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Abstract

Planned interventions and/or natural conditions often effect change on an ordinal categorical 

outcome (e.g., symptom severity). In such scenarios it is sometimes desirable to assign a priori 

scores to observed changes in status, typically giving higher weight to changes of greater 

magnitude. We define change indices for such data based upon a multinomial model for each row 

of a c×c table, where the rows represent the baseline status categories. We distinguish an index 

designed to assess conditional changes within each baseline category from two others designed to 

capture overall change. One of these overall indices measures expected change across a target 

population. The other is scaled to capture the proportion of total possible change in the direction 

indicated by the data, so that it ranges from −1 (when all subjects finish in the least favorable 

category) to +1 (when all finish in the most favorable category). The conditional assessment of 

change can be informative regardless of how subjects are sampled into the baseline categories. In 

contrast, the overall indices become relevant when subjects are randomly sampled at baseline from 

the target population of interest, or when the investigator is able to make certain assumptions 

about the baseline status distribution in that population. We use a Dirichlet-multinomial model to 

obtain Bayesian credible intervals for the conditional change index that exhibit favorable small-

sample frequentist properties. Simulation studies illustrate the methods, and we apply them to 

examples involving changes in ordinal responses for studies of sleep deprivation and activities of 

daily living.
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1. INTRODUCTION

Paired data commonly arise from intervention studies with an ordinal outcome, e.g., based 

on assessing subjects before and after an intervention [1,2]. This typically results in a square 

table, with cell counts representing the numbers of subjects beginning and ending in each of 

the possible pairs of before and after categories. Such tables can arise when each category is 

inherently ordinal (e.g., ‘mild’, ‘moderate’, ‘severe’), or when ordinal categories are defined 

by categorizing an underlying continuous response. One potential way of analyzing such 

ordinal data is to apply a weighted kappa coefficient [3,4], to assess the extent of agreement 

between ‘before’ and ‘after’ categories. Such agreement measures are not directly 

appropriate when the goal is to meaningfully evaluate the extent of change. Therefore, it can 

be valuable and intuitive to consider measures specifically designed to capture the 

magnitude of change in the response, while taking into account the ordinal structure of the 

data; for a recent example, see [5].

A source of debate regarding the characterization of ordinal data is the issue of whether and 

when numeric scores should be applied to categories. For example, one might assign scores 

such as (1, 2, 3) or (1, 2, 4) to ‘mild’, ‘moderate’, and ‘severe’, respectively. While concerns 

about this practice are long-standing given the difficulty in quantifying inter-categorical 

distances for ordinal data (e.g., [6]), the possibility of using numeric scores continues to be 

acknowledged in the modern literature. For example, Agresti [2] notes that doing so makes 

simple and interpretable quantitative measures available to the investigator, while cautioning 

that sensitivity analysis may be advisable to assess the consistency of conclusions across a 

reasonable range of scores. Along related lines, Podgor et al. [7] begin with several possible 

sets of scores for R×C tables with ordered row and column categories, and combine test 

statistics based on the different sets into a single efficient test of association. Another 

approach in the context of hypothesis testing is to let the data themselves determine scores 

(e.g., [8]), with common examples including midranks and ridits [2,9]. Some authors (e.g., 

[10]) caution against such data-driven scores, suggesting a preference for a priori choices 

based on researcher experience and subject-matter considerations.

In studies of psychology and physical function, the use of Likert scaling approaches [11] is a 

common approach. In such settings, researchers are generally reluctant to assign equal 

numeric score changes to step-by-step increases in functionality [12,13], especially when 

instruments for assessment involve a multitude of items that may have very different 

impacts upon daily life despite shared category descriptions (e.g., ‘mildly’ vs. ‘moderately’ 

impaired). Such concerns have motivated consideration of complex rank-based 

nonparametric measures of change for ordered categorical data [14], in order to avoid the 

assignment of numeric scores to categories. When hypothesis testing to compare treatments 

is the focus, other authors [15] propose nonparametric approaches to boost power by 

attributing greater weight to changes across multiple categories.

The approach taken in this article is to seek the simplicity and interpretability offered by 

numeric scores, assuming they are applied to changes rather than to the row and column 

categories themselves. We assume that the investigator has complete freedom to choose the 

score assigned to each type of change (e.g., from category j to category k), although these 
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change scores may be varied in the interest of sensitivity analysis if desired. We stipulate 

that any change scores to be utilized should be determined a priori, i.e., prior to examining 

the data [10]. Although developed and motivated independently, one of our suggested 

indices of overall change has close connections to a recent proposal by Ferreira et al. [5]. 

We consider a number of issues and details that expand upon and mitigate concerns that 

were subsequently expressed [13,16] about the index developed in [5], while attempting to 

formalize and broaden the potential uses of such measures of change.

