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Abstract

In a prospective cohort study, examining all participants for incidence of the condition of interest 

may be prohibitively expensive. For example, the “gold standard” for diagnosing 

temporomandibular disorder (TMD) is a physical examination by a trained clinician. In large 

studies, examining all participants in this manner is infeasible. Instead, it is common to use 

questionnaires to screen for incidence of TMD and perform the “gold standard” examination only 

on participants who screen positively. Unfortunately, some participants may leave the study before 

receiving the “gold standard” examination. Within the framework of survival analysis, this results 

in missing failure indicators. Motivated by the Orofacial Pain: Prospective Evaluation and Risk 

Assessment (OPPERA) study, a large cohort study of TMD, we propose a method for parameter 

estimation in survival models with missing failure indicators. We estimate the probability of being 

an incident case for those lacking a “gold standard” examination using logistic regression. These 

estimated probabilities are used to generate multiple imputations of case status for each missing 

examination that are combined with observed data in appropriate regression models. The variance 

introduced by the procedure is estimated using multiple imputation. The method can be used to 

estimate both regression coefficients in Cox proportional hazard models as well as incidence rates 

using Poisson regression. We simulate data with missing failure indicators and show that our 

method performs as well as or better than competing methods. Finally, we apply the proposed 

method to data from the OPPERA study.
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1. Introduction

Time-to-event analyses are frequently conducted in medicine, actuarial science, and 

numerous other fields of applied science. There is a well-developed set of survival analysis 

methods implemented in standard software. Semi-parametric methods, such as the Cox 

proportional hazards model, allow robust estimation of the effects of covariates on the 

hazard function. However, these methods require the analyst to know the failure status of 

each participant, which may not always be available.

In some cases the outcome of interest may be difficult to ascertain. For example, in 

oncology studies, researchers may want to differentiate between deaths due to cancer and 

deaths due to car accidents or other unrelated causes. Investigators may easily record the 

mortality of all subjects, but it may be extremely difficult or costly to find out exactly why 

each subject died. One possible solution to this problem is delayed event adjudication [1]. 

This means that possible cases are not identified immediately but screened using simple 

methods that may have poor sensitivity or specificity. Later, the screened candidate cases are 

re-examined using a more precise, but also more costly and time-consuming, method to 

determine the true event status.

The study that motivates our work is Orofacial Pain: Prospective Evaluation and Risk 

Assessment (OPPERA), a prospective cohort study to identify risk factors for the onset of 

temporomandibular disorders (TMD). Each (initially TMD-free) OPPERA study participant 

was followed for a median of 2.8 years to identify cases of first-onset TMD. However, it 

was impractical to perform a physical examination on every participant. It would also have 

been inefficient given that most study participants did not develop the condition. Instead, 

this “gold standard” examination was performed only on participants with positive screens 

on a quarterly screening questionnaire that was designed to assess recent orofacial pain [2]. 

However, some participants with positive screens were lost to follow-up before receiving the 

“gold standard” examination. Thus a time-to-event analysis would have some participants 

with missing failure indicators.

Previous research indicates that when a subset of the failure indicators are missing, one can 

obtain more accurate estimates of the parameters of interest by using appropriate tools to 

estimate these missing values [1, 3, 4]. Cook and Kosorok [1] estimate parameters in Cox 

proportional hazard models with missing failure indicators by weighting observations 

according to their probability of being a true case. They show that the estimators are 

consistent and asymptotically normally distributed. However, the standard error of their 

proposed estimate cannot be easily obtained using existing software without bootstrapping. 

For the OPPERA data, a separate Cox model was calculated for each putative risk factor of 

interest, including approximately three thousand genetic markers. Consequently, applying 

this method to the OPPERA genetic data would be computationally intractable.

In the OPPERA study, the likelihood that a participant with a positive screen was examined 

was weakly associated with demographic variables such as gender, race, or socioeconomic 

status [2]. This indicated that the failure indicators in the OPPERA study were not missing 

completely at random (MCAR). Application of models that assume MCAR failure 
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indicators may result in biased estimates of hazard ratios for covariates of interest. More 

importantly, a participant’s responses to their screening questions are predictive of whether 

or not they are an incident case of TMD. This setting presents statistical challenges, which 

require care in order to avoid bias and maintain efficiency. Additionally, incidence rate 

estimates are desired, and none of the methods currently available allow for estimation of 

the incidence rate. There is a clear need for new methodology to effectively answer the 

research questions of the OPPERA study.

