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Abstract

Many longitudinal cohort studies have both genome-wide measures of genetic variation and 

repeated measures of phenotypes and environmental exposures. Genome-wide association study 

analyses have typically used only cross-sectional data to evaluate quantitative phenotypes and 

binary traits. Incorporation of repeated measures may increase power to detect associations, but 

also requires specialized analysis methods. Here we discuss one such method – generalized 

estimating equations (GEE) – in the contexts of analysis of main effects of rare genetic variants 

and analysis of gene-environment interactions. We illustrate the potential for increased power 

using GEE analyses instead of cross-sectional analyses. We also address challenges that arise, 

such as the need for small-sample corrections when the minor allele frequency of a genetic variant 

and/or the prevalence of an environmental exposure is low. To illustrate methods for detection of 

gene-drug interactions on a genome-wide scale, using repeated measures data, we conduct single-

study analyses and meta-analyses across studies in three large cohort studies participating in the 

Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium – the 

Atherosclerosis Risk in Communities (ARIC) study, the Cardiovascular Health Study (CHS), and 

the Rotterdam Study (RS).
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1. Introduction

In recent years, many longitudinal cohort studies have measured genome-wide genetic 

variation in their participants. Even though repeated measurements of quantitative 

phenotypes and binary traits are available in these cohorts, genome-wide association studies 

(GWAS) have largely focused on evaluation of associations at a single point in time. Such 

cross-sectional analyses generally have lower power than corresponding longitudinal 

analyses, and they do not permit evaluation of associations with change over time. On the 

other hand, longitudinal analyses require more specialized and often more resource-intense 

analysis methods that account for correlation in repeated measurements [1]. Challenges 

related to missing data, feedback loops, and alignment of time across cohorts further 

complicate longitudinal analyses.

Despite the challenges associated with longitudinal analyses, they may be particularly useful 

in low-power settings, such as genome-wide searches for gene-environment interactions [2] 

or genome-wide analyses of rare variants [3]. The goal of this manuscript is to discuss one 

option for implementing longitudinal GWAS analysis – generalized estimating equations 

(GEE) – and to address common challenges that arise.

We will illustrate the use of GEE in the context of an ongoing genome-wide investigation of 

gene-drug interactions in the pharmacogenetics working group of the Cohorts for Heart and 

Aging Research in Genomic Epidemiology (CHARGE) consortium [4]. In this manuscript 

we focus on a quantitative phenotype – QT interval duration (QT, ms) on the resting, 

standard twelve-lead electrocardiogram (ECG) – as the outcome, with several different drug 

classes, including thiazide diuretics, sulfonylurea anti-diabetic agents, tricyclic and 

tetracyclic antidepressants, and drugs associated with QT-prolongation, as the environmental 

exposures of interest. Analyses primarily use data from one participating cohort – the 

Cardiovascular Health Study (CHS) – a longitudinal cohort study with yearly follow-up over 

a ten-year period from 1989–1999 [5], with additional data from the Atherosclerosis Risk in 

Communities (ARIC) Study [6] and the Rotterdam Study (RS) [7, 8] used to illustrate 

methods for meta-analysis.

In section 2, we begin by specifying models of interest and reviewing GEE methods. We 

then discuss computational challenges in implementing longitudinal GWAS, and we provide 

illustrations of potential power gains when using longitudinal data instead of cross-sectional 

data. Finally we suggest solutions for methodological challenges associated with small 

effective sample sizes and meta-analyses across cohorts. In Section 3, we apply these 

methods in the context of CHS and the CHARGE pharmacogenetics working group. In 

Section 4, we summarize our recommendations for longitudinal GWAS and discuss some 

unresolved challenges that remain.

2. Methods and Simulations

2.1. Statistical Models

The most commonly used mean model in cross-sectional GWAS of unrelated individuals 

defines exposure additively, based on single-nucleotide polymorphism (SNP) dosage, which 
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may be either observed or imputed [9, 10], and uses link functions as in generalized linear 

models (GLMs) [11]:

(1)

where i indexes participants, Y is an outcome of interest, g is a link function, G is a SNP 

dose, and Z is a vector of adjustment variables; the coefficient of interest is αG. The 

coefficients in this model can be estimated by linear regression for quantitative outcomes 

(g=identity) and logistic regression for binary outcomes (g=logit). To investigate gene-

environment interactions with single SNPs, comparable models are used [12]:

(2)

where E is an environmental exposure, and the coefficient of interest is βG:E.

These cross-sectional GWAS models have low power to detect novel associations when 

genetic variants and/or environmental exposures are rare [3, 13]. One way to increase 

power, as we will demonstrate in Section 2.4, is to use the repeated outcome and exposure 

measurements that are often available in cohort data. Indexing the multiple visits by 

measurement time t, the cross-sectional models can be revised as follows:

(3)

(4)

where αG and βG:E remain the coefficients of interest. In the genetics literature, the mean 

models in equations (1) and (3) are referred to as main effects models and the ones in 

equations (2) and (4) are interaction models.

2.2. Generalized Estimating Equations

When repeated measures of outcome and exposure are used, methods to estimate 

coefficients of interest must allow for the correlated nature of the data. Common methods 

that allow for correlation are generalized estimating equations (GEE) and mixed effects 

models (MEM) [1]. Although both options may be relevant in GWAS, in this manuscript we 

focus on GEE.

GEE is a semi-parametric method that requires assumptions about the form of the mean of 

the outcome distribution, conditional on covariates, but does not require assumptions about 

the full conditional distribution of the outcome [14, 15]. Correct specification of the 

covariance of repeated measurements within each person is not required for asymptotically-

valid inference, but instead, a “working” covariance matrix is assumed, which determines 

how data points are weighted in the resulting inference. Robust variance estimators are used 

to obtain valid inference. Although specification of the correct correlation matrix is not 

generally required, careful consideration must be given to the choice of correlation when 

covariates vary over time [16]. Specifically, if the marginal expectation of the outcome at 

time t conditional on covariate values at time t is not equal to the marginal expectation of the 
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outcome at time t conditional on covariate values observed at all times, then a working 

independence correlation matrix should be assumed for validity of estimates. If, however, 

covariates do not vary over time, or the specified assumption is satisfied, then a correlation 

matrix that more closely reflects the true underlying correlation will provide more efficient 

parameter estimates [14].

In general, parameters estimated via GEE have population-averaged (marginal) 

interpretations, whereas those estimated via MEM are participant-specific (conditional) 

summaries. In the special case of quantitative outcomes, where the identity link function is 

collapsible, MEM parameters have population-averaged interpretations as well; however, 

the same is not true for outcomes that require non-collapsible link functions [17]. For 

example, with binary outcome data recorded longitudinally and using the logistic link 

function, the parameter αG is the log odds ratio comparing individuals with one additional 

versus one fewer copy of the minor allele. A comparable parameter obtained using MEM 

would be the log odds ratio comparing individuals with a shared (unobserved) factor who 

have one additional copy of the minor allele to those with the same factor and one fewer 

copy. When the goal of a large-scale genetic analysis is to characterize population-level 

associations, then GEE is more appropriate than MEM for many non-quantitative outcomes.

However, compared to MEM, GEE has the disadvantage of requiring stronger assumptions 

about missing data [1]. The key covariate, genotype, is assumed to be constant over time, 

with missing data minimized via imputation to a common reference panel. For MEM to be 

valid, the phenotypic data need to be at worst missing at random (MAR), conditional on 

modeled covariates, and with a correctly specified covariance model. For GEE to be valid, 

phenotypic data need to be missing completely at random (MCAR), conditional on modeled 

covariates. The required assumptions relate to the interpretation of parameters as marginal 

versus conditional; GEE is not as robust to differential death or dropout because the 

population being averaged over at later times could be different. However, the improved 

robustness to missing phenotypic data in MEM with a correct covariance model comes at 

the price of treating death and missingness as the same [18].

Methods exist for weakening the MCAR assumption underlying GEE [19]; however, they 

are not straightforward to implement consistently across studies and meta-analyze, which is 

the mechanism of analysis in many genome-wide investigations [10]. Further, the problem 

of missingness may not be a substantial one in GWAS analyses because the effects of 

individual genetic variants are not generally strong enough to determine who enters the 

study or who drops out from phenotype measurement over time.

2.3. Computation

One challenge associated with implementing longitudinal methods in the context of GWAS 

is the computational complexity required to fit them. On a typical desktop computer, using 

data on several thousand participants, fitting a single GEE or MEM model takes around a 

second; however, fitting millions of them can require hundreds of hours of computing time. 

Therefore it is crucial to develop and utilize algorithms that minimize computational burden. 

Substantial efforts have been made to minimize computational time for MEM [20, 21, 22, 

23], and use of a one-step estimator [24] has recently been proposed to minimize 
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computational time for GEE [25]. Even without using the one-step approximation, custom 

code for fitting GEE models in R, available in the boss package [25], can result in nearly 

10-fold decreases in computing time, compared with standard implementations.

2.4. Power: Cross-sectional versus Longitudinal

Longitudinal analyses take fuller advantage of the data that have been collected in 

longitudinal cohort studies, using the additional within-person information to achieve 

increases in statistical power to detect associations. The biggest gains in power occur when 

there is more within-person variability in outcome in genetic analyses of main effects 

(equations (1) and (3)) and more within-person variability in environmental exposure in 

analyses of gene-environment interactions (equations (2) and (4)). Such increases in power 

are particularly valuable in the context of genome-wide analyses that must use low 

thresholds for statistical significance in order to account for the large number of 

comparisons that are performed.

Increases in power with use of longitudinal data are well-known, and have been illustrated 

previously in the context of the common significance threshold of 0.05 [1]. However, 

relative power may be different at lower thresholds than it is at the common threshold of 

0.05 [26], so we conducted simulations to confirm the expected gains in power from using 

longitudinal data in genome-wide analyses. Results for detecting gene-drug interactions 

were included in a recent manuscript describing cross-sectional analyses of the QT interval 

done by the CHARGE pharmacogenetics group [2]. Results for detecting main effects of 

rarer variants are included in Supplemental Figure 1. The outcome was assumed to be 

normal, with a two-sided, per-SNP α = 5.0 × 10−8 and MAF=0.01. The effect to be detected 

varied in terms of standard deviations of the outcome. An attrition rate of 5% per visit was 

assumed, plus random missingness of 5% of remaining measurements. To evaluate the 

power that could be gained by incorporating repeated measures over time, the simulations 

incorporated up to 2–6 measurements of QT duration for each of 20,000 participants, and 

within-person correlation in QT varied from 0.2 to 0.8. Both exchangeable and 

autoregressive (AR1) correlation structures were examined. Potential gains in power can be 

larger with AR1 correlation because there is more within-person variation across 

measurements. Linear models with robust standard errors were used for cross-sectional 

analyses, and generalized estimating equations (GEE) with independence working 

correlation and sandwich standard error estimates were used for longitudinal analyses. For 

example, for such rarer main effects, with n=20,000 and 80% power, the detectable effect is 

nearly 0.35 standard deviations using cross-sectional data, but decreases to about 0.25 

standard deviations using 4 repeated measures with exchangeable correlation of 0.5 

(Supplemental Figure 1). Comparable decreases in detectable effects exist for gene-

environment interactions. Given the sample size of 20,000 and MAF of 0.01, each set of 

simulated cross-sectional data includes approximately 400 observations with a minor allele, 

a sufficient number for asymptotic results with robust variance estimates to be valid. In the 

following section, we discuss scenarios in which asymptotic results may not be valid.
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2.5. Small effective sample sizes: options for valid inference

In scenarios with rare variants and/or rare environmental exposures, where the increased 

power derived from longitudinal analyses is most needed, the asymptotics of robust 

sandwich variance estimators used in GEE are not sufficiently accurate due to small 

effective sample sizes [27]. When the ratio  is assumed to have a normal reference 

distribution, type I error can be inflated relative to nominal values [27]; our simulations, 

described below, illustrate that this inflation of type I error can be even more dramatic at the 

low significance levels used in GWAS than it is at the more common significance level of 

0.05.

Several options for improving the accuracy of the significance statements made with GEE, 

in the context of small effective sample sizes, have been proposed in the literature. These 

options include (i) using an alternate reference distribution for the test statistic that 

incorporates the variability in standard error estimates [27], (ii) using an alternate standard 

error estimate [28, 29, 30], and (iii) using a score test instead of a Wald test [31]. We assess 

all three of these methods in simulations, but focus on the first, where we assume that the 

ratio of the coefficient estimate to its standard error follows a t reference distribution, which 

has heavier tails than the normal distribution [32]. Use of a t reference distribution requires 

an estimate of degrees of freedom; one option, based on Satterthwaite’s approximation [33], 

is discussed by Pan and Wall [27]. Instead of ignoring the variability in standard error 

estimates, as is done when using a normal reference distribution, the degrees of freedom 

estimate for the t distribution accounts for this variability. Specifically, using moment-

matching arguments, the degrees of freedom equal

Pan and Wall assume that the variance estimate  is unbiased, but now incorporate an 

estimate of its variability in the denominator of the degrees of freedom estimate [27]. The 

boss package in R includes the option to calculate Pan and Wall’s estimate of degrees of 

freedom. It minimizes the computational time by implementing C code that is called from 

within the relevant R function.

To illustrate the inflated significance of p-values calculated using a normal reference 

distribution, as well as the performance of methods to correct these p-values, we simulated 

data for n=1000 people, each with 4 exchangeable outcome measurements, within-person 

correlation of 0.5, and no associations between a single SNP and outcomes. For longitudinal 

main effects models (equation (3)), we used MAF=0.01; for longitudinal gene-drug 

interaction models (equation (4)), we used MAF=0.05 and proportion of participants using 

the drug, independent of genotype, at any given measurement time = 0.07.We then 

performed GEE analysis and calculated five p-values: (i) using sandwich standard error 

estimates and the standard normal reference distribution, (ii) using sandwich standard error 

estimates and a t reference distribution with Satterthwaite estimates of degrees of freedom 
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[27], (iii) using Mancl and DeRouen’s alternate standard error estimates [28] and a t 

reference distribution with Satterthwaite estimates of degrees of freedom as described 

byWang and Long [30], (iv) using Wang and Long’s alternate standard error estimates and a 

normal reference distribution [30], and (v) using a robust score test [31].We repeated the 

process for a million simulated datasets, and generated quantile-quantile plots of the 

resulting p-values on the −log10 scale (Figure 1).

Using sandwich standard error estimates with a normal reference distribution, as the p-

values decrease, there is substantial deviation in the observed p-values compared to what is 

expected under the null. For the interaction models, the point estimates are unbiased for the 

true value of zero (Supplemental Figure 4a), and the standard error estimates are also 

essentially unbiased for the true standard error of 0.2 (Supplemental Figure 4b). However, 

the variance of the standard error estimates is 0.03, which is non-negligible compared to the 

variability of the coefficient estimates. In standard asymptotic approximations the smaller 

variance is treated as zero, and this results in p-values that over-state the true significance.

When the model is correctly specified, using either a t reference distribution or alternate 

standard error estimates largely corrects the problem. The score test over-corrects, giving 

conservative p-values. Mancl and DeRouen’s alternate standard error estimates give similar 

performance to sandwich variance estimates, and require additional computing time, so we 

focus on sandwich estimates for ease of implementation. Wang and Long’s alternate 

standard error estimates require stronger assumptions for validity: specifically that the 

variance of the outcome, conditional on covariates, is correctly specified and that there is a 

common correlation structure across all participants, or at least across all participants with 

the same number of observations. In this respect, the standard error estimates obtained with 

Wang and Long’s methods are closer to the model-based estimates, which no longer control 

type I error when models are mis-specified. We illustrate this drawback by simulating data 

from interaction models where the variance of outcomes is different among those in the 

exposed group versus the unexposed group; in such a setting, type I error is not controlled 

with Wang and Long’s method, but it is controlled with the other two robust methods 

(Figure 2). Given that the stronger assumptions are not likely to be satisfied in our intended 

applications, we choose to focus on modification of the reference distribution alone.

2.6. Small effective sample sizes: conditions for valid inference

Additional simulations varying MAF and probability of drug use illustrate that, when the 

product of sample size and MAF is small, even the small-sample correction using the t 

reference distribution on which we focus in Section 2.5 leaves substantial p-value inflation 

in GEE analyses (Supplemental Figures 2 and 3) – reflecting the unsatisfactory behavior of 

the asymptotic approximations being used. Such behavior occurs in both cross-sectional and 

longitudinal analyses when robust sandwich standard error estimates are used. One way to 

characterize this behavior is in terms of the number of independent observations in the 

smallest group being compared, or in other words as a simple estimate of the degrees of 

freedom the data provide for inference, denoted ‘approxdf’. This characterization comes 

from analogy to a t test with unequal variances across groups, where if the smallest group is 

substantially smaller than the others, the Satterthwaite approximation of degrees of freedom 
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approaches the size of the smallest group. For main effects models (equations (1) and (3)), 

this smallest group is the number of independent observations in people who have the minor 

allele for a SNP of interest, which can be approximated as follows: approxdf = 2 × MAF × 

Nindep, where Nindep = the estimated number of independent observations. For gene-

environment interaction models (equations (2) and (4)) with binary exposure, approxdf = 

2×MAF×Nexposed, where Nexposed = the estimated number of independent observations 

in the smaller of the exposed or nonexposed groups [34].

With longitudinal data, one way to compute Nindep is to sum over the estimated number of 

independent observations per person [35], that is

where ni is the number of observations for participant i and ρ̂ is an estimate of the pairwise 

visit-to-visit correlation within participants from a GEE-exchangeable model that does not 

contain genetic data. For gene-environment interactions with binary exposure, assuming that 

the proportion of people who are exposed is less than one-half,

where #{Eit = 1} is the number of observations in which participant i is exposed.

Genetic data used for GWAS are typically imputed to a common reference panel to facilitate 

pooling of information across studies. For imputed genetic data, following Rubin’s 

characterization of the fraction of missing information [36], the approxdf can be obtained by 

multiplying the value obtained for non-imputed data by a SNP-specific measure of 

imputation quality, specifically the ratio of the observed variance of imputed allele counts to 

their expectation based on estimated allele frequencies [10].

Based on Supplemental Figures 2 and 3, in genome-wide work, we recommend requiring 

that SNPs have within-study approxdf greater than 10 in order to enter across-study meta-

analyses. Although study-specific contributions still have some inflation at approxdf=10, we 

have found that in the context of our CHARGE multi-study meta-analysis this threshold 

provides a good balance between over- and under- filtering. The core studies in CHARGE 

each include at least several thousand participants; a meta-analysis that included only 

smaller studies might need to use a more stringent filter to avoid spurious results at the 

meta-analytic level. Despite the need to ignore results below a particular level of approxdf, 

the use of Satterthwaite estimates of degrees of freedom provides advantages over standard 

approaches that filter on MAF or oevar alone (not their product, or prevalence of drug 

exposures). The Satterthwaite approach provides more accurate p-values than standard GEE 

methods and thereby reduces the number of variants that would not be considered, compared 

to the harsh filtering required when considering MAF or oevar alone to ensure that standard 

GEE methods are correctly calibrated.
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2.7. Meta-analysis

To achieve useful levels of power, most genome-wide studies require sample sizes that are 

larger than exist in any single study, but individual-level data cannot typically be combined 

across studies due to both privacy concerns and incompatibility of study designs or data 

elements. Therefore in GWAS individual studies generally analyze their own data, then 

share summary information for meta-analysis across studies [10]. Meta-analysis typically 

uses fixed effects inverse-variance-weighted methods, which are known to be statistically 

efficient in common situations [37]. Coefficient and variance estimates from GEE analyses 

can also be meta-analyzed in this way. However, when small effective sample sizes in 

individual studies cause concern about inflation of significance of study-specific association 

results, the inflation can be propagated through standard meta-analysis of results, even with 

genomic control correction. Meta-analysis methods that mitigate this inflation include 1) 

comparing z-statistics computed from inverse-variance-weighted meta-analysis to a t 

distribution with degrees of freedom equal to the sum of the individual-cohort degrees of 

freedom and 2) computing individual-cohort p-values using the t reference distribution, then 

meta-analyzing them using a weighted z-statistic, with weights equal to the product of the 

SNP imputation quality and the study-specific estimated number of independent 

observations (or the number exposed to the drug, for gene-environment interactions). One 

drawback to the latter approach is the lack of a meta-analytic estimate of the coefficient of 

interest.

To evaluate the three options for meta-analysis (fixed effects inverse-variance-weighted, 

plus the two alternatives described above), we simulated null data in three different cohorts, 

of size 1000, 1000, and 2000 individuals, then metaanalyzed results. We used the gene-

environment interaction set-up from Section 2.5, and again ran one million iterations. Figure 

3 displays cohort-specific and meta-analytic qq-plots on the −log10 scale for p-values less 

than 0.001. Although combining data across studies ameliorates the inflation seen in 

individual cohorts, meta-analytic p-values based on a normal reference distribution still have 

inflated type I error. Depending on the specific scenario of interest, inverse-variance-

weighted meta-analyses using a t-distribution with degrees of freedom equal to the sum of 

individual-cohort degrees of freedom may be valid; however, weighted z-value based meta-

analysis of p-values using t reference distributions at the cohort level appears to be the safest 

option. Results were similar for simulations of main effects analyses.

3. Application

Pharmacogenetics refers to genetic differences that lead to differences in individuals’ 

responses to drugs. A number of drugs are known to prolong the QT interval [38, 39], and 

QT prolongation is a risk factor for ventricular tachyarrythmias such as Torsades de pointes 

and sudden cardiac death [40, 41]. As QT interval is heritable [42], and there are 

interindividual differences in QT prolongation among users of drugs that prolong the QT 

interval [39], it seems plausible that genetics plays a role in drug-induced QT prolongation. 

Thus one goal of the CHARGE consortium’s pharmacogenetics group is to evaluate gene-

drug interactions on QT interval, for variants across the entire genome. Drugs of interest 

include thiazide diuretics, sulfonylureas, tri and tetracyclic antidepressants (TCAs), and 
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definite or possible QT prolonging drugs, as identified by the University of Arizona Center 

for Education and Research on Therapeutics (UAZ CERT) [43].

The CHARGE consortium consists of cohort studies focused on cardiovascular outcomes, 

with detailed measurements on a range of outcomes and exposures, including genome-wide 

genetic data [4]. Many of the cohort studies have repeated measurements on the same 

participants, enabling gains in power from use of longitudinal data, gains which are 

particularly important in the context of gene-environment interaction. To illustrate the 

methods described in this manuscript, we present analyses of data from the Cardiovascular 

Health Study, a cohort of adults 65 years and older, enrolled in 1989–1990 at sites across the 

United States, and followed through annual visits for ten years, then phone contacts 

thereafter [5]. QT interval was electronically measured from automatically processed, 

annual, digital ECG recordings. Prescription drug use was determined concurrently. 

Genotyping was done using the Illumina 370CNV BeadChip system on all CHS participants 

who were free of cardiovascular disease and consented to genetic testing; data were imputed 

at each of the 2.5 million autosomal HapMap SNPs.

Up to 3055 participants, with an average of 7 observations per person, are included in 

analyses of gene-drug interactions on QT interval in those of European descent in CHS. The 

following mean model was used:

where covariates Z include age, gender, RR interval, ancestry, and use of UAZ CERT QT-

prolonging drugs (for the three non-UAZ CERT drug groups). The coefficient of interest is 

βG:E, and it is estimated using GEE with working independence correlation. Drug exposure 

is measured separately at each visit, so that some participants may be exposed at one time, 

but not at other times. Given the possibility that previous drug exposure may influence 

future outcomes, and that these outcomes may influence subsequent drug exposures, 

working independence is chosen to ensure validity of parameter estimates [16]. GEE 

parameter estimates, with their marginal interpretations, may be biased if QT measurements 

are differentially missing across drug exposure and genotype. However, we do not expect 

genetic effects to be large enough for this missingness to substantially impact the results 

presented for the interaction term.

Figure 4 illustrates the qq-plots for interaction p-values, on the −log10 scale, in GEE 

analyses of the four drugs of interest. Among these four drugs, exposure to thiazide diuretics 

is most common (18%), followed by UAZ CERT QT-prolonging drugs (5.4%), 

sulfonylureas (4.9%), and TCAs (3.5%). As described in Section 2.5, when using a standard 

Normal reference distribution, substantial inflation of type I error occurs at low significance 

levels when environmental exposure is rare. Such inflation is not evident in analyses of the 

more commonly-used thiazides, but is evident in analyses of other drug classes. To better 

approximate the statistical significance of the results, we re-calculated the p-values using the 

methods described in Section 2.5 (Figure 4). Given the lack of inflation in the thiazides 

analyses, any of the methods is appropriate in that context (Figure 4a). In the analyses of 
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UAZ CERT drugs, Wang and Long’s method shows inflation of p-values similar to that seen 

in the simulations with heteroscedasticity, whereas the other methods perform comparably 

to each other (Figure 4b). In the analyses of sulfonylureas and TCAs, model 

misspecification appears not to be an issue, as Wang and Long’s method performs best, 

followed by Mancl and DeRouen’s variance estimates and typical sandwich variance 

estimates with a t reference distribution (Figure 4c and 4d). For the rarest drugs, filtering out 

SNPs with approximate degrees of freedom equal to 10 or less alleviates residual inflation 

with typical sandwich variance estimates (Figure 4, light gray). More SNPs are filtered due 

to low approximate degrees of freedom in analyses of rarer drugs (Supplemental Figure 5).

To illustrate a meta-analysis of several longitudinal GWAS, we combined results from CHS, 

ARIC, and RS for the UAZ CERT drug exposure. Results from both the original RS (RS1) 

and an additional cohort recruited ten years later (RS2) are included. Nexposed for CHS was 

378, for ARIC was 550, for RS1 was 303, and for RS2 was 105. Study-specific qq-plots of 

p-values on the −log10 scale for RS1, RS2, and ARIC are shown in Supplemental Figure 6. 

As in CHS, Wang and Long’s method gives inflated p-values; in ARIC and RS1, other 

methods perform comparably, while in RS2, with its lower Nexposed, filtering is needed to 

remove inflation. Study-specific genomic control correction was applied to all meta-

analyses, which use typical sandwich variance estimates. When all SNPs were included, 

both a standard fixed effects inverse-variance-weighted meta-analysis and a weighted z-

based meta-analysis had inflated type I error (Figure 5). When study-specific results were 

filtered to include only those SNPs with approximate degrees of freedom greater than 10, the 

inverse-variance-weighted meta-analysis still had inflated type I error, while the weighted z-

based meta-analysis that used a t reference distribution to calculate p-values did not (Figure 

5). The distributions of approximate degrees of freedom are displayed in Supplemental 

Figure 7; part (e) of the figure illustrates that the summation of degrees of freedom across 

studies in meta-analysis will improve the asymptotic accuracy. Although no SNPs were 

found to have genome-wide significant interactions in this analysis, additional cohorts will 

contribute to final analyses in CHARGE.

4. Discussion

Longitudinal data can be used to increase power to detect associations in GWAS, especially 

in the low-power settings of rarer variants and gene-environment interactions. Methods 

tailored to longitudinal data, such as GEE or MEM, must be used. In contexts where GEE is 

appropriate, the R boss package requires reasonably low computational time and 

implements a correction for small effective sample sizes that modifies the reference 

distribution for the test statistic of interest. Through application of such methods to data 

from the CHARGE consortium pharmacogenetics group, we have shown that using the 

small-sample correction in individual cohorts, then conducting weighted Z-based meta-

analysis with modest filtering, yields well-calibrated genome-wide results.

As discussed in Section 2.5, other options for small-sample corrections include modifying 

the standard error estimates and implementing score tests. It is well-known that the score test 

is conservative for small numbers of clusters [31], and we confirm that this property holds in 

the context of small effective sample sizes. The modification proposed by Guo et al. [31] 
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does not apply in the contexts that we consider because the total number of clusters is not 

small, but the number of clusters with a minor allele (in main effects analysis) or with an 

exposed measurement and a minor allele (in interaction analyses) is small. Further work 

could be done to devise a correction in this context, but such work is outside the scope of 

this paper. The different Wald tests that modify the standard error estimates and/or the 

reference distribution have similar performance in the small-sample contexts that we 

consider. Choosing from among these tests requires balancing the required computational 

time with the incremental benefit in performance, when comparing typical sandwich 

estimates with their modifications; as well as assessing the plausibility of the additional 

assumptions, particularly when considering Wang and Long’s modification. Due to the 

potential for heteroscedasticity in outcome variance and lack of common correlation 

structure in unbalanced cohort data, we generally recommend typical sandwich variance 

estimates, in conjunction with modification of the reference distribution, in this context. 

However, in situations where Wang and Long’s assumptions are likely to be satisfied, there 

is potential for improved performance with their use.

One potential limitation to the use of GEE in the context of gene-environment interactions is 

the possibility of selection bias when environmental exposure varies over time. For example, 

when the exposure is drug use, there may be differences in factors associated with initiation 

and cessation of treatment, both for a particular therapeutic, and for specific agents within 

therapeutic classes. Our choice of independence working correlation should decrease the 

impact of such selection bias; however, more sophisticated methods such as inverse-

probability weighting [44] would do more to alleviate concerns. As with similar methods 

that can weaken missingness assumptions, such methods are challenging to implement in the 

context of GWAS, and deserve further consideration.