In what follows, we first define a conditional index representing the mean change score for 

subjects who begin in a particular ordinal baseline category. We discuss estimation of this 

index and its variance assuming a multinomial model for the cell counts in that baseline 

category, and we demonstrate the utility of a Bayesian approach to obtain credible intervals 

for the index that possess favorable frequentist properties in small samples. We then 

consider overall indices of change for the target population of interest. In particular, we 

define an index that captures the overall mean change score, and then we propose a second 

index scaled so as to represent the proportion of total possible change in the direction 

suggested by the data. We discuss how the process of sampling subjects into the baseline 

categories can impact the validity of estimators of these overall indices, and may suggest the 

need for sensitivity analysis or the incorporation of external data to permit estimation of 

baseline category prevalences. All the proposed indices are estimated using previously 

published real data examples, and we study the properties of these estimators and their 

proposed standard errors and confidence intervals via simulations.

2. METHODS

2.1. A change index conditional on the baseline category

Consider a c×c table, where the rows and columns (both numbered 1 to c) represent “before” 

and “after” ordinal categories, e.g., at baseline and after an intervention applied in the same 

manner to each subject. Table 1 indicates this setup and establishes notation for 

probabilities associated with baseline category membership, cells, and transitions from 

before to after categories.

Table 2 establishes corresponding notation for cell counts, row marginal totals, and 

investigator-specified change scores corresponding to each transition from category j to 

category k.

The probabilities in Table 1 are defined as follows: ψj = Pr(“Before” category = j), πk|j = 

Pr(“After” category=k | “Before” category=j), and πjk = Pr(“Before” category=j and “After” 

category=k) (j,k=1,..., c). These probabilities are subject to anticipated sum constraints, i.e., 

 for all j, and . However, we assume that some of 

these probabilities may not be estimable depending on the sampling strategy employed. In 

particular, we expect in practice that sampling of subjects into the baseline categories will 

often be non-random (e.g., there may be oversampling in more or less severe categories). In 

such cases, one may require assumptions or external data to estimate the ψj's and πjk's, 

which has implications with regard to the two overall change indices that we propose (see 
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Section 2.3). What we do assume throughout is that the subjects whose data appear in row j 

(j=1,..., c) of Table 2 are representative of those in that baseline category, thus ensuring 

estimability of the conditional πk|j probabilities in Table 1.

We assume as a format convention for Table 2 that a move from before category j to after 

category k is a positive change (“improvement”) when k > j and a negative change 

(“deterioration”) when k < j. Also, assume that the change scores sjk (j,k=1,..., c) are defined 

by the investigator a priori (i.e., before examining the data). These scores reflect the value 

attributed to a particular change, and will most likely be > 0 for positive changes and < 0 for 

negative changes, with increasing magnitude for larger changes. Commonly, sjj may be 0 

(j=1,..., c) when there is no change; however, the investigator is free to assign each score to 

reflect clinical or subject matter considerations. Thus, for example, a subject who begins and 

finishes in a “mild” category may earn a 0 or positive score, while one who begins and 

finishes in a “severe” category could be given a 0 or negative score. Accounting for the 

ordinal nature of the categories, we assume that sj1 ≤ sj2 ≤... ≤ sjc.

We begin by defining a change index that is conditional on the baseline category (j):

(1)

(j,k =1,..., c). Note that θj ranges from the least favorable score (sj1) to the most favorable 

score (sjc) in row j for the extreme cases where π1|j =1 and πc|j=1, respectively. Defining the 

random variable Sj to represent the change score for a subject who begins in category j, we 

may also represent this conditional change index as follows:

(2)

That is, θj is the expected change score for those in baseline category j.

Regardless of whether or not subjects are selected randomly from the target population or 

whether or not there is over-sampling or under-sampling of those in certain baseline 

categories, θj is easily estimable given our assumption of random sampling within each row 

of Table 2. Thus, we may estimate θj unbiasedly based on (1) as

(3)

where , or equivalently based on (2) as

(4)

Expression (4) is the sample mean change score for subjects in row j. Note that expressions 

(3) and (4) suggest two alternative approaches for estimating the standard error of  (see 

Section 2.4).
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2.2. Overall indices of change

We propose two overall change indices, the first of which can be written as follows:

(5)

Note that θA is a weighted average of the row-specific conditional indices of change, with 

weights equal to the corresponding baseline category prevalances ψj. An equivalent 

representation of θA is as the overall expected change score for the target population, 

namely:

(6)

(j,k =1,..., c), where S represents the random change score for an arbitrary subject.

With the ψj's assumed known, random sampling of subjects within each baseline category 

yields an unbiased estimator of θA upon inserting  from (3) or (4) in place of each 

unknown θj in (5). In practice, one may estimate θA unbiasedly based on an overall random 

sample from the target population by incorporating the 's and also replacing ψj in (5) by 

, where  is the total sample size. Equivalently, one could replace πjk in 

(6) by  (j,k=1,..., c).

The second proposed index of overall change is a scaled version of θA, as follows:

(7)

The scaling factor ω ensures the desirable property that θB takes the value + 1 (− 1) if all 

subjects in the population finish in the most (least) favorable “after” category. It also lends 

an intuitive representation to θB, making it interpretable as the proportion of total possible 

directional change achieved by the population. The implication of “directional” here is that, 

overall, the population tends toward positive change when θA > 0, and toward negative 

change when θA < 0.