In this paper, we propose a method for parameter and variance estimation in Cox regression 

models with missing failure indicators. The motivating data set is introduced in Section 2. 

We describe our method in Section 3. In Section 4, we report the results of simulations. 

Finally, in Section 5 we apply our method to the OPPERA study. We conclude with a 

discussion in Section 6.

2. Motivating Data Set: The OPPERA Study

OPPERA is a prospective cohort study designed to identify risk factors for first-onset TMD. 

A total of 3,263 initially TMD-free subjects were recruited at four study sites between 2006 

and 2008. TMD status was confirmed by physical examination of the jaw joints and muscles 

using the Research Diagnostic Criteria for TMD [5], which is the gold standard for 

diagnosing TMD.

Upon enrollment in the study, each OPPERA participant was evaluated for a wide variety of 

possible risk factors for TMD, including psychological distress, previous history of painful 

conditions, and sensitivity to experimental pain. For a brief overview of the risk factors of 

interest in the OPPERA study, see Section S1 in the Supporting Information. See Ohrbach et 

al. [6], Fillingim et al. [7], Greenspan et al. [8], Maixner et al. [9], and Smith et al. [10] for a 

complete description of the baseline measures that were collected in OPPERA.

After enrollment, each participant was asked to complete questionnaires to evaluate recent 

orofacial pain once every three months. These questionnaires (hereafter referred to as 

“screeners”) evaluated the frequency and severity of pain in the orofacial region during the 

previous three months. The purpose of the screener was to identify participants who were 

likely to have recently developed TMD. For a complete description of the screener, see 

Slade et al. [11]. Participants with a positive screen were asked to undergo a follow-up 

physical examination by a clinical expert to diagnose presence or absence of TMD.

Of the 3,263 subjects, 2,737 filled out at least 1 screener, and the remaining 521 did not fill 

out any screeners. The total number of screeners was 26,666. There were 717 positive 

screeners, 486 (about 68%) of which were followed by a clinical examination. As reported 

in Bair et al. [2], case classifications made by one examiner (hereafter, “Examiner #4”) were 

deemed unreliable because the examiner diagnosed a much higher percentage of individuals 

with TMD compared to other examiners. We therefore set all of Examiner #4’s physical 

examination findings to be missing and imputed them using the methods in this paper. This 

left 404 positive screeners (56%) resulting in valid clinical exams.
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3. Model

3.1. Notation and Assumptions

Assume there are n independent participants. For each participant i (i = 1, …, n), let Ci and 

Ti denote the potential times until censoring and failure, respectively, and let Vi = min(Ti, 

Ci), Δi = I(Ti ≤ Ci). Let Zi a p × 1 vector of covariates measured at baseline and let Xi be a q 

× 1 vector of covariates measured at the time of the putative event. We assume the hazard 

for participant i follows a Cox proportional hazards model

(1)

where λ0(t) is an unspecified baseline hazard function. Let ξi denote the indicator that Δi is 

observed. We observe (Vi, ξi) for i = 1, …, n and Δi when ξi = 1.

In the OPPERA study, Vi is the length of time for participant i between enrollment in the 

study and either of two events

1. a screener which resulted in a diagnosis of incident TMD

2. the last-completed screener before loss-to-follow-up.

Note that participants with a positive screen do not fill out additional screeners until they are 

examined, so Vi will be the time until the positive screen for a participant who has a positive 

screen but is never examined. If participant i had a positive screen and subsequently was 

diagnosed with TMD, then Δi = 1. If participant i either had a negative screen on the last 

quarterly screener before loss-to-follow up or a positive screen and was diagnosed to be free 

of TMD, then Δi = 0. If participant i had a positive screen on the last screener but was not 

examined, then Δi is missing and ξi = 0. The putative risk factors for TMD that were 

assessed at enrollment are denoted by the vector Zi. Responses to the screener for participant 

i at time Vi are denoted by the vector Xi. For OPPERA, we also define Qi = 1 if participant i 

has a positive screen on their final screener and Qi = 0 otherwise.