We have not discussed use of MEM, though it is a reasonable alternative approach, 

particularly in the case of quantitative phenotypes where MEM parameter estimates have a 

marginal interpretation comparable to that of GEE estimates. MEM can provide more 

robustness to bias caused by some types of missing data, but they also rely more heavily on 

modeling assumptions [45]. If, for example, random effects are correlated with covariates 

such as ancestry, then bias in coefficient estimates could be substantial, leading to 

substantially misleading inference.

Another natural extension is to family data; methods for analyzing multi-level longitudinal 

family data include family-based association tests [46] and Markov chain Monte Carlo 

(MCMC) implementations of generalized linear mixed models (GLMMs) [47]. However, 

neither of these approaches is well-suited to the context of genome-wide analysis with small 

effective sample sizes. Therefore further work is needed to determine the best methods for 

analyzing longitudinal data collected on related individuals in a genome-wide manner.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Data from 1 million iterations were simulated under the null model, for 1000 individuals, 

each with 4 exchangeable outcome measurements, and within-person correlation of 0.5. For 

the analysis of gene-environment interaction models (a), MAF was 0.05 and proportion 

exposed at any given visit was 0.07; for the analysis of main effects models (b), MAF was 

0.01. P-values were estimated via GEE with an independence working correlation matrix, in 

the following contexts: (i) using sandwich standard error estimates and the standard normal 

reference distribution, (ii) using sandwich standard error estimates and a t reference 

distribution with Satterthwaite estimates of degrees of freedom, (iii) using Mancl and 

DeRouen’s alternate standard error estimates and a t reference distribution, (iv) Wang and 

Long’s alternate standard error estimates and a normal reference distribution, and (v) using a 

score test. Plots are quantile-quantile plots of −log10(pvalues), with the cone indicating the 

95% prediction interval for the ordered −log10(p-values), when p-values are truly uniformly 

distributed between zero and one.
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Figure 2. 
Gene-environment interaction data from 1 million iterations were simulated under the null 

model, for 1000 individuals, each with 4 exchangeable outcome measurements, and within-

person correlation of 0.5. MAF was 0.05 and proportion exposed at any given visit was 0.07. 

Outcome variance was higher in participants with any exposure, compared to participants 

with no exposure. P-values were estimated via GEE with an independence working 

correlation matrix, in the following contexts: (i) using sandwich standard error estimates and 

the standard normal reference distribution, (ii) using sandwich standard error estimates and a 

t reference distribution with Satterthwaite estimates of degrees of freedom, (iii) using Mancl 

and DeRouen’s alternate standard error estimates and a t reference distribution, (iv) Wang 

and Long’s alternate standard error estimates and a normal reference distribution, and (v) 

using a score test. Plots are quantile-quantile plots of −log10(pvalues), with the cone 

indicating the 95% prediction interval for the ordered −log10(p-values), when p-values are 

truly uniformly distributed between zero and one.
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Figure 3. 
Data from 1 million iterations were simulated under the null model, for cohort sizes of 1000, 

1000, and 2000 individuals, each with 4 measurments, and within-person correlation of 

0.5.We focused on analysis of gene-environment interactions, with MAF of 0.05 and 

probability of environmental exposure at any given visit of 0.05. Cohort-specific p-values 

(a,b,c) were estimated via GEE with an independence working correlation matrix, using 

either a normal reference distribution or a t reference distribution with degrees of freedom 

based on Satterthwaite’s approximation. Meta-analytic p-values (d) were estimated using 
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three different methods: 1) inverse-variance weighted z-statistics compared to a normal 

reference distribution, 2) inverse-variance weighted z-statistics compared to a t distribution 

with degrees of freedom equal to the sum of the individual cohort degrees of freedom, and 

3) weighted z-value based meta-analysis of p-values using cohort-specific t reference 

distributions. Plots are quantile-quantile plots of −log10(pvalues), including only p-values 

less than 0.001.
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Figure 4. 
CHS genome-wide quantile-quantile plots of −log10(pvalues) for gene-drug interactions, 

with three different standard error etimates and using either a normal reference distribution 

or a t reference distribution with Satterthwaite estimates of degrees of freedom, as specified. 

For sandwich variance estimates with a t reference distribution, the dark gray points 

represent all SNPs, whereas the lightest gray points exclude those SNPs with approxdf ≤ 10.
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Figure 5. 
Quantile-quantile plot of −log10(p-values) from meta-analysis of ARIC, CHS, RS1 and RS2 

gene-UAZ CERT interaction estimates.
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