If the ψj's are assumed known, then the scaling factor ω is also known and we have the 

unbiased estimator . More realistically, if  based on a random 

sample into the baseline categories, we have
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(8)

where now  is a stochastic scaling factor obtained by replacing ψj by  and θA by  in 

equation (7) and in its set of accompanying conditions. The estimator in equation (8) is 

similar to an index that was proposed previously [5], except the latter measured change only 

in a single direction (either positive or negative) rather than accounting for changes in both 

directions simultaneously. This feature of  helps to alleviate a primary concern that was 

raised with regard to the existing index of change [5,13].

2.3. Estimating overall change indices with non-random sampling into baseline categories

While random sampling into the baseline categories is an ideal design strategy for estimating 

the overall population parameters θA and θB, it is common for the data in Table 2 to arise in 

other ways. For example, many studies preferentially recruit subjects in “mild” or “severe” 

categories by design or for convenience. In such cases, estimators of the indices in (5) and 

(7) could be severely biased in reference to a target population if we replace the baseline 

prevalences ψj by .

There are at least three options to consider in this case. First, assume the investigator has 

knowledge of the sampling rates applied to recruit subjects into the c baseline groups, at 

least relative to an index category (e.g., category 1). Then, he or she could apply adjustments 

to the 's to be used in estimating θA and θB. Specifically, taking the first baseline group as 

the index category, assume we know the values ρ11, ρ12, ρ13,..., ρ1c, where ρ1j = ps1/psj 

(j=1,..., c) and psj is the probability that a subject is sampled from the target population given 

that this subject is in baseline category j (j=1,.., c). Then the observed row totals (nj) in 

Table 2 can be used to estimate the true underlying baseline category prevalences (ψj), as 

follows:

(9)

(j=1,..., c), where . Note that this follows because, on average, we expect 

nj/psj = ρ1jnj/ps1 subjects to be selected into baseline category j under random sampling. One 

would estimate the row-specific change indices (θj) and corresponding standard errors and 

confidence intervals (CIs) in the usual way based on the original data in Table 2 (see next 

section). However, the adjusted 's in (9) would be used to compute estimates of the overall 

change indices (θA and θB) and in accompanying standard error calculations. We provide an 

example to illustrate this approach in Section 3.2.

Secondly, lacking knowledge of relative sampling rates, one could apply sensitivity analyses 

by varying the ψj's in (5) and (7) over plausible ranges to produce a sense of corresponding 

variation in the estimated overall indices. Again, we refer to Section 3.2 for a brief example.
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Finally, one could incorporate estimated 's based on an external sample from a comparable 

target population. Ideally, this sample would be random, with baseline category-specific cell 

counts (nj,ex) available to permit estimating the variance-covariance matrix of the external 

's. Standard errors to accompany the estimated overall indices in this scenario, and under 

the ideal strategy of random sampling, are considered in the next section and in Appendix 1.

2.4. Standard errors and confidence intervals for proposed change indices

For the variance of the estimated conditional index , we first consider expression (3) under 

a conditional multinomial model for the cell counts in row j of Table 2. That is, letting Njk 

represent the random cell count occurring in column k, we assume

where  is a (1×c) row vector estimated as . It 

follows that  and  is the (c×c) matrix with kth diagonal element 

 and off-diagonal element , for (k, k′) = 1,...,c . We 

then have

where  is the (1×c) vector containing the change scores in row j of Table 

2. This yields an initial standard error estimator, i.e.,

(10)

with the 's inserted into Σj.

An alternative motivated by expression (4) is to simply calculate the usual standard error 

associated with the mean change score S̄
j in row j, i.e.,

(11)

where  is the sample variance of the nj change scores in row j. While we expect (10) and 

(11) to be equivalent for large nj, they will differ in small samples. We compare these two 

standard error estimators empirically in Section 4.

A standard Wald-type confidence interval (CI) for θj is available using either standard error 

estimate, but we do not expect such a CI to perform well when the sample size in row j is 

small. This issue has been studied extensively in the case of estimating a binomial 

proportion [17,18], and one attractive option in that setting is a Bayesian credible interval 
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based on a non-informative Jeffreys (beta) prior. The corresponding approach here is to 

assume a Dirichlet(½, ½,..., ½) prior for the c cell probabilities in row j, yielding the 

following posterior distribution for those probabilities:

(12)

It is simple to obtain a large sample from this posterior by generating sequences of gamma 

random variables. For each such draw from the posterior distribution of the πk|j's, we may 

then re-calculate . The 2.5th and 97.5th sample quantiles of this large sample 

of θj's provides the desired credible interval, which we might expect to exhibit favorable 

frequentist properties (e.g., [18]). Such Dirichlet-multinomial extensions of the beta-

binomial approach have previously been shown effective for interval estimation when 

targeting the multinomial proportions themselves [19]. In Section 4, we compare this 

approach with standard Wald-type CIs for the θj's calculated using the standard error 

estimator in eqn. (11).

If subjects are randomly selected into the c baseline categories so that the c2 cell counts in 

Table 2 may be viewed as a single multinomial sample, then one can utilize a simple 

standard error analogous to that in expression (11) in conjunction with  estimated via (6). 

A Wald-type CI for θA is then available, as well as a CI based on the Dirichlet-multinomial 

approach described above.

However, for a number of reasons we prefer to recommend standard error estimation based 

on  estimated via expression (5), treating data in the rows of Table 2 as a set of c 

independent multinomial samples with known or estimated baseline prevalences (ψj). First, 

if sampling into the baseline categories is non-random and one is forced to rely on 

sensitivity analyses in which the ψj's are varied over reasonable ranges, expressing 

variability in this way based on each assumed set of “known” baseline prevalences is 

natural. Secondly, if such non-random sampling is employed but with external estimates of 

the ψj's available, such an approach permits adjustments to properly account for the 

uncertainty in the external estimates. Finally, if sampling is completely random, then we 

propose an augmented approach that accounts for uncertainty in the ψj's and yields a 

standard error estimate for  that will be very close in value to the analogue of expression 

(11) for the full table. This augmented approach involves imputing the row-specific sample 

sizes (nj, j=1,..., c) and using a version of the well-known multiple imputation variance 

estimator [20] to accommodate the corresponding uncertainty in the ψj's. Details of this 

approach and slight modifications to estimate the standard error of  are provided in 

Appendix 1.

3. REAL-DATA EXAMPLES

3.1 Activities of daily living

We first consider data from a Swedish study of aging, which investigated the development 

of dependence in activities of daily living (ADL) among subjects aged 70 and up [21]. The 

data considered here consist of cell counts indicating change in ADL status between the ages 
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of 73 (‘before’) and 76 (‘after’). The levels of the ordinal ADL variable as assessed by an 

occupational therapist were fully independent (FI), dependent in instrumental ADL (DI), and 

dependent in both personal and instrumental ADL(DPI), where the activities included in the 

instrumental and personal categories are discussed in prior references [14,22]. Svensson [14] 

proposed rank-invariant nonparametric measures of change and used them to analyze these 

data.

Table 3 provides the cell counts in the format of Table 2, along with equally-spaced change 

scores chosen to illustrate the estimated indices considered in Section 2. This choice of 

scores makes the row specific θj's (j=1,2,3) interpretable as the expected number of ADL 

categories moved for subjects in each baseline status group, while θA captures the overall 

expected number of categories moved (assuming subjects were randomly sampled into the 

baseline groups). The rightmost column of the table provides estimated θj's and standard 

errors (SE) based on eqn. (11), along with approximate 95% CIs based on the Dirichlet-

multinomial approach from Section 2.4 (see eqn. 12). These choices of SE and CI 

approaches are based on empirical studies, some of which are summarized in Section 4. The 

table also provides theoretical ranges for each row-specific measure of change (θj), which 

are useful when interpreting the magnitude of each corresponding estimate.

As seen in Table 3, the data reflect a very slight tendency toward improvement in ADL 

status among those who began in the most dependent category (DPI; ). The 

corresponding tendency toward deterioration is noticeably greater in magnitude for those 

beginning in the independent category (FI; ), while those who began in the 

intermediate category experienced a small and non-significant tendency toward decline (DI; 

).

If we assume random sampling of the participants into the baseline categories, the data in 

Table 3 yield the following estimates (SEs) and [CIs] for the two overall indices of change 

proposed in Section 2.2: ; 

. These estimates indicate a significant overall 

tendency toward greater dependence as subjects aged, which is in qualitative agreement with 

a previous analysis of the same data using more complex nonparametric measures of change 

[14]. Our results suggest that subjects declined by approximately 0.3 ADL categories on 

average, and that the overall observed ADL movement represented approximately 16% of 

the total possible decline in the population. The Wald-type CIs reported in conjunction with 

 and  were computed using the standard errors reported with those estimates in Table 3, 

which were obtained via the approach described in Appendix 1.

3.2 Illustration: Sensitivity analysis and the incorporation of known baseline sampling 
rates

Using the data in Table 3, we first illustrate a simple sensitivity analysis that could be used 

in the event that sampling into baseline categories was non-random and there is no 

knowledge of the relative sampling rates or actual data to inform one about the true baseline 

prevalences. The goal of such an analysis is to see how the estimated overall θA and θB 
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indices and their standard errors vary over a range of assumed values for the vector ψ = (ψ1, 

ψ2, ψ3). To compute the estimated indices, we insert each assumed set of ψ's into eqns. (5) 

and (7), while replacing the true row-specific θj's by their observed-data estimates in Table 

3. Standard errors are then obtained by treating the rows as separate independent 

multinomial samples and taking square roots of the following expressions:

(13)

with the assumed ψ's treated as known and where we estimate  by applying eqn. 

(11) to the jth row of the observed table. Table 4 provides a brief sensitivity analysis of this 

type.

Table 4 illustrates how the estimated overall indices vary as we move further away from the 

assumption that the observed row-specific prevalences in Table 3, i.e., (15, 45, 326)/386, 

were reflective of the true baseline prevalences. The last row indicates that if non-random 

sampling distorts the apparent prevalences enough, the directionality of the estimated 

indices can change. Note also that the standard errors in the top row are nearly identical to 

those we obtained based on Table 3 assuming a random sample, using the approach in 

Appendix 1 to account for uncertainty in the estimated ψ's. Nevertheless, we recommend the 

latter approach whenever the observed data permit the analyst to incorporate this 

uncertainty.

For a second illustration, suppose that sampling into the baseline categories in conjunction 

with Table 3 was non-random, but the investigator was in control of the relative sampling 

rates and knows that subjects in ADL categories DI and FI were selected respectively at 5 

and 10 times the rate of subjects in the DPI category (row 1). That is, assume relative 

sampling rates (see Section 2.3) as follows: ρ11 = 1, ρ12 = 1/5, and ρ13 = 1/10. We adjust for 

such non-random sampling by using eqn. (9) to calculate adjusted estimates of the baseline 

prevalences, yielding the following: , , and . We can now 

obtain valid estimates of θA and θB that are adjusted for non-random sampling by using 

these new prevalence estimates along with the row-specific change indices  obtained 

directly from the data in Table 3 [e.g., for , see eqn. (8)]. In so doing, we obtain the 

following point estimates: , . These differ rather markedly from the 

values (−0.293 and −162, respectively) that we obtained when analyzing the data in Table 3 

as if they had arisen via a random sample from the target population at baseline.

For standard errors to accompany these new overall change index estimates, one option 

would be to treat the adjusted 's as known and to utilize them in eqn. (13) as we proposed 

for sensitivity analysis. However, while the effect may often be slight, such an approach 

tends to underestimate the true variability due to estimating the true ψj's. We provide details 

in Appendix 2 for estimating the variance-covariance matrix associated with the set of 's 

obtained by eqn. (9). This estimated variance-covariance matrix can then be used directly in 

Lyles et al. Page 10

Stat Med. Author manuscript; available in PMC 2016 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the standard error estimation approach outlined in Appendix 1. Utilizing this strategy, we 

obtain the following estimates (standard errors) [Wald-type 95% CIs] for the overall indices 

upon adjusting for non-random sampling: , 

.

3.3 Time to sleep among insomnia patients

Our second example is based on data from a randomized clinical trial in which investigators 

compared a placebo to an active drug among patients with insomnia [23]. Outcome data 

consisted of self-reported time (in minutes) to fall asleep at a baseline and follow-up 

occasion, where subjects were selected from the four baseline categories < 20, 20-30, 30-60, 

or > 60 minutes. Here we take an approach suggested by prior authors [1], attributing 

midpoints (10, 25, 45, 75) to each category but the last. For change scores, we take the 

differences between these values from baseline to follow-up. Table 5 shows the 

corresponding scores and cell counts for both groups in the format of Table 2, where k > j 

represents improvement (less time to fall asleep), and k < j indicates deterioration.

Using difference scores makes the proposed approach for estimation and inference about the 

row-specific θj's analogous to a paired t test, except for the recommended Dirichlet-

multinomial model-based CIs. As seen in Table 5, the θj point estimates suggest better 

average time to sleep changes in the Active group (vs. Placebo) for subjects who began in 

the 1st, 2nd, and 4th baseline categories, while Placebo group subjects fared somewhat better 

than Active subjects in the 20-30 minute baseline category. Wald tests suggest that Active 

subjects in the first two baseline categories of Table 5 experienced significantly better 

improvement than Placebo subjects in those categories, while there was no significant 

difference between groups in the final two baseline categories. To avoid confusion, note that 

positive estimated θj values in Table 5 indicate improvement in the sense of a decrease in 

time to sleep (e.g., the estimate of 38.83 in the first row reflects that many minutes less on 

average to fall asleep at the follow-up occasion).

Assuming random sampling of subjects into the baseline categories, the data in Table 5 yield 

estimates (SEs) and [CIs] for the overall indices of change for the Active group, as follows: 

 minutes (2.61) [16.21, 28.16];  (0.044) [0.469, 0.641]. Corresponding 

results for the Placebo group are:  (2.19) [8.97, 16.95];  (0.048) [0.232, 

0.410]. Thus, both groups experienced significantly improved times, but the Active group 

saw a markedly greater change that represented a higher proportion of their total possible 

improvement. Two-sided Wald tests for equality of θA (p=0.007) and θB (p<0.001) across 

the two groups support these conclusions.

4. SIMULATIONS

We conducted several simulation studies, primarily to evaluate the standard error estimators 

and CI procedures discussed in Section 2.4. In each case, we generated row-specific sample 

sizes (nj) randomly from a multinomial distribution, and then generated multinomial cell 

counts within each row. Table 6 shows the average cell counts targeted in our first 

simulation study, representing a case with a moderate overall approximate sample size of 
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N=100. Table 7 provides the results based on assuming equally-spaced a priori change 

scores (sjk = k-j), for a total of 2500 replications.

As expected, Table 7 reflects the unbiasedness of the estimators  (j=1,..., c). Note the 

superior overall coverage performance achieved by Dirichlet-multinomial-based CIs 

(Section 2.4) as compared to Wald-type CIs for the corresponding row-specific parameters, 

particularly for row 3 (which had the smallest average sample size). The Wald-type CIs 

were calculated using  in eqn.(11) as opposed to  in eqn.(10), as we see 

from Table 7 that the latter multinomial-based SE estimates tend to be slightly optimistic in 

finite samples while the former match closely on average to the empirical SDs of the θj 

estimates. Finally, the table also reflects a virtual match between the empirical SDs and 

mean estimated SEs corresponding to the estimated overall change index parameters θA and 

θB. These SEs were calculated using the method described in Appendix 1, which is 

appropriate when subjects are randomly sampled into baseline categories (as simulated 

here), or when they are not but valid external data are available to provide information about 

the row-specific proportions (ψj). We observe excellent coverage for the corresponding 

Wald-type CIs employing the proposed MI-type standard errors.

Table 8 summarizes simulations under the same conditions, except where the average count 

in each cell in Table 6 is divided by 2 (thus corresponding to a small overall average sample 

size of N=50). Note that the conclusions based on this table are very similar to those based 

on Table 7, except that Table 8 highlights even more strongly the benefit of Dirichlet-based 

CIs for the θj's when working with small row-specific samples. Nevertheless, Wald-type CIs 

for the overall indices θA and θB continue to perform well when based on SEs obtained as 

described in Appendix 1.

We obtained similar qualitative conclusions based on further simulation scenarios (not 

summarized here), including those closely mimicking the conditions reflected in the 

observed example data in Tables 3 and 5.

5. DISCUSSION

We have developed conditional and overall indices of change for paired ordinal data that can 

be represented by a c×c matrix as in Table 2. The conditional index applies to a given row of 

the table, and captures change among subjects in a particular “before” (or baseline) category. 

In contrast, the two proposed overall change indices respectively capture expected 

movement and the proportion of total possible change achieved in the target population.

We caution that the proposed indices of change depend on assigned a priori change scores. 

The indices should thus be used only if the investigator is comfortable with his or her 

assigned scores for each possible transition (from category j to k), and/or as part of 

sensitivity analyses in which these scores are varied across reasonable ranges. In such cases, 

the general approach taken here offers clear benefits in terms of accessibility, 

implementation and interpretability. While the need to specify change scores can be viewed 

as a drawback, it is noteworthy that the approach allows a flexible application of clinical or 

subject-matter judgment to gauge the relative magnitudes of each possible transition, 
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without necessitating the assignment of scores to each ordinal category. In the absence of 

strong clinical motivation, the use of equally-spaced change scores is often natural [10], 

allowing one to interpret the proposed change indices in terms of expected numbers of 

categories moved. While not detailed here, it is also worth noting that these methods extend 

with little difficulty to scenarios of r×c tables similar to Table 2. For example, ‘after’ 

categories may include ‘before’ categories (e.g., ‘mild’, ‘moderate’, ‘severe’) as a subset, in 

addition to new ones (e.g., ‘healed’ or ‘severe with adverse reaction’).

The two proposed overall indices of change (θA and θB) invoke different interpretations that 

may make one or the other more appealing in a given situation. In particular, θA measures 

average change across subjects in a target population; hence, it can be used to assess the 

expected benefit to be experienced by a randomly selected individual subsequent to an 

intervention or shift in conditions. The scaled index θB measures the proportion of total 

possible change achieved by a population. Thus, θB may be especially useful, for instance, 

when there is a need to determine which of two or more target populations will benefit most 

from making an intervention widely available, or which of two or more programs should 

yield maximum benefit for a given population. θB recalls a similar index found in recent 

literature [5], but offers greater flexibility for the choice of change scores along with the 

advantage of capturing movement in either direction.

To supplement the interpretation and estimation of the conditional and overall change 

indices, we have provided a thorough treatment of standard errors and confidence interval 

(CI) procedures. This treatment brings to light a number of findings, such as the small-

sample benefits of the Dirichlet-multinomial approach to CI estimation when applied to 

conditional change within baseline categories and the need to accommodate non-random 

sampling into those categories. With regard to the latter, we treat standard errors in a unified 

fashion (Appendices 1 and 2) so as to take full advantage of a broad scope of realistic 

scenarios in which the overall change indices may be estimable. With respect to conditional 

changes, the Bayesian approach presented is tangential to the purpose of estimating the 

conditional change index itself; however, it performs very well as an inferential tool in 

support of that purpose. Specifically, for this and for related problems [17-19], Bayesian 

credible intervals tend to behave better in terms of frequentist coverage properties than do 

standard confidence intervals when sample sizes are small. We hope that such sampling and 

inferential considerations will prove useful not only in the current context, but in other 

settings in which similar statistical challenges arise.
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Appendix 1: Standard Error Estimation Procedure to Accompany θ^A and 

θ^B

Define N = (N1, N2,..., Nc) as a random vector of baseline category-specific sample sizes, of 

which n=(n1, n2,..., nc) is the observed realization (see Table 2). We assume N ~ 

Lyles et al. Page 13

Stat Med. Author manuscript; available in PMC 2016 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



multinomial(N, ψ), where ψ=(ψ1, ψ2,..., ψc), , and N is the total sample size. Note 

that n and N are obtained directly from the observed data in Table 1 in the event that 

subjects were randomly sampled into the baseline categories, in which case the 's used to 

compute  and  are derived accordingly from that table. Otherwise, we assume that nex = 

(n1,ex, n2,ex,..., nc,ex) and N come from an external sample from the same (or a comparable) 

target population for which this was the case, and the 's used to compute  and  also 

come from this sample.

To calculate standard errors, we first generate multiple realizations of the vector n based on 

the approximation that , where Σ is the c×c variance-covariance matrix 

with multinomial structure corresponding to . Specifically, we generate ψm from 

 using a random MVN generator from standard statistical software where the 

singularity of the  matrix ensures that the elements of ψm are constrained to sum to 1. The 

vector nm=(nm1, nm2,..., nmc) is then obtained as Nψm, for a total of M replications, where N 

is the total sample size in Table 1.

Upon each such replication of the set of row-specific sample sizes (nj, j=1,..., c) we 

recalculate the estimated indices  and  as follows:

Each replicated value  is computed using the 's derived from Table 1. The resulting 

set of M replicated estimates of each index is then used to compute adjusted standard errors, 

using a slightly modified version of the variance estimator proposed in [20]. In the case of 

θA, we compute

where
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Note conceptually that U is a conditional variance estimate based on the observed data in 

Table 1 in conjunction with the original  estimates, and the addition of B accounts for 

added variability due to uncertainty about the true ψj's. Specifically, we compute

where again the 's come directly from Table 1 if sampling was random into the baseline 

categories, and otherwise from the external sample. Note that in the preceding expression for 

U, we apply a straightforward variance estimator for each row-specific  as reflected in 

equation (10). The same MI-type variance calculation is applied to derive the standard error 

to accompany the estimate of θB, except in that case we compute

where  is obtained by inserting the 's into the expression for ω that follows equation (7).

The above approach was applied to obtain standard errors for  and  in all example and 

simulation scenarios presented in the text, except for the illustrations accompanying Tables 

3 and 4 (see Section 3.2). When applying the MI-type approach, we performed a total of 10 

imputations per dataset (i.e., M=10).

Finally, if subjects were sampled non-randomly into the baseline category groups but 

according to known relative sampling rates, we recommend this same procedure for 

estimating standard errors except with alterations to the calculations of  and  that are 

used to generate the ψm replications and the conditional variance estimates (U). Specifically, 

 is computed via equation (9) and  is computed as described in Appendix 2.

Appendix 2: Variance-Covariance Matrix for ψ^j's Assuming Known 

Relative Sampling Rates

Assume the vector of row-specific cell counts (nj) in Table 2 arises through non-random 

sampling into the baseline categories as discussed in Sections 2.3 and 3.2, and that this 

vector of cell counts is distributed as multinomial(N, ψo), with N the total sample size and 

the superscript “o” denoting “observed” The vector ψo is estimated as usual based on the 

proportions in each row of Table 2, and the estimated c×c variance-covariance matrix 

associated with the vector of row totals has diagonal elements  and off-

diagonal elements .
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Accounting for the relative sampling rates (ρ1j, j=1,...,c), the estimated vector (ψ) of true 

baseline prevalences contains the individual 's defined in eqn. (9), which are nonlinear 

functions of the observed row totals (nj). To obtain a c×c estimated variance-covariance 

matrix  for , we can apply the multivariate delta method based on the following:

and

Defining the 1×c vectors , we obtain

(j, j′) = 1,...,c. The resulting estimated variance-covariance matrix  may then be used 

directly along with the vector  of adjusted prevalence estimates within the procedure 

described in Appendix 1, to obtain appropriate standard errors to accompany the overall 

change index estimates  and .
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Table 1

Notation for Baseline Prevalence, Transition, and Cell Probabilities*

After Category (k)

Before Category (j) 1 2 ... c Baseline prevalence

1 π 1|1

π 11

π 2|1

π 12

... π c|1

π 1c

ψ 1

2 π 1|2

π 21

π 2|2

π 22

... π c|2

π 2c

ψ 2

⋮ ⋮ ⋮ ... ⋮ ⋮

c π 1|c

π c1

π 2|c

π c2

... π c|c

π cc

ψ c

*
πk|j denotes transition probability to category k from category j; πjk denotes population probability associated with before category j and after 

category k; ψj denotes population probability associated with before category j (j,k =1,..., c)
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Table 2

Notation for Cell Counts and Change Scores*

After Category (k)

Before Category (j) 1 2 ... c Row totals

1 n11 (s11) n12 (s12) ... n1c (s1c) n1

2 n21 (s21) n22 (s22) ... n2c (s2c) n2

⋮ ⋮ ⋮ ... ⋮ ⋮

c nc1 (sc1) nc2 (sc2) ... ncc (scc) nc

*
n's represent cell counts; numbers in parentheses (sjk) represent assigned change scores for transitions from category j to category k
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Table 3

Summary of ADL Example With Cell Frequencies (%) and Equally-Spaced a priori Change Scores (sjk = k-j)

After ADL category (age 76)

Before ADL category (age 73)