We assume the failure indicators are missing at random (MAR) as follows:

(2)

In other words, the probability of having a missing failure indicator may depend on 

measured factors, but it does not depend on whether or not an event occurred. We will 

describe how to estimate the probability in (2) in Section 3.2 and then show how to use this 

estimate to impute the missing event indicators in Section 3.3.

3.2. Estimating Event Probabilities

We model the probability that participant i with a missing failure indicator is a case by a 

logistic regression model based on Xi and Vi:

(3)
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That is, we estimate the probability of examiner-diagnosed TMD in a participant who was 

not examined as intended. (Here I(x) denotes an indicator function.) The probability was 

estimated using the time between enrollment and their last positive screener as well as their 

answers on that screener. Then, for those individuals who had a positive screen on the last 

screener (i.e. those with Qi = 1) and were not examined, the estimated probability of being a 

case is estimated by (3) with the parameters replaced by their respective estimates based on 

individuals who were examined.

Note that this also assumes that there is one observation per subject, which may not be the 

case in practice. For example, if some participants had a positive screen on more than one 

screener and are examined at least once, then we have multiple observations per participant. 

In that case, fitting a generalized linear mixed effects logistic regression model rather than a 

standard logistic regression model could account for correlations between the responses of 

the same participant. However, only a small number of participants in the OPPERA study 

were examined multiple times after positive screeners, so we simply discarded all but the 

most recent screener when analyzing the OPPERA data (thereby avoiding this problem of 

repeated observations).

3.3. Multiple Imputation

One popular method for handling missing data is multiple imputation. For a comprehensive 

review on multiple imputation, see Rubin [12]. Our imputation procedure is as follows:

1. Estimate the coefficients α, γ, and η in (3). We used a Bayesian model where α, γ, 

and η had a prior distribution that was Cauchy with center 0 and scale 2.5.

2. For each observation with a missing failure indicator, sample from the posterior 

distribution of α, γ, and η to obtain an estimate of the probability that an event 

occurred for each such observation.

3. Generate a Bernoulli random variable with success probability equal to the 

predicted probability found in step (2).

4. Combine the raw data and imputed data from step (3) to form a completed data set.

5. Fit the Cox proportional hazards model to the completed data set.

6. Record each parameter estimate β̂
j and covariance matrix Ûj.

7. Repeat steps (3)–(6) for a total of m times, where m is the desired number of 

imputations.

Next, we combine all of the estimates. The average parameter estimate is

(4)

the within-imputation variance estimate is
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(5)

and the between-imputation variance

(6)

Finally, the estimated covariance matrix is

(7)

It can be shown that  is approximately t distributed with degrees of freedom

(8)

(7) and (8) can be used to compute confidence intervals for the multiply imputed parameter 

estimate β̄.

3.4. Estimation of Incidence

Previous sections of this paper described how to estimate hazard ratios in the presence of 

missing failure indicators. It may also be of interest to estimate incidence rates for the same 

event using Poisson regression instead of Cox regression. For example, one of the aims of 

the OPPERA study is to estimate the incidence rate of first-onset TMD.

In order to estimate incidence rates, we estimate the case probabilities as described 

previously based on participants who had a positive screen and were examined. Then we 

impute case status as described in Section 3.3 for those who had a positive screen but were 

not examined. However, in this case we fit Poisson regression models, rather than Cox 

models, to the completed data sets. Finally, we calculate the incidence rate based on the 

estimates of the regression coefficients in the Poisson model. Specifically, we use the data 

from imputation j to fit the model

(9)

where Δij denotes the jth imputation for observation i, j = 1, …, m. We combine the m 

imputations using equation (4) and

(10)

The estimated incidence rate for an individual with covariates X* and Z* is given by exp(μ̄ + 

τ̄X* + λ̄Z*). The variability of μ̄, τ̄, and λ̄ may be estimated using (7), and confidence 

intervals may be computed based on the t distribution using (8), as described previously.
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4. Simulations

Data with missing failure indicators were simulated, and several possible methods were 

compared with respect to bias, coverage, and confidence interval width. Survival times for 

1,000 individuals were generated with exponentially distributed failure times under a 

proportional hazards model with covariates as proposed by Bender et al. [13]. That is, the 

survival time for each individual was distributed according to (1) where λ0(t) = 1 is the 

baseline hazard. For our simulations, Zi was a single baseline covariate following a normal 

distribution with mean 2 and unit variance. In other words, conditional on Zi, the failure 

times Ti followed an exponential distribution with hazard exp(β′Zi) where β ∈ {−0.5, −1.5, 

−3}. The censoring times Ci followed an exponential distribution with mean 5 

(corresponding to a hazard of exp(−log(5)) ≈ exp(−1.61)). This yielded about 35%, 75% 

and 90% censoring for β = −0.5, β = −1.5, and β = −3, respectively. We also defined Δi = 

I(Ti ≤ Ci). If Δi = 0, the implication is that the follow up period ended before the participant 

developed TMD, meaning that the observation was censored at time Ci.

