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Abstract

The Case-cohort (CC) study design usually has been used for risk factor assessment in

epidemiologic studies or disease prevention trials for rare diseases. The sample size/power

calculation for the CC design is given in Cai and Zeng [1]. However, the sample size/power

calculation for a stratified case-cohort (SCC) design has not been addressed before. This article

extends the results of Cai and Zeng [1] to the SCC design. Simulation studies show that the

proposed test for the SCC design utilizing small sub-cohort sampling fractions is valid and

efficient for situations where the disease rate is low. Furthermore, optimization of sampling in the

SCC design is discussed and compared with proportional and balanced sampling techniques. An

epidemiological study is provided to illustrate the sample size calculation under the SCC design.
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1. Introduction

Time-to-event is a commonly used endpoint for the risk factor assessment in epidemiologic

studies or disease prevention trials [2–7]. The case-cohort (CC) design, originally proposed

by Prentice [8], has often been used in studying the time to event when the disease is rare

and the cost of collecting the risk factor information is high. A CC sample consists of a sub-

cohort, which is a random sample of the full cohort, and all the subjects with the event

(cases). Statistical analysis methods for analyzing data from the CC study design have been

described in many publications [8–20]. For rare diseases, Cai and Zeng [1] proposed a log-

rank type of test statistic, which is equivalent to the score test based on a pseudo-partial

likelihood function, similar to that was described in Self and Prentice [9]. Furthermore, Cai

and Zeng [1] provided an explicit procedure for calculating the sample size and power based

on their proposed test.
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In studies where the study populations are not homogenous or the original cohort is

assembled through a stratified design, a stratified case-cohort (SCC) design may be more

appropriate [21–22]. The SCC sample consists of the stratified sub-cohorts selected by a

stratified random sampling from the full cohort, and all the cases. For example, the

MONICA, Risk, Genetics, Archiving, and Monograph (MORGAM) study [23] is a

multinational collaborative cohort study that prospectively followed the development of

coronary heart disease (CHD) and stroke events. One goal of this study was to identify risk

genotypes for predicting a CHD event. Since the CHD incidence rate differs by gender, and

genotyping is expensive, a possible cost-effective design can be a stratified case-cohort

design, where the gender is considered as a stratification factor so that the different

proportion of sub-cohort samples is selected for each gender group.

Although stratified methods for analyzing data from the SCC design have been studied

extensively [18, 24], the sample size and power calculations of the SCC design have not

been previously addressed. This paper aims to fill this gap. Specifically, we propose a

stratified log-rank statistic and derive expressions for sample size and power calculations. In

addition, we compare different sampling strategies including proportional sampling,

balanced sampling, and optimal sampling designs. Several simulation studies are presented

to evaluate the proposed method using the MORGAM study. We further compare the

stratified design/test with the unstratified design/test in the conclusion and discussion

section.

2. Stratified case-cohort design and stratified log-rank test

2.1 Notation

Assume that there are n subjects and L strata in a stratified full cohort, and nl subjects in

stratum l (l = 1, …, L). Assume two groups indicating the expensive and dichotomous

exposure status (for example, the standard versus the wild type single nucleotide

polymorphism) and assume nlj subjects in exposure group j (j = 1, 2) of stratum l. Assuming

that Tlij represents the event time and Clij the censoring time for subject i in exposure group j

and stratum l (i = 1, …, nlj), it is reasonable to assume the Tlijs are independent of each

other. Let Xlij = Tlij ∧ Clij be the observed time, where a ∧ b denotes the minimum of a and

b, and Δlij = I (Tlij ≤ Clij) the failure indicator, in which Δlij = 1 denotes observed failure and

Δlij = 0 denotes censoring.

In the SCC design, the exposure status is obtained for all the cases and a stratified sub-

cohort sample. Specifically, we assume that ñl subjects are randomly sampled into a sub-

cohort from nl subjects in stratum l, and the sub-cohort size is . Let ξlij= 1 denote

that subject i in group j and stratum l is selected into the sub-cohort and ξlij = 0 otherwise.

Let γl be the proportion of subjects in group 1 and (1−γl) the proportion of subjects in group

2 in stratum l. All subjects in the sub-cohort and all events in the L strata make up the

stratified case-cohort sample.
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2.2 Test statistic

A log-rank type of test is used to compare the hazard rates between the two groups in SCC.

The null hypothesis is H0: Λl1(t) = Λl2(t), l = 1, …, L, t ∈ [0, Γ], where Γ is the length of

study period and Λlj(t) the cumulative hazard function of the event time t in group j in

stratum l. To construct a log-rank type test for the stratified case-cohort sample, we first

notice that a weighted stratified log-rank test statistic for the full cohort [9] may be

expressed as , where Ȳlj(t) is the number

of subjects at risk and N̄
lj(t) is a counting process representing the number of events at time t

in group j and stratum l, and ω(t) is a weight function. The formula above can also be

expressed as

(1)

For the full cohort, the log-rank test statistic is known to be the same as the score function of

the Cox partial likelihood function [1, 9].

The test statistic  requires the covariate information of the full cohort; in a SCC sample

the covariate information is only available for the subjects in the sub-cohort and the cases.

We propose to use the sub-cohort data to approximate Ȳlj (t) by Ỹlj (t)/pl, where Ỹlj (t) is the

number of subjects at risk for group j and stratum l in the sub-cohort, and pl is the sampling

fraction of the sub-cohort in stratum l. Hence, we obtain the following stratified case-cohort

test statistic:

(2)

where , and ñlj is the number of subjects in group j and stratum l in

the sub-cohort. Since all the quantities in the summation contribute to Wn only if Δli1 = 1 or

Δli2 = 1, Wn can be obtained based on the observed data. It is also easy to verify that this test

statistic is the score function of the stratified version of the pseudo partial likelihood

function, and, following the results in [9], Wn has an asymptotic normal distribution.

2.3 Asymptotic variance

The asymptotic variance of Wn is the summation of the asymptotic variance of Wnl from all

the strata. The traditional case-cohort design is considered as a special case of SCC with the

number of strata L = 1 [9, 18]. Assume the proportion of subjects in group 1 is γl = nl1/nl, γl

∈ (0, 1), and ñl/nl converges to pl in stratum l as n goes to ∞ (i.e., pl = limñl/nl). According

to Self and Prentice [9], under H0, n−1/2Wn has an asymptotic normal distribution:

n−1/2Wn→D N(0, σ2 + ψ), where  and  with vl = nl/n, where σl
2 and ψl

correspond to the asymptotic variance of the log-rank test based on stratum l in the full
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cohort, and the variation resulting from sampling from stratum l for the sub-cohort,

respectively. Under the null hypothesis H0: Λl1(t) = Λl2(t) = Λl(t), t ∈ [0, Γ], let Sl(t) = Slj(t)

= P(Tlj ≥ t), and πlj (t) = P(Clj ≥ t), then the results in Self and Prentice [9] give

with event time w ∈ [0, Γ] and a ∨ b denoting the maximum of a and b.

The estimator for the asymptotic variance for Wn, , can be derived based on the

arguments similar to those in Cai and Zeng [1]. Specifically,  is given by ,

where

(3)

with p̂l = ñl/nl being the estimate of pl, and σ̂2 being the estimate of σ2 given by

Since all the quantities expressed above contribute to σ̂2 and ψ̂ only when Δli1 = 1 or Δli2 =

1,  can be obtained from the observed data. The derivations are given in the Web

Appendix.

Therefore, to test the equality of the cumulative hazard function of the event time between

the two groups in SCC, i.e., to test the null hypothesis H0: Λl1(t) = Λl2(t), l = 1, …, L, t ∈ [0,

Γ] vs. the alternative hypothesis HA: Λl1(t) ≠ Λl2(t) (two-sided) at the significance level α,

we reject H0 if , where Zα is the (100α)th percentile of the

standard normal distribution.

3. Sample size and power calculation

The sample size and power estimation formula is derived and simplified based on the

alternative hypothesis HA: Λl1(t) = eθ Λl2(t), t ∈ [0, Γ] where , where the log-

hazards ratios between the two exposure groups are assumed to be constant across the strata.

We further assume the following conditions: (i) the censoring distributions are the same in

the two groups; (ii) the number of failures is very small (i.e., failure proportion 0 italic> pD
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≪ 1) in the full cohort; and (iii) there are no ties of failures. For the sample size and power

calculation, we consider the test statistic with ω(t) = 1.

Under the alternative hypothesis HA, the asymptotic expectation of n−1/2Wn is the same as

the asymptotic expectation of the usual log-rank test statistic for the full cohort under HA

and can be approximated by

, where Dlj is the total

number of failures in group j(j = 1,2) in stratum l. Additionally, σ̂2 can be approximated by

 following the exact approximation and algebra as Cai and

Zeng [1] for each stratum. To simplify ψ̂, since the failures are much fewer than the stratum

sizes, we approximate  by (nl − Dl/2), where Dl = Dl1 + Dl2. Since the size of

the risk set in stratum l of the sub-cohort is about pl times the size of the risk set in stratum l

of the full cohort, ψ̂ can be approximated by . Hence,

the non-centrality parameter for  under the alternative is approximately

, which can be

simplified as , where pDl is the failure

proportion in stratum l and vl is the proportion of stratum l in the full cohort (vl = nl/n).

Consequently, the power function is

(4)

where n is the total number of subjects in the full cohort, θ is the log hazard ratio, α is the

significance level, pDl is the failure proportion in stratum l, vl is the proportion of stratum l,

γl is the proportion of subjects in group 1 and (1−γl) is the proportion of subjects in group 2

in stratum l, and pl is the sub-cohort sampling fraction in stratum l. For rare diseases, pDl is

very small. By dropping pDl/2, the formula (4) can be further simplified as

.

When L = 1, the above function can be further simplified as

, in which pD is the failure proportion and ñ = np. This is
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the same power function of the CC design as reported in Cai and Zeng [1]. When pl =1, we

obtain the power function of the stratified log-rank test for the full cohort, which is given by:

(5)

4. Proportional, balanced, and optimal designs

This section describes the power issues for two commonly used stratified sampling methods,

namely the proportional and balanced designs. Also described is an allocation strategy that

maximizes the power.

4.1 Proportional design

The proportional design is commonly used in stratified studies. Under the proportional

design, the number of subjects in the sub-cohort at each stratum is proportional to the size of

the stratum in the population. For example, consider the full cohort size n= 2,000, and there

are 4 strata with the strata proportion of 0.1, 0.2, 0.3 and 0.4; i.e., there are 200, 400, 600,

and 800 subjects in the 4 strata, respectively. The sub-cohort consists of 200 subjects. With

the proportional design, the numbers of samples in each stratum are 20, 40, 60, and 80,

respectively. Under such a design, the sub-cohort sampling proportions are the same for all

strata, i.e., pl = p for l.

To detect a log hazard ratio of θ with power β and significance level α, the required total

sub-cohort size is at least:

(6)

where [x] denotes the smallest integer that is bigger than x, and

. The sampling proportion p = ñ/n, and the required number

of subjects in stratum l is ñl = ñvl, l = 1, 2, …, L.

4.2 Balanced design

Another popular stratified sampling approach is the balanced design. Under such a design,

the number of subjects in a sub-cohort is the same across the strata. For example, consider

the full cohort size n= 2,000 with 4 strata, and a total of 200 subjects is required for the sub-

cohort, each stratum would contain 50 sampled subjects. To detect a log hazard ratio θ with

a power β and a significance level α, the required total sub-cohort size ñ is at least

(7)
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The sub-cohort size in stratum l is ñl = ñ/L and the sub-cohort sampling proportion pl = ñl/nl

= ñ/(Lnvl).

4.3 Optimal design

In many studies, the number of subjects that can be included in sub-studies is limited

because of financial and resource constraints. In these studies, we are given the total number

of subjects in the sub-cohort. The distribution of the number of subjects to each of the

stratum in the sub-cohort needs to be determined. We consider an optimal design strategy

which provides the highest power under such situation. Specifically, we propose an optimal

design with a set of pl which provides the highest power for a given ñ. This optimization

problem is solved by using the Lagrange multipliers method following the steps below.

Maximizing the power function for a given ñ is equivalent to minimizing the denominator

 in the formula (4), a function of pl, subject to

, a constraint function of pl. We obtain the Lagrange function

.

Furthermore, we have

After solving these two sets of equations, we obtain the optimal sub-cohort sampling

proportion

(8)

Hence, the optimal power for a given ñ is calculated as
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To achieve a power β with a significance level α based on the optimal design, the required

total sub-cohort size is given by ,

where . Therefore,

(9)

From the formula (8), we observe that under the situation when γl is similar across the strata

and pDl is very small (disease is rare), the optimal  or . Furthermore, under

the homogeneous situation where pDl is similar across the strata, the optimal pl is close to

ñ/n the estimate p from the proportional design. It means that the proportional design is

nearly optimal when the event rate is homogeneous across the strata.

We obtain the number of subjects in stratum l using ñl = plnvl, and the SCC total sample size

, in which pl is obtained from the formulae in the sections

for the proportional, balanced, or optimal design above, depending on the desired design.

4.4 Practical note: minimal detectable log-hazard ratio

The denominator of the total sub-cohort size ñ formula in the previous section needs to be

positive. This condition is written as

Since the failure rate pDl is usually fairly small for the case-cohort studies,

. Hence, , which is the log-

hazard ratio that can be detected with the entire cohort. This condition implies that the

stratified case-cohort design will not be able to detect a hazard ratio smaller than the one that

can be detected by using the entire cohort, which is a reasonable restriction.

5. Numeric results

5.1 Theoretical power

Table 1 shows the theoretical power of the SCC design, as well as the power of the full

cohort and the sub-cohort. The power function (4) is used to calculate PSCC, the power of

the SCC design, while formula (5) is used to calculate PFull, the power of the full cohort.
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The sub-cohort power PSub is obtained by substituting n with ñ in the full cohort power

function, where ñ is the sub-cohort size . The power PFull, PSCC, and PSub are

calculated for the different combinations of the full cohort size n, the event proportion pDl,

the group 1 proportion γl, the log-hazard ratio θ, and the sub-cohort sampling fraction pl in

stratum l. The significant level is set at α = 0.05 and the number of strata is L = 4. The event

proportion pD in the table is a mean value over all strata. For instance, at the mean value of

10%, pDl are set to 9%, 8%, 11%, and 10% for each of the 4 strata, respectively. Similarly,

at the mean value of 5% (1%), pDl are set to 4%, 5%, 4.5%, and 6% (0.8%, 1%, 1.2%, and

0.9%) for each of the 4 strata, respectively. In the example where the full cohort size n =

2,000, the event proportion pD = