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Abstract

Simon’s two-stage designs are widely used in cancer phase II clinical trials for assessing the 

efficacy of a new treatment. However in practice, the actual sample size for the second stage is 

often different from the planned sample size, and the original inference procedure is no longer 

valid. Previous work on this problem has certain limitations in computation. In this paper, we 

attempt to maximize the unconditional power while controlling for the type I error for the 

modified second stage sample size. A normal approximation is used for computing the power, and 

the numerical results show that the approximation is accurate even under small sample sizes. The 

corresponding confidence intervals for the response rate are constructed by inverting the 

hypothesis test, and they have reasonable coverage while preserving the type I error.
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1. Introduction

Clinical trials involving new treatments are commonly classified into four development 

phases. A treatment could be a drug, medical device, or biologic, such as a vaccine, blood 

product, or gene therapy. Each phase could include many separate clinical trials in order to 

properly build up the safety and efficacy profile of the treatment. It typically takes many 

years to advance a therapeutic treatment through all four phases. Therefore, the use of 

efficient trial designs in the early treatment development phase, such as phase I or phase II, 

is highly desirable in order to quickly and accurately identify promising treatments while 

also identifying treatments for which all further development should be stopped. Traditional 

oncology phase II trial designs typically use the endpoint of clinical response for single arm 

trials. Simon’s two-stage design [1] is widely used in cancer phase II clinical trials for 

assessing the efficacy of a new treatment. However, based on this design, appropriate 

computation of a p-value or confidence interval is not readily available, and several different 

approaches have been proposed for these goals [2].
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A common scenario in Simon’s two-stage design setting is that a trial may enroll additional 

subjects beyond what is specified in the design once the efficacy criteria have been met. The 

reason for these additional enrollments could be for the purpose of accumulating more safety 

and/or efficacy data. This is attractive from a cost perspective as compared with launching a 

new trial. There is also a possibility of enrolling less patients due to practical reasons. 

However, over-enrollment or under-enrollment in this setting poses many statistical 

inference challenges. First, extending (or shortening) the sample size for stage II implies that 

the final study inference can no longer be based on the original Simon’s two-stage design. 

Inference based on existing methods that followed the two-stage feature are no longer 

valid[3]. Other multi-stage methods may also not be appropriate for this situation because 

‘the third stage’ of this trial is directly related to the hypothesis testing feature of the primary 

endpoint. The data analyst could consider providing the estimated response rate by 

maximum likelihood with an exact confidence interval [4] ignoring the additional 

enrollment. However, this approach does not account for the original design features. 

Therefore, an appropriate estimation method is needed for this common scenario.

In this paper, we propose a novel methodology for carrying out inferences under Simon’s 

phase II design when there is over-enrollment or under-enrollment in the second stage of the 

design after claiming success of the trial. We propose a method to directly calculate the 

stage II critical value in a hypothesis testing framework. There has been some previous work 

performed in this over-enrollment problem. Green and Dahlberg [3] extended the standard 

phase II approach used by the Southwest Oncology Group to accommodate a modified 

sample size in both stages. However, the method only works for a type I error rate of 0.05, 

and the choice of cut points in their two stage hypothesis testing procedure is arbitrary and 

lacks a theoretical justification. Chen and Ng [5] considered a range of possible stage I and 

total sample sizes, for which the stage I and the total sample size would occur with equal 

probability, and they searched for the ‘optimal’ and ‘minimax’ designs with a desired type I 

error and power. Masaki et al. [6] extended their work by allowing unequal probabilities on 

the sample sizes. These approaches would properly control the type I error, but they required 

a prespecified difference between the planned and modified sample sizes. Koyama and Chen 

[7] controlled the conditional type I error for the modified stage II sample size, but the 

corresponding overall type I error could be highly deflated, and the power would be lower 

than desired. Li et al. [8] formulated the two-stage design in a Bayesian setting and applied a 

Bayesian criterion to the observed outcome with a modified sample size. The method of Li 

et al. obtains desirable frequentist properties under certain types of priors.