Covariates are represented by Zi, a risk factor for TMD measured at enrollment, and Xi, a 

measurement collected on the last screener. For each observation, a normally distributed 

covariate Xi1 was generated with mean Δi and standard deviation 0.3. In OPPERA, Xi 

represents a question on the screener evaluating some symptom of first-onset TMD, such as 

the frequency of jaw pain. This was used to generate Qi = I(Xi > 0.5), an indicator of 

whether participant i screened positive on their last screener. Note that Xi depends on Δi, 

since participants who developed first-onset TMD are more likely to report symptoms on 

their screener, and Qi depends on Xi, since the screener is positive if enough symptoms are 

reported. Also, ξi = I(Δi is observed) corresponds to the indicator of whether participant i 

came in for their clinical exam if Qi = 1. In all simulations, δi was used as the failure 

indicator rather than Δi, where δi is defined as

In other words, we set the failure indicator δi = 0 if the final screener was negative. This 

decision was made to reflect the fact that OPPERA participants who had a negative screen 

were not examined. Hence it is possible that some participants developed first-onset TMD 

but were never examined due to their final screener being negative. Thus, the simulations 

(incorrectly) treat these observations as censored.

We created missing failure indicators under the following classical missing data mechanisms 

of Rubin [14]:

1. The probability of having a missing failure indicator is independent of the data. 

This is known as missing completely at random (MCAR).

2. The probability of having a missing failure indicator depends on an observed 

covariate. This is known as missing at random (MAR).
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3. The probability of having a missing failure indicator depends on the (potentially 

unobserved) failure indicator. This is known as missing not at random (MNAR).

Our method assumes that the data are MAR, which includes MCAR as a special case. Our 

simulations under MAR and MNAR parallel the study protocol in that failure indicators can 

only be missing for those with positive screeners. In other words, observations were 

potentially missing if and only if Qi = 1. (Individuals with negative screeners have Qi = 0 

and are assumed to be censored. Those with positive screeners have Qi = 1 and may have 

missing clinical examinations.) Details and results for MCAR and MNAR data are shown in 

Sections S2.2 and S2.4 in the Supporting Information. We also considered several 

simulation scenarios where the logistic regression model for predicting the failure indicator 

was misspecified; see Section S2.3 in the Supporting Information. For MAR data, we set 

failure indicators to be missing with probability

(11)

This resulted in approximately 50% of failure indicators being set to missing, which is 

consistent with the rate of missing failure indicators in the OPPERA study.

In each simulated data set, all observations with observed failure indicators who had a 

positive screen were used to fit a logistic regression model for case status with covariates Zi, 

Xi and Vi. That is, using the complete data (i.e. observations with Qi = 1 and ξi = 1), we fit 

the logistic regression model for the event probability conditional on Zi, Xi, and Vi, namely

(12)

The estimated probabilities  were calculated for individuals 

with Qi = 1 (where α̂, γ̂, and η̂ are drawn from their posterior distribution).

To evaluate the performance of our method, multiple imputation was employed to calculate 

10 imputed estimates of β for each simulation as described in Section 3.3. For each 

observation i with Qi = 1 and ξi = 0, we estimated failure indicators Δ̂ij independently for 

each imputation j.

A Cox proportional hazards model was fit for each imputed data set, and the imputed 

estimates of the regression coefficient and their variances were recorded. These were 

aggregated using equations (4) and (7) to create confidence intervals for the multiple 

imputation estimates.

The performance of our method was compared with that of the method of Cook and 

Kosorok [1]. To obtain the estimates of Cook and Kosorok [1], for each simulated data set, 

we estimated the probabilities p̂i that the (potentially unobserved) event for participant i is a 

true event, as described previously. We then fit a weighted Cox proportional hazards model 

to the data set with weights calculated as follows: Each observation with a missing failure 

indicator was deleted and replaced with two new observations. Each such pair of 
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observations had the same failure time and covariates, but different failure indicators and 

weights. The first observation had weight p̂i and Δ̂
i = 1, and the second observation had 

weight 1 − p̂i and Δ̂
i = 0. Participants with fully observed data retained a single observation 

in the data set with unit weight. The estimated regression coefficient, β̂ was recorded.

The variance of this estimate was estimated by generating 1,000 bootstrap replicates of each 

simulated data set and refitting the model for each bootstrap replicate. A set of 1,000 

subjects was selected at each bootstrap iteration by sampling from the data with 

replacement. For each bootstrap replicate, the estimated probability  that participant i is a 

true failure was calculated. These estimated  ’s were used to calculate a bootstrap estimate 

β̂* of β using a weighted Cox model as described in the previous paragraph. The average 

parameter estimate, β̂̄ and percentile confidence intervals (β0.025, β0.975) were all recorded, 

where βθ is the θth quantile among the 1,000 bootstrap replicates.

We also compared our method to the ideal situation in which the true values of Δi were 

observed for all observations (note that Δi was used instead of δi in this case), complete case 

analysis (meaning that we exclude from the data set all observations with missing failure 

indicators), and two ad hoc methods in which we treat the missing indicators either all as 

censored or all as failures. Results under the assumption of MAR are shown in Table 1. We 

estimated the bias of each method by calculating the mean difference between the estimated 

Cox regression coefficient and the true coefficient over the 1,000 simulations. We also 

calculated the mean width of the confidence intervals produced by each method over the 

1,000 simulations. Similarly, we calculated the empirical coverage probability for the 

confidence intervals produced by each method by dividing the number of times that the 

confidence intervals contained the true value of the parameter by 1,000. We also report the 

Monte Carlo error for the coverage rate, which is the error in the empirical coverage 

probability due to conducting only a finite number of simulations (which would be 

 for n simulations). Finally, the rate of missing information and the average 

running time of each method was computed.

All calculations were performed using R versions 3.0.2 running on a single core of a Dell 

C6100 server with a 2.93 GHz Intel processor. The function “mi.binary” in the “mi” R 

package was used to generate the imputed values of the missing failure indicators. The 

functions “boot” and “boot.ci” in the “boot” R package were used to calculate the bootstrap 

estimates of the standard error of the Cook and Kosorok [1] method. The Cox proportional 

hazard models were fit using the “coxph” function in the “survival” R package. The code 

used to perform the simulations (and analyze the OPPERA data) is available in the 

Supporting Information.

The empirical coverage probability of the confidence intervals produced by multiple 

imputation is close to the nominal level (0.95) in all simulations. Our multiple imputation 

method and the method of Cook and Kosorok [1] produced approximately unbiased 

estimates and valid confidence intervals in all the scenarios we considered. The estimates 

produced by the other methods showed a larger amount of bias and did not always achieve 

the desired coverage level. Our multiple imputation method also yielded the narrowest 
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confidence intervals in each scenario. Although the method of Cook and Kosorok [1] 

produced confidence intervals that were only slightly wider, this indicates that our proposed 

method may have slightly greater power to detect true associations, particularly when the 

absolute value of β is large. Our proposed method also tended to have lower bias than the 

method of Cook and Kosorok [1] when the absolute value of β is large. The running time of 

our proposed method was also significantly less than the running time of the Cook and 

Kosorok [1] method. Moreover, for most parameter values, the coverage probabilities for the 

complete case and ad hoc methods were significantly different (p < 0.01) from the nominal 

rate.

In addition, we examined the performance of our proposed methods when we changed the 

logistic regression model for Δi. We investigate two additional types of models: one in 

which the model contained a variable unrelated to case status and another in which the 

model does not include one variable related to case status. As in the previous simulations, 

the failure times were generated by (1), censoring was exponential with mean 5, failure 

indicators were set to be missing completely at random or missing at random with 

probability given in equation (11), Zi ~ N(2, 1), Xi1 ~ N(Δi, 0.3) and Qi = I(Yi2 > 0.5) for i = 

1, …, n. We also generated Xi2 ~ N(0, 1) where Zi, Xi1, Xi2 were mutually independent and 

Xi2 was independent of Δi and Qi.

