

Hypothesis Testing—We used a general linear multivariate model to compare the 

empirical Type I error rates observed in the simulation against the desired Type I error rate 

of 0.05. The outcomes for the general linear multivariate model were the difference scores 

between the observed empirical Type I error rates for each analytic method and 0.05. 

Predictors included intracluster correlation, ρ, the ratio of maximum to minimum cluster 

sizes for treatment, r1, and control, r2, and the total sample size N.

We selected 16 sets of predictor values at which to evaluate the Type I error rates. We 

included all possible combinations of ρ ∈ {0.1, 0.001}, (r1, r2) ∈ {(8, 8), (8, 1), (1, 1), (4, 
4)}, and N ∈ {100, 1000}. We chose these values to reflect a variety of correlations, sample 

sizes, and cluster size imbalance parameters. For each set of values, we performed an 
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omnibus test and then, if the omnibus test were significant, 10 step-down tests. The omnibus 

test evaluated the null hypothesis that every analytic method achieved an equal Type I error 

rate of 0.05. The 10 step-down tests were used to identify the analytic method which showed 

the deviation. For each set of predictor values, we corrected for multiple comparisons using 

an α-spending approach. We used an α level of 0.04 for each omnibus test, and Bonferroni 

corrected α = 0.01/10 = 0.001 for the respective step-down tests.

20% Tolerance—To provide a systematic summary of the results available from the 

lookup table, we examined all 9090 cells for all ten methods to identify conditions under 

which each method had a Type I error rate between 0.04 and 0.06.

4.6. Results for the Four Metrics

Box-plot—The Type I error performance for each analytic method across all scenarios is 

shown in Figure 1. Over 9090 scenarios, an exact size α test will achieve an average Type I 

error rate of 0.05, with 75% quartile at 0.050001, and 25% quartile at 0.049999. Figure 1 

suggests that Methods 9, 1, and 2 have a similar distribution to that of an exact size α test. 

Although Method 2 had appropriate quartiles, it achieved Type I error values as high as 0.18 

in some cases.

For Method 9, any inaccuracy in Type I error appears to be independent of the 

misspecification of ρ. Across all 9090 scenarios, for Method 9, ρ̂ − ρ is no more than 0.04, 

and no smaller than −0.01, with the absolute error decreasing rapidly as m1n̄1 + m2n̄2 

increases, and as ρ increases.

Lookup Table—To illustrate the use of the lookup table, we retrieved the Type I error rate 

for Method 9 for a study design with low intracluster correlation, 4 clusters per treatment 

group, and 30 to 40 observations per cluster. We accessed the lookup table on the 

SampleSizeShop.org website. We filtered the results to match our study design as shown in 

Figure 2. The column labeled “Method 9” showed that empirical Type I error values for the 

method ranged from 0.0492 to 0.0526. Thus, Method 9 would be a good analytic approach 

for the planned study. In contrast, Type I error rates for Method 10 ranged from 0.0492 to 

0.1859, indicating that Type I error inflation could occur were we to perform the analysis 

with Method 10.

Hypothesis Testing—For the 16 sets of fixed values for ρ, r1, r2, and N, we rejected the 

null hypothesis that every analytic method achieved an equal Type I error rate of 0.05. The 

results of the step-down tests and predicted Type I error rates are summarized in Tables 2 

through 5.

There was no clear winner among the analytic methods. For designs with highly unbalanced 

data in both treatment groups (r1 = 8, r2 = 8), Method 2 provided the best Type I error 

performance, regardless of sample size or intracluster correlation. For designs with r1 = 8, r2 

= 8, and ρ = 0.1, Method 6 performed well with N = 100 and Method 3 performed well with 

N = 1000. In designs with highly unbalanced data in only one treatment group (r1 = 8, r2 = 

1), Type I error performance was less consistent, although Method 4 showed good Type I 

error performance with ρ = 0.001 and N = 100. With moderate imbalance (r1 = 4, r2 = 4), 
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Methods 2 and 5 performed well for ρ = 0.1. Methods 4, 6, and 9 performed well with 

moderate imbalance, but only for specific sample size and intracluster correlation 

combinations. For balanced data (r1 = 1, r2 = 1), Methods 2, 9, and 10 tended to have the 

best Type I error characteristics.

20% Tolerance—Every method yielded a Type I error rate between 0.04 and 0.06 for 

some experimental scenarios. The Type I error rate was more likely to fall in this range for 

scenarios involving 1) more clusters per arm (14 to 16 were better than 6 to 8 which were 

better than 2 to 4), 2) a larger value for ρ (0.1 was better than 0.01 which was better than 

0.01), and a larger average cluster size (128 was better than 64, etc.). Perhaps most striking 

was that Methods 2, 9, and 10 generated Type I error rates in this range whenever the 

number of clusters per arm was at least 14, regardless of the levels of the other factors.