In this paper, we attempt to maximize the unconditional power while controlling for the type 

I error for the modified stage 2 sample size. Because enumerating all possible scenarios in 

the power calculation is computationally intensive, we propose a normal approximation in 

the evaluation of the power, and our numerical results show that the proposed approximation 

is very accurate even under small sample sizes. Finally, we construct confidence intervals 

for the response rate by inverting the hypothesis test. The rest of this paper is organized as 

follows. In section 2, we describe the proposed method to account for sample size change in 

Simon’s two-stage design. Our method includes an explicit formula for the power 

calculation and an analytic derivation of the confidence intervals. Extensive simulations are 
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conducted in section 3 to demonstrate the finite-sample performance of the proposed 

method. Some concluding remarks are given in the final section.

2. Method

2.1. Hypothesis testing in Simon’s two-stage design

Suppose that Simon’s two-stage design is implemented to test the null hypothesis that the 

response rate (π) H0 : π = π0 versus H1 : π = π1 (π1 > π0) with a desired power 1 − β and 

type I error α. Let n1 and n2 be the stage I and stage II sample sizes. Also, R1 and Rt denote 

the critical values for rejecting the null hypothesis, in specific, we precede to stage II if we 

observe x1 ≥ R1 and reject the null hypothesis if x2 ≥ Rt − x1 =: R2(x1). In practice, the stage 

II sample size may not be the same as n2 but can be a larger number due to study extension 

(over-enrollment) or a smaller number due to early stopping (under-enrollment) of the trial. 

Therefore, when the stage II sample size changes to , the critical value Rt, which was pre-

specified at the design stage, can no longer be used to determine the validity of the 

alternative hypothesis, and the desired type I error may not be preserved. In the following 

development, we propose a revised critical value depending on the number of successes at 

stage I so as to preserve the type I error α while maximizing the power.

Specifically, we let  denote the critical value for the modified stage II sample size 

when we observe x1 ≥ R1 in the first stage, and . The rejection region 

for the null hypothesis is {X1 ≥ R1, }, where X1 and X2 are the numbers of 

successes in stage I and II, respectively. Then we find the  to maximize the power of 

the test with the overall type I error controlled. This is equivalent to finding the  such 

that

is maximized subject to

(1)

Unfortunately, this maximization problem does not have a closed form solution. Although it 

is theoretically possible to find  by searching among all the possible combinations of 

 in evaluating the corresponding power, the computation is 

very intensive. Instead, we consider the following approximation: the cumulative 

distribution function of the binomial random variable in the previous expression will be 

approximated by the cumulative distribution function of a normal random variable, that is,
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where Φ(.) denotes the cumulative distribution function of standard normal distribution. 

Under this approximation, we thus maximize

subject to

where  and . Using 

Lagrange multipliers and differentiating with respect to , we obtain

where λ is the Lagrange multiplier and ϕ(.) is the density function for standard normal 

distribution. Because here we can only take discrete value for  from 0 to , one 

could find all possible values for  and  to get a reasonable 

range of λ, and search within. Then the problem is equivalent to solving the equation

We redefine  as
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Now we search over a grid of λ to find the λ such that the type I error defined in equation (1) 

is as close to α as possible. The corresponding { , x1 = R1, …, n1} is the optimal 

critical value for the modified second stage.

2.2. Confidence interval for the response rate

With a modified stage II sample size, the confidence interval for the response rate could be 

calculated by inverting the hypothesis test. Specifically, we consider the hypothesis H0 : 

response rate ≤ π, versus H1 : response rate > π. Following the development in the previous 

section, we define the rejection region as

where C(π) is the critical value for rejection. To construct a (1 − α) × 100%– confidence 

interval for π, we require

(2)

The solution of C(π) has no closed form, but it could be calculated numerically: for each π, 

we simulate {X1, X2} under the response rate π then determine C(π) satisfying equation (2). 

Thus, for any given observations (x1, x2), the confidence interval is chosen as [π1, π2] where 

π1 and π2 are the corresponding lower bound and upper bound of the π’s satisfying x1 + x2 ≥ 

C(π).