In the previous simulations, we fit the data to (12) with covariates Zi and Xi = Xi1. The 

additional simulations instead used the covariates and parameters as follows:

1. X̃
i = {1, Xi1, Xi2}

2. X̃
i = 0.

That is, rather than fitting model (12) to the data, we modeled the case probability with

(13)

The results, which are shown in Section S2.3 in the Supporting Information, remained 

similar under both alternative models. This indicates that the proposed methods are robust to 

misspecification of the logistic regression model in some situations. Most notably, leaving 

out one covariate that was weakly related to case status did not markedly decrease the 

performance of the method.

We also performed some simulations where a random subset of the observations with Qi = 0 

were set to have missing failure indicators. The model to predict Δi was fitted using only the 

observations for which Qi = 1, but the model was applied to all observations with missing 

failure indicators (including observations where Qi = 0). The results are shown in Section 

S2.3 in the Supporting Information. In this case our method (as well as the Cook and 

Kosorok [1] method) produced reasonable results when the logistic regression model was 

specified correctly or when an extra covariate was included in the model. However, both 

methods performed poorly when an important covariate was missing from the logistic 

regression model.
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Finally, we conducted simulations to evaluate the method’s ability to estimate incidence 

rates. A similar multiple imputation strategy was applied to Poisson regression. Our method 

produced estimates much closer to the true incidence rates than the complete case estimate. 

In fact, the complete case method underestimated incidence rates by as much as a factor of 

3. See Section S2.5 in the Supporting Information for details.

5. Analysis of the OPPERA Study

In this section, we apply our method to estimate hazard ratios and incidence rates in the 

OPPERA study using m = 10 imputations.

5.1. Hazard Ratios

We applied our method to the OPPERA cohort to adjust for the effect of participants with 

missing clinical examinations. (Note that examinations for participants evaluated by 

Examiner #4 were also treated as missing.) First, we estimated the probability that a 

participant would be diagnosed as an incident case of TMD given a positive screener. Due to 

the rich body of information collected in each screener, we carefully selected a small 

number of predictor variables. Specifically, we fit a logistic regression model to predict the 

result of the clinical exam based on each item in the screener. As described previously, the 

regression coefficients were assumed to have a prior distribution that was Cauchy with 

center 0 and scale 2.5. All models were adjusted for study site.

The majority of the variables measured on the screener were not associated with the result of 

the clinical examination. The strongest predictor of being diagnosed with TMD was a count 

of non-specific orofacial symptoms (e.g stiffness, fatigue) in the previous three months. The 

time elapsed since enrollment and OPPERA study site were also important covariates, as 

shown in Bair et al. [2]. Several other possible predictors of being diagnosed with TMD 

were identified, but including these additional predictors in the model did not improve the 

predictive accuracy of the model and hence they were not included. (In general failure to 

include a relevant predictor variable when performing multiple imputation will produce 

greater error than including an irrelevant variable as evidenced by our simulations, so 

generally it is better to err on the side of including too many predictors rather than too few. 

However, in this case, our testing indicated that including additional variables did not 

improve the predictive accuracy of the model and in fact might actually decrease the 

accuracy. Hence, in this case we favored the more parsimonious model.)

Thus, we estimated the probability of being diagnosed with TMD based on the count of non-

specific orofacial symptoms, time since enrollment, and OPPERA study site. This model 

was used to perform multiple imputation for those with no clinical examination. These 

imputed data sets were used to fit a series of Cox proportional hazards models to estimate 

the hazard ratio (and associated confidence interval and p-value) for each predictor using the 

methods described in Section 3.3. Examples of predictors include perceived stress, history of 

comorbid chronic pain conditions, and smoking status.

In addition, Bair et al. [2] examined univariate relationships between examination 

attendance and numerous possible predictor variables. Differences between examined and 
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non-examined participants were small and most were not statistically significant. However, 

a few of the differences were statistically significant, indicating that the data were not 

MCAR, since MCAR requires that the probability of a missing observation does not depend 

on the data.