Also striking were the results for Methods 3 and 4, which are commonly used by 

investigators who employ group- or cluster-randomized designs. Method 3 was very 

conservative when ρ is small, as has been reported previously [25]. Since small ρ values are 

common in cluster-randomized designs, Method 3 cannot be recommended. The simulation 

confirmed that Method 4 performed much better than Method 3. However, Method 4 did not 

perform well with only 2 to 4 clusters per arm and did not perform well consistently with 6 

to 8 clusters per arm. These results suggest that Method 4 cannot be recommended for 

smaller studies.

Finally, we must note that none of the methods performed well across all combinations of 

the factors examined in the simulations, even by the 20% tolerance metric. Even Method 9, 

which generated a Type I error rate in this range more often than any of the other methods, 

performed poorly in small studies (2–4 clusters per arm) with modest to large values of ρ 
(0.01–0.1).

5. Discussion

Our simulation study indicates that the choice of test in unbalanced, cluster randomized 

trials can dramatically impact Type I error rates. None of the methods tested matched an 

exact size α test in all situations. Based on hypothesis testing from the multivariate model, 

Method 2 performed well in 7 of 16 test cases. Recall that Method 2 was the one-stage 

model using Kenward and Roger [15] denominator degrees of freedom and allowing 

negative variance components. Based on the box-plot, Method 9 had the best Type I error 

distribution across all simulated scenarios. Method 9 was the two-stage model weighted by 

the inverse of the estimated theoretical variance of the cluster means, with variance 

components constrained positive.

Based on the 20% tolerance metric, Methods 2, 9, and 10 performed well in studies with at 

least 14 clusters per arm. Method 10 was identical to Method 9, but with variance 

unconstrained. Investigators could safely use Methods 2, 9 or 10 to analyze data from a 

study with at least 14 clusters per arm, regardless of the average cluster size, the value of ρ, 

or the degree of imbalance. Method 9 performed better than the other models in smaller 

studies, and reliably generated a Type I error rate between 0.04 and 0.06 in studies with at 
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least 6 clusters per arm and 16 participants per cluster. No model performed well in studies 

with only 2 to 4 clusters per arm. Such studies would have very limited power based on very 

limited degrees of freedom, and are not recommended except for pilot studies. In practice, 

Methods 3 and 4 are used frequently by investigators designing cluster-randomized trials. 

Given the poor performance of the methods for small values of ρ and smaller sample sizes, 

the method of Kenward and Roger is recommended for studies using one-stage analyses.

Although our simulation included a large set of scenarios of imbalance, the set may not be 

representative of the true distribution of cluster randomized trial designs that appear in the 

literature. In future research, it may be more valuable to sample published cluster 

randomized trial designs. A sample would provide values for cluster size and ratio of 

maximum to minimum cluster sizes which reflect true scientific practice. Also, although the 

methods presented allow for more than two treatment groups, the simulation study only 

covered cases with two treatment groups. In practice, with multiple treatment groups, one 

would typically conduct an omnibus test, followed by step-down, pair-wise comparisons of 

the groups. In addition, our results are currently limited to Gaussian outcomes. Further 

research is needed to extend the work to binary or count data. Finally, we made strong 

assumptions of equal intracluster correlations.

A majority of group-randomized trials include only two treatment groups[21] and no step-

down testing, and thus multiple comparison correction is not required. ANOVA tests and 

associated multiple comparison methods are readily available for studies with three or more 

groups [26, 27]. Although we did not investigate Type I error specifically for multiple 

comparisons methods, extensive analytic and simulation results for linear model hypothesis 

testing with multiple comparisons, in our opinion, obviate the need for separate treatment. 

Finally, we were always careful to cast all results in terms of general ANOVA models. We 

simulated studies with two treatment groups to simplify reporting the results.

As a general purpose approach, we recommend Method 9 for studies having at least 6 

clusters per arm. Methods 2 and 10 are also recommended for studies having at least 14 

clusters per arm. For scientists with detailed knowledge of the pattern of imbalance in their 

study design, we suggest using the online lookup table to select an appropriate analytic 

method. We hope that this paper guides scientists in selecting appropriate statistical methods 

for cluster randomized trials.
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A. Proofs

Lemma 1

With , Ay = yT. In particular, for the balanced case with 

nhi ≡ n ∀ h ∈ {1,..., g}, i ∈ {1,..., mh}, 

 and Aby = yT.

Proof of Lemma 1—By inspection.

Lemma 2

For the one-stage model with nhi ≡ n ∀ h ∈ {1,..., g}, i ∈ {1,..., mh}, βŴLS = β̂.

Proof of Lemma 2—With balanced data, nhi ≡ n ∀ h ∈ {1,...,g}, i ∈ {1,..., mh}, 

. In addition, Σ reduces to

(18)

Thus,  and

(19)

Then , and

(20)
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Proof of Theorem 1—Based on Lemma 2, we can obtain estimates for treatment means in 

the balanced one stage model with β̂ = (X′X)−1(X′Y). Thus, by standard linear model theory 

β̂ ~ [β, σ2 (X′X)−1] and θ̂ ~ a[θ, σ2C (X′X)−1 C′], with . 

Thus, T (Equation 15) is a uniformly most powerful size α test for the general linear 

hypothesis [8, p. 51].

Proof of Theorem 2—We first show that (i) θ̂T = θ̂ and (ii) 𝒱̂ (θ̂T) = 𝒱̂ (θ̂). With X and y 
defined in Equation (1), and XT and yT defined in Equation (7), and β̂ defined as in Theorem 

1, β̂ = β̂T. Thus (i) holds. Substituting the expression for  into the expression for 𝒱̂ (θ̂T), 

and invoking Lemma 1 for the balanced case,

(21)

Thus (ii) holds. Since (i) and (ii) hold and θ0 is constant, then TT = T.

A.1. Distribution of Type I Error Values

We derive a normal approximation to the distribution of Type I error for the simulation 

described in Section 4. Let α be the Type I error rate desired in the study design. Let Q be 

the number of experimental scenarios considered. Let N be the number of hypothesis 

decisions performed for each imbalance scenario. Define Rs to be the number of rejections 

of the null hypothesis in the N hypothesis decisions for imbalance scenario s. Assuming a 

true null hypothesis, we would expect Rs to be binomial with Rs ~ ℬ (N, α) for an exact size 

α test. The empirical estimate of Type I Error for a scenario s is Rs/N. The normal 

approximation to the binomial suggests that Rs/N ~  [α, α (1 − α)/N]. The empirical 

estimate of the size of the test is . Gaussian theory suggests that

(22)

B. Example SAS Code for Method 9

The following SAS code implements the two-stage model weighted by the inverse of the 

estimated theoretical variance of the cluster means (Method 9 in Table 1). The indicator for 

treatment group (control or treatment) is treatment, the response variable is called outcome, 

and cluster is specified by the cluster variable. The estimates  and  are obtained from 

PROC GLIMMIX. The values are output to the COV data set and stored as the variables 

CVEST and EVEST.
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/ * Calculate cluster means * /

PROC MEANS data=clusteredDataSet NWAY;

     class cluster treatment;

     var outcome;

     output out=means mean=mean N=size;

RUN;

/ *

  * Get estimates of the within cluster variance

  * and error variance

  */

ODS OUTPUT COVPARMS=COV;

PROC GLIMMIX data=clusteredDataSet;

     class cluster treatment;

     MODEL outcome = treatment / DDFM=KR;

     RANDOM INTERCEPT / SUBJECT=cluster;

     NLOPTIONS TECHNIQUE=DBLDOG;

RUN;

/ *

* move the covariance estimates onto

* a single row

*/

DATA COV1;

      RETAIN CVEST EVEST;

      set COV;

      * within cluster covariance;

      IF COVPARM=“Intercept” THEN CVEST=ESTIMATE;

      * residual covariance;

      IF COVPARM=“Residual” THEN EVEST=ESTIMATE;

      IF CVEST ne. & EVEST ne. THEN output;

      KEEP CVEST EVEST;

RUN;

/ * compute the variance weights */

DATA clusterMeansCovar;

      MERGE means;

      if n eq 1 then set cov1;

      EVMIXED = 1/(CVEST + EVEST/size);

RUN;

/ *

  * Run Test 9 -- two-stage model with means weighted by the

  * theoretical variance of each

  * cluster mean and variance parms constrained to be positive

  *

  */
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/ ** Covariance parameters used to compute weights come from Test 1 **/

PROC GLM DATA=clusterMeansCovar;

     CLASS treatment;

     WEIGHT evmixed;

     MODEL mean = treatment / clparm;

     ESTIMATE ‘TRT DIFF’ treatment 1 -1;

RUN;
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Figure 1. 
Empirical Type I Error for each Test, Sorted by Increasing Mean Difference from 0.05.
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Figure 2. 
Lookup Table Results for Method 9
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Table 1