3. Numerical studies

3.1. Comparison of our method with Koyama and Chen

To examine the performance of our method for hypothesis testing (named AG), we compare 

our method with the conditional type I error method of Koyama and Chen[7], denoted by 

(KC), in which  is chosen so that the conditional rejection probability 

. Table I gives the critical value  for one example 

scenario (n1 = 15, n2 = 31, R1 = 6, R2 = 13, which is the optimal design for testing π = 0.3 

versus π = 0.5, and we changed the stage II sample size n2 to 1.5n2). After adjustment, the 

sum of critical value  are not necessarily the same for different x1. In 

general,  decreases with x1 increases.

For comparison, several scenarios of Simon’s two-stage design are considered. We consider 

that the sample size in stage II is extended to 1.5 or 2 times, remains the same or is reduced 

to two-third of the originally designed sample size. The results are shown in Tables II and 

III, where in the first panel, π0 and π1 are the response rates under the null and alternative 

hypotheses, respectively, and (n1, R1, n2, Rt) are the design parameters including the 

enrollment number in the first stage, the minimal number of responses in the first stage to 

move to the second stage, the enrollment number in the second stage, and the total number 

of responses at the end of the two stages to achieve a designed power. Furthermore, ‘Min’ 
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denotes the minimax design and ‘Opt’ refers to the optimal design. With overall enrollment 

 in the second stage, we report the corresponding type I error and power based on our 

method (AG) and the method of Koyama and Chen.

Table II and III show that both AG and KC have protected type I error rate, while in almost 

all scenarios, AG has more power than KC. Bold numbers in the tables indicate the 

scenarios for which AG’s power is at least 0.03 higher than KC’s power. Because KC tries 

to control the conditional type I error rate for each stage I sample path, the overall 

unconditional type I error rate could be possibly much less than α, especially in small 

original sample size scenarios. With a deflated type I error rate, the power for detecting a 

treatment effect will decrease. There is only one scenario (optimal design for testing π = 0.3 

versus π = 0.5, stage II sample size doubles) where KC has larger protected type I error rate 

and a slightly larger power than AG.

In calculating the critical value  for the modified stage II sample size, we adopt a 

normal approximation to simplify the computation. However, for small sample sizes, an 

exhaustive grid search could also be used to search exactly among all the possible 

combinations of { }. It is of interest to examine the power 

differences between the grid search method and the normal approximation. Towards this 

goal, we conducted an additional numerical study to compare the results with the normal 

approximation and the exhaustive grid search based on our method. The settings and results 

are given in Table IV. It shows that even when the total sample size for the original Simon’s 

two-stage design is smaller than 20, there is not much difference in power (less than 0.02) 

between the normal approximation and the grid search, especially for those cases with a 

relatively large extended stage II sample size. However, the computation time gain using the 

normal approximation can be enormous when n2 is not small.

3.2. Simulation studies for obtaining a confidence interval

To examine the performance of our method (AG) in constructing a two-sided 90% 

confidence interval for π, we simulate data to calculate the 90% coverage rate and width of 

the computed confidence interval. A desired confidence interval would have relatively 

narrow width while preserving the 90% nominal coverage. For comparison, we consider two 

other methods:

(A1) The sample path with a larger X1 and a larger X1 + X2 is considered as more 

extreme. Then the (1 − 2 α) × 100% two-sided confidence interval is constructed 

as

(A2) The confidence interval proposed by Koyama and Chen [7]. If we observed the 

sample path (x1, x2), then if x1 < Rt, for each π, we want to find π*(π) such that 

the probability of observing x2 for the modified stage II sample size  with true 

response rate π is equal to the probability of observing the critical value R2 for 
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the original stage II sample size n2 with response rate π*, which yields the 

equation

(3)

Their method provides the criterion in comparing different sample paths by 

transferring them to the original stage design. Then, the (1 − 2α) × 100% 

confidence interval is computed as

The computation is very intensive to compute π* in simulation studies with large number of 

replicates. In order to implement and compare our method with that of Koyama and Chen 

[7], we use the normal approximation similar to that in our proposed method in section 2.1 

to calculate π* for each π.