Table 2 shows the results of applying our method to a subset of the putative risk factors of 

TMD measured in OPPERA. Due to the large number of putative risk factors measured in 

OPPERA, we only report the results for a selected subset of the variables. All continuous 

variables were normalized to have mean 0 and standard deviation 1 prior to fitting the Cox 

models. (Thus, the hazard ratios for the continuous variables represent the hazard ratios 

corresponding to a one-standard deviation increase in the predictor variable.) In Table 2, all 

the quantitative sensory testing and psychosocial variables were continuous, while all of the 

clinical variables were dichotomous (and hence were not normalized). The small number of 

missing values in these predictor variables were (singly) imputed using the EM algorithm; 

see Greenspan et al. [8] or Fillingim et al. [7] for details. For a more detailed description of 

the OPPERA domains, see Section S1 in the Supporting Information, Maixner et al. [15], 

and Slade et al. [16].

The rate of missing information varied slightly for each putative risk factor. The average rate 

of missing information was approximately 0.097. Compared to the unimputed results, which 

treated missing failure indicators as censored observations, imputation slightly reduced the 

hazard ratios for most of the psychosocial variables that were measured in OPPERA. For 

instance, Table 2 shows the (standardized) hazard ratios for the Pennebaker Inventory of 

Limbic Languidness (PILL) score, the neuroticism subscale of the Eysenck Personality 

Questionnaire (EPQ), the Spielberger Trait Anxiety Inventory score, the Perceived Stress 

Scale, and the somatization subscale of the Symptom Checklist-90, Revised (SCL-90R). In 

each case, the hazard ratios were reduced after imputation.

A similar pattern was observed after applying our imputation method to the measures of 

experimental pain sensitivity. The mechanical pain aftersensation ratings were strongly 

associated with first-onset TMD before imputation, but they were only weakly associated 

with first-onset TMD after imputation. The pressure pain algometer ratings were also more 

weakly associated with TMD after imputation (and one of three ratings in Table 2 was no 

longer significantly associated with first-onset TMD at the p < 0.05 level).

Interestingly, the hazard ratios for the presence of one or more palpation tender points at the 

temporalis and masseter muscles were also attenuated after imputation. These tender points 

were evaluated as part of the clinical examination using a different protocol than the 

quantitative sensory testing algometer pain ratings. However, both pain measures (algometer 

and palpation) were measured at the same facial locations. While the palpation ratings were 

more strongly associated with first-onset TMD than the algometer ratings both before and 

after imputation, it is interesting that different pain sensitivity measures using different 

protocols at the same anatomical location were both attenuated by imputation.

The effects of other clinical variables were also attenuated after imputation. For example, 

the hazard ratios associated with being unable to open one’s mouth wide in the past month 
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and having two or more comorbid pain conditions were both noticeably attenuated after 

imputation. However, other clinical variables were more strongly associated with first-onset 

TMD after imputation. For example, having a history of respiratory illness was only weakly 

associated with first-onset TMD before imputation (HR=1.38, p=0.04), but the association 

was much stronger after imputation (HR=1.43, p=0.004). Also, being a current smoker was 

not significantly associated with first-onset TMD before imputation (HR=1.26, p=0.24) but 

was associated after imputation (HR=1.49, p=0.02).

5.2. Incidence Rates

In Table 3, the incidence rate of first-onset TMD was estimated using two different 

approaches. First, all missing failure indicators were treated as censored. Second, the 

multiple imputation method in this paper was used to estimate the incidence rate. The 

estimated TMD incidence rate using multiple imputation was 70% greater than the 

unimputed estimate. The estimated incidence rate increased by 70% for females and 87% for 

males. Estimated incidence rates for whites and Hispanics were 118% and 202% higher, 

respectively, with imputation. Thus, the incidence rate is likely to be underestimated without 

imputation.

6. Discussion

We have developed a computationally efficient method to adjust for missing failure 

indicators in time-to-event data using logistic regression and multiple imputation. Logistic 

regression is used to estimate the failure probability for participants with missing failure 

indicators. The missing values are imputed, and the standard errors are estimated using our 

multiple imputation method. This framework is important in studies where failure status 

may be measured in stages, which may lead to missing failure status indicators. This is a 

common occurrence in studies of diseases that are difficult or expensive to diagnose, such as 

TMD.

The present method is similar to the method of Magder and Hughes [17], who use an 

iterative procedure for parameter estimation based on the EM algorithm. Our assumption of 

MAR data renders their iterative method unnecessary. Other methods [18, 19, 20] depend on 

the MCAR assumption, which does not hold for the OPPERA study. Chen et al. [21] 

estimate Cox regression parameters using the EM algorithm and establish their consistency 

under basic regularity conditions, including missing at random (MAR) failure indicators. 