DPI DI FI Row totals (nj's) θ̂j (SE) [95% CI] {Range}
*

DPI 13 (0) 2 (1) 0 (2) 15 0.13 (0.09) [0.05, 0.48] {0, 2}

DI 13 (–1) 26 (0) 6 (1) 45 –0.16 (0.09) [–0.33, 0.03] {–1, 1}

FI 23 (–2) 62 (–1) 241 (0) 326 –0.33 (0.03) [–0.40, –0.27] {–2, 0}

*
Standard errors (SE) obtained via eqn. (11); Approx. 95% CIs based on Dirichlet-multinomial approach leading to eqn. (12); Range indicates 

feasible theoretical lower and upper bounds for θj's
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Table 4

Sensitivity Analysis Illustrated Using ADL Example Data

Assumed baseline prevalences θ̂A (SE) θ̂B (SE)

ψ = (15, 45, 326)/386 –0.293 (0.030) –0.162 (0.017)

ψ = (1, 2, 7)/9 –0.277 (0.035) –0.156 (0.020)

ψ = (3, 3, 3)/9 –0.118 (0.045) –0.118 (0.045)

ψ = (7, 2, 1)/9 0.032 (0.074) 0.018 (0.042)
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Table 5

Summary of Sleep Time Example with Difference Scores for Active and Placebo Groups
*

ACTIVE DRUG GROUP (frequency and a priori change score)

After

Before

75 (> 60) 45 (30-60) 25 (20-30) 10 (< 20) Row totals (nj's) θ̂j (SE) [95% CI] {Range}†

75 (>60) 8 (0) 13 (30) 17 (50) 9 (65) 47 38.83 (3.14) [32.54, 44.42] {0, 65}

45 (30-60) 1 (–30) 3 (0) 23 (20) 13 (35) 40 22.13 (2.03) [16.69, 25.04] {–30, 35}

25 (20-30) 2 (–50) 2 (–20) 5 (0) 11 (15) 20 1.25 (4.66) [–9.88, 7.30] {–50, 15}

10 (< 20) 0 (–65) 1 (–35) 4 (–15) 7 (0) 12 –7.92 (3.23) [–20.13, –4.64] {–65, 0}

PLACEBO GROUP (frequency and a priori change score)

After

Before

75 (> 60) 45 (30-60) 25 (20-30) 10 (< 20) Row totals (nj's) θ̂j (SE) [95% CI] {Range}
*

75 (>60) 22 (0) 14 (30) 11 (50) 4 (65) 51 24.12 (3.27) [18.47, 30.88] {0, 65}

45 (30-60) 2 (–30) 18 (0) 9 (20) 6 (35) 35 9.43 (2.85) [3.72, 14.62] {–30, 35}

25 (20-30) 0 (–50) 1 (–20) 5 (0) 14 (15) 20 9.50 (2.14) [0.88, 11.71] {–50, 15}

10 (< 20) 1 (–65) 2 (–35) 4 (–15) 7 (0) 14 –13.93 (5.17) [–26.64, –7.67] {–65, 0}

*
Standard errors (SE) obtained via eqn. (11); Approx. 95% CIs based on Dirichlet-multinomial approach leading to eqn. (12); Range indicates 

feasible theoretical lower and upper bounds for θj's
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Table 6

Average Cell Counts for Simulation Under Moderate Sample Size (N=100)

After Category

Before Category

1 2 3 Total

1 10 14 26 50

2 2 8 20 30

3 2 2 16 20
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Table 7

Results of 2500 Simulations Under Moderate Sample Size (N=100)

Parameter (True value) Mean estimate (Empirical SD) Mean estimated SE 
* 95% CI coverage

θ1 (1.32) 1.319 (0.113) 0.110, 0.111
93.8%, 94.8% 

†

θ2 (0.60) 0.597 (0.110) 0.110, 0.111
93.8%, 95.7% 

†

θ3 (–0.30) –0.298 (0.144) 0.136, 0.140
88.2%, 95.0% 

†

θA (0.78) 0.779 (0.094) 0.096
94.4% 

‡

θB (0.60) 0.599 (0.057) 0.057
95.1% 

‡

*
First mean SE value based on  in eqn.(10); Second value based on  in eqn.(11)

†
First value for Wald-type CI using  in eqn.(11); Second value for Dirichlet-multinomial CI based on eqn. (12)

‡
CIs for θA and θB calculated using Mi-type procedure described in Appendix
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Table 8

Results of 2500 Simulations Under Small Sample Size (N=50)

Parameter (True value) Mean estimate (Empirical SD) Mean estimated SE 95% CI coverage

θ1 (1.32) 1.317 (0.161)
0.155, 0.158

*
92.6%, 94.6% 

†

θ2 (0.60) 0.599 (0.161)
0.151, 0.157

*
90.4%, 95.4% 

†

θ3 (–0.30) –0.308 (0.196)
0.186, 0.198

*
83.9%, 96.2% 

†

θA (0.78) 0.775 (0.134) 0.136
94.1% 

‡

θB (0.60) 0.596 (0.081) 0.081
94.0% 

‡

*
First mean SE value based on  in eqn.(10); Second value based on  in eqn.(11)

†
First value for Wald-type CI using  in eqn.(11); Second value for Dirichlet-multinomial CI based on eqn. (12)

‡
CIs for θA and θB calculated using Mi-type procedure described in Appendix 1
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