In order to better illustrate the construction of the confidence intervals and rejection regions 

for those methods, we give an example for the minimax two-stage design for testing H0 : π0 

= 0.3 versus H1 : π1 = 0.5, with α = 0.05, 1 − β = 0.8. n1 = 19, n2 = 20, R1 = 7, Rt = 17. If we 

observe x1 = 10, proceed to stage II, and have an extended stage II sample size  and 

observe x2 = 10, then the rejection region could be specified as the upper right portion in 

Figure 1. The rejection region of our method (AG) is quite similar with (A2), which is the 

method of Koyama and Chen. However, (A2) can only handle the situation with x1 < Rt. If 

we observe X1 ≥ Rt, the left-hand side of equation (3) would be one regardless of the π*(π) 

value, and therefore, no solution of π*(π) can be found. For this particular example, we 

obtain the two-sided 90% confidence intervals for the three respective methods (AG), (A1), 

and (A2), as (0.3436, 0.5947), (0.3681, 0.6804), and (0.3444, 0.5947).

Table V displays the simulation results in two minimax two-stage designs for testing (i) H0 : 

π0 = 0.05 versus H1 : π1 = 0.15 and (ii) H0 : π0 = 0.1 versus H1 : π1 = 0.2, with α = 0.05, 1 − 

β = 0.8, and a modified stage II sample size. We consider three different possibilities for the 

true underlying π: i) π is equal to the null response rate π0, ii) π is equal to the alternative 

rate π1, and iii) π is larger than π1. For each scenario, 1000 two-stage studies are simulated, 

and the two-sided 90% confidence intervals are calculated using the three methods. To 

compare the methods in Table V, we report the average width and the corresponding 

coverage probabilities. Compared with the methods (A1) and (A2), our method has the 

narrowest width while preserving the nominal 90% coverage. For (A2), the confidence 

interval width is small when the true underlying response rate is close to the null response 

rate in the original design and the stage II sample size is not extended much. When the true 

response rate gets larger, the probability that X1 ≥ Rt gets larger. In this case, (A2) fails to 

provide a valid confidence interval for the scenario of X1 ≥ Rt.
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4. Conclusion

We have proposed a computationally simple method to modify the rejection rule in a 

Simon’s two-stage design when the sample size in Stage II is changed in the trial. The 

proposed method guarantees a preservation of the type I error and leads to superior power 

compared with the existing methods. We also proposed a method for calculating the 

confidence interval by inverting the rejection region of the corresponding hypothesis test. 

The latter is shown to yield confidence intervals with proper coverage and smaller width 

compared with existing methods. The proposed method can be potentially generalized to 

multiple stage designs with varied sample sizes.

Furthermore, in the constructing of the confidence interval, out rejection region is of the 

form {X1 ≥ R1, X1 + X2 ≥ C (π)}. We may generally allow C (π) to depend on X1. In this 

case, the derived confidence interval may be even narrower but at a price of increased 

computation because we need to examine each sample path {(X1, C(π, X1)), X1 = R1, …, n1} 

that preserves Type I error. The proposed method is computationally simpler and superior, 

although not optimal.

The proposed method focused on the improvement of inference reporting while controlling 

type I error properly where there is over-enrollment or under-enrollment in the second stage. 

However it may not be used as a generalization approach for sample size re-adjustment, 

which often needs re-adjusting the study hypotheses and the changes of R1 and R2. Under 

that circumstance, the trials should have already met the R1 and R2 criteria of Simon’s 

original design, and the study null hypothesis was already rejected.
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Figure 1. 
Rejection region for three methods. Note: x1 and x2 are the numbers of responses in the first 

and second stage, respectively. The circles are the boundaries of the rejection regions.
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Table I

One example of .

X1 = x1

AG KC

6 18 24 19 25

7 18 25 18 25

8 18 26 18 26

9 18 27 18 27

10 18 28 18 28

11 17 28 18 29

12 17 29 17 29

13 17 30 17 30

14 17 31 17 31

15 17 32 17 32
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