However, their approach depends on the assumptions of piecewise constant proportional 

hazard functions for the censoring time as well as for the failure time.

In each simulation scenario, our multiple imputation method produced the narrowest valid 

confidence intervals and no significant bias. In particular, the method of Cook and Kosorok 

[1] produced slightly wider confidence intervals in all but one of the simulations we 

considered. The differences were small, so the performance of the two methods appear to be 

comparable for most practical purposes. However, we believe that our method has several 

possible advantages over the method of Cook and Kosorok [1]. First, bootstrapping is much 

more intensive computationally than our multiple imputation approach. Calculating 

bootstrap confidence intervals generally requires at least 1000 bootstrap replicates [22], 
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whereas as few as 10 imputed data sets may be sufficient for multiple imputation [23]. 

Although the difference in the computing time of the two methods is small for a single fitted 

model, many such models will be required in the course of the OPPERA study. OPPERA 

has already collected data on approximately three thousand genetic markers and has plans to 

collect data on approximately a million genetic markers in a genome-wide association study. 

Thus, at least three thousand (and potentially as many as a million) Cox models will need to 

be fit, and our proposed method may allow for a significant decrease in computing time. 

Moreover, our method can also be easily implemented in popular statistical software 

packages (such as SAS) without additional programming.

Additionally, our methodology may easily be extended to other models, such as Poisson 

regression. We conducted simulations (Table S9 in the Supporting Information) that showed 

that our proposed method can be used to estimate incidence rates using Poisson regression, 

which is one of the research aims of the OPPERA study. In particular, estimates of the 

failure rates were biased when missing failure indicators were treated as censored or when 

the complete case method was used, but they were unbiased when we employed the 

methodology in this paper.

Our method may yield increased bias and decreased coverage if the logistic regression 

model for predicting case status is inaccurate, as observed in the simulations in Section S2.3 

in the Supporting Information. However, this would also be true for competing methods, 

including the method of Cook and Kosorok [1].

Our proposed also requires that the missing data be MAR. Although it is impossible to test 

this assumption directly, Bair et al. [2] showed that there were no significant differences 

between those who did and not attend their clinical examination with respect to a wide range 

of demographic variables and putative risk factors for TMD. Thus, the MAR assumption is 

reasonable for OPPERA. Furthermore, the results of the simulations described in Section 

S2.4 in the Supporting Information, show that our proposed method can produce valid 

results in some situations even if the MAR assumption is violated.

Also, our proposed method is only useful for imputing missing event failure indicators 

among participants who have positive screeners. If a participant develops first-onset TMD 

but still has a negative screener, such a participant will be treated as censored, and our 

method is unable to correct for this misclassification. The OPPERA screener was designed 

to have high sensitivity and modest specificity, so the number of false negative screens is 

expected to be low. (Indeed, OPPERA performed clinical examinations on a subset of the 

participants with negative screeners. Although analysis of this data is ongoing, preliminary 

results suggests that the false negative rate is less than 5%.) Thus, we expect that the small 

number of false negative screens will not meaningfully affect the results of our analysis. 

Also, note that under our simulation scenarios, we assumed that some failures were not 

observed due to a negative screener. Since our proposed method gave satisfactory results in 

these simulation scenarios, it appears that failing to observe some events due to negative 

screeners should not significantly bias the results.
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In the OPPERA study, the hazard ratios associated with some variables were noticeably 

different after imputation. Although other results remained qualitatively unchanged, we note 

that even small changes in hazard ratios are important. In addition, estimated incidence rates 

were significantly increased after imputation. Since the results of OPPERA may become 

normative in the orofacial pain literature, precise calculation of the incidence rate of TMD 

and the hazard ratios associated with putative risk factors is important. Thus, imputation is 

recommended.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 3

Estimated TMD Incidence Rates With and Without Imputation

No MI MI Percent Change

Overall 2.23 3.78 70%

Males 1.87 3.49 87%

Females 2.46 4.19 70%

White 1.70 3.70 118%

Black 4.20 5.70 36%

Hispanic 1.17 3.53 202%

Other 1.10 1.86 69%

Incidence rates are given in cases per 100 person-years.
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