Testing Approaches for One-Stage and Two-Stage Models

Method Model Details

1 One-stage Denominator degrees of freedom as described by Kenward and Roger, with variance components constrained to be 
positive

2 One-stage Denominator degrees of freedom as described by Kenward and Roger, with unconstrained variance components

3 One-stage Denominator degrees of freedom (m−g), with variance components constrained to be positive

4 One-stage Denominator degrees of freedom (m−g), with unconstrained variance components

5 Two-stage
Unweighted (e.g., ANOVA, t-test)
W = Im

6 Two-stage
Weighting by cluster size

7 Two-stage
Incorrect weighting by the inverse of the cluster size

8 Two-stage
Weighting by the inverse of the estimated variance of the sample means

9 Two-stage
Weighting by the estimated theoretical variance of the cluster means, with variance constrained positive

10 Two-stage
Weighting by the estimated theoretical variance of the cluster means, with unconstrained variance
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Table 2

Predicted Type I error of analytic methods for designs with ρ = 0.001 and N = 100.

r1 8 8 1 4

r2 8 1 1 4

Method

1 0.0413 (0.0410, 0.0416) 0.0413 (0.0410, 0.0416) 0.0411 (0.0409, 0.0413) 0.0412 (0.0410, 0.0414)

2 * 0.0506 (0.0496, 0.0517) 0.0570 (0.0560, 0.0580) 0.0531 (0.0523, 0.0539) 0.0520 (0.0514, 0.0526)

3 0.0224 (0.0219, 0.0229) 0.0214 (0.0209, 0.0219) 0.0204 (0.0200, 0.0208) 0.0213 (0.0210, 0.0216)

4 0.0547 (0.0536, 0.0559) * 0.0488 (0.0478, 0.0499) 0.0418 (0.0409, 0.0427) 0.0473 (0.0467, 0.0480)

5 0.0515 (0.0506, 0.0523) 0.0553 (0.0545, 0.0561) 0.0556 (0.0549, 0.0562) 0.0538 (0.0533, 0.0543)

6 0.0554 (0.0546, 0.0562) 0.0516 (0.0509, 0.0523) 0.0472 (0.0466, 0.0478) * 0.0507 (0.0503, 0.0512)

7 0.1218 (0.1192, 0.1244) 0.0871 (0.0848, 0.0895) 0.0385 (0.0364, 0.0405) 0.0742 (0.0727, 0.0757)

8 0.1057 (0.1040, 0.1074) 0.0925 (0.0909, 0.0940) 0.0695 (0.0681, 0.0708) 0.0850 (0.0840, 0.0860)

9 0.0525 (0.0522, 0.0528) 0.0510 (0.0508, 0.0513) 0.0491 (0.0489, 0.0493) 0.0505 (0.0504, 0.0507)

10 0.0689 (0.0678, 0.0701) 0.0608 (0.0598, 0.0619) * 0.0506 (0.0497, 0.0515) 0.0585 (0.0578, 0.0592)

*
Statistically similar to an exact size α = 0.05 test
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Table 3

Predicted Type I error of analytic methods for designs with ρ = 0.001 and N = 1000.

r1 8 8 1 4

r2 8 1 1 4

Method

1 0.0429 (0.0426, 0.0432) 0.0428 (0.0426, 0.0431) 0.0426 (0.0424, 0.0428) 0.0427 (0.0426, 0.0429)

2 * 0.0498 (0.0488, 0.0507) 0.0561 (0.0553, 0.0570) 0.0522 (0.0515, 0.0530) 0.0512 (0.0507, 0.0517)

3 0.0295 (0.0289, 0.0300) 0.0285 (0.0280, 0.0289) 0.0275 (0.0271, 0.0279) 0.0283 (0.0281, 0.0286)

4 0.0539 (0.0528, 0.0550) 0.0480 (0.0470, 0.0489) 0.0410 (0.0402, 0.0418) 0.0465 (0.0460, 0.0471)

5 0.0515 (0.0507, 0.0523) 0.0553 (0.0546, 0.0560) 0.0555 (0.0549, 0.0562) 0.0538 (0.0534, 0.0542)

6 0.0519 (0.0512, 0.0527) 0.0482 (0.0475, 0.0488) 0.0437 (0.0432, 0.0443) 0.0472 (0.0469, 0.0476)

7 0.1099 (0.1075, 0.1123) 0.0752 (0.0731, 0.0774) 0.0266 (0.0247, 0.0284) 0.0623 (0.0611, 0.0635)

8 0.0962 (0.0946, 0.0979) 0.0830 (0.0815, 0.0844) 0.0600 (0.0588, 0.0612) 0.0755 (0.0747, 0.0763)

9 0.0519 (0.0517, 0.0522) 0.0505 (0.0502, 0.0507) 0.0486 (0.0484, 0.0487) * 0.0500 (0.0499, 0.0501)

10 0.0648 (0.0637, 0.0659) 0.0567 (0.0557, 0.0577) 0.0465 (0.0456, 0.0473) 0.0543 (0.0538, 0.0549)

*
Statistically similar to an exact size α = 0.05 test
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Table 4

Predicted Type I error of analytic methods for designs with ρ = 0.1 and N = 100.

r1 8 8 1 4

r2 8 1 1 4

Method

1 0.0512 (0.0509, 0.0515) 0.0511 (0.0508, 0.0514) 0.0509 (0.0507, 0.0512) 0.0510 (0.0508, 0.0513)

2 * 0.0493 (0.0482, 0.0505) 0.0557 (0.0547, 0.0568) 0.0518 (0.0509, 0.0527) * 0.0508 (0.0500, 0.0515)

3 0.0424 (0.0418, 0.0429) 0.0414 (0.0408, 0.0419) 0.0404 (0.0399, 0.0409) 0.0412 (0.0408, 0.0416)

4 0.0592 (0.0580, 0.0605) 0.0533 (0.0522, 0.0545) 0.0463 (0.0453, 0.0473) 0.0519 (0.0510, 0.0527)

5 0.0480 (0.0471, 0.0490) 0.0518 (0.0510, 0.0527) 0.0521 (0.0514, 0.0529) * 0.0504 (0.0497, 0.0510)

6 * 0.0492 (0.0484, 0.0500) 0.0454 (0.0447, 0.0462) 0.0410 (0.0403, 0.0417) 0.0445 (0.0440, 0.0451)

7 0.1144 (0.1116, 0.1172) 0.0797 (0.0772, 0.0823) 0.0311 (0.0288, 0.0333) 0.0668 (0.0649, 0.0686)

8 0.0904 (0.0885, 0.0923) 0.0772 (0.0754, 0.0789) 0.0541 (0.0526, 0.0557) 0.0697 (0.0684, 0.0709)

9 0.0530 (0.0527, 0.0533) 0.0515 (0.0513, 0.0518) * 0.0496 (0.0494, 0.0499) 0.0511 (0.0509, 0.0513)

10 0.0667 (0.0654, 0.0679) 0.0586 (0.0574, 0.0598) * 0.0484 (0.0473, 0.0494) 0.0562 (0.0554, 0.0571)

*
Statistically similar to an exact size α = 0.05 test
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Table 5

Predicted Type I error of analytic methods for designs with ρ = 0.1 and N = 1000.

r1 8 8 1 4

r2 8 1 1 4

Method

1 0.0527 (0.0524, 0.0530) 0.0527 (0.0524, 0.0529) 0.0525 (0.0522, 0.0527) 0.0526 (0.0524, 0.0528)

2 * 0.0485 (0.0474, 0.0496) 0.0549 (0.0539, 0.0559) * 0.0510 (0.0501, 0.0518) * 0.0499 (0.0492, 0.0506)

3 * 0.0494 (0.0489, 0.0500) 0.0484 (0.0479, 0.0490) 0.0474 (0.0470, 0.0479) 0.0483 (0.0479, 0.0486)

4 0.0584 (0.0572, 0.0596) 0.0525 (0.0514, 0.0536) 0.0455 (0.0446, 0.0464) * 0.0510 (0.0503, 0.0518)

5 0.0480 (0.0471, 0.0489) 0.0518 (0.0510, 0.0526) 0.0521 (0.0514, 0.0528) * 0.0503 (0.0498, 0.0509)

6 0.0457 (0.0450, 0.0465) 0.0420 (0.0412, 0.0427) 0.0375 (0.0369, 0.0382) 0.0411 (0.0406, 0.0415)

7 0.1025 (0.0998, 0.1051) 0.0678 (0.0654, 0.0703) 0.0192 (0.0170, 0.0213) 0.0549 (0.0532, 0.0565)

8 0.0809 (0.0791, 0.0827) 0.0677 (0.0660, 0.0693) 0.0446 (0.0432, 0.0461) 0.0602 (0.0591, 0.0613)

9 0.0525 (0.0522, 0.0528) 0.0510 (0.0507, 0.0513) 0.0491 (0.0488, 0.0493) 0.0505 (0.0504, 0.0507)

10 0.0625 (0.0613, 0.0637) 0.0544 (0.0533, 0.0555) 0.0442 (0.0432, 0.0452) 0.0520 (0.0513, 0.0528)

*
Statistically similar to an exact size α = 0.05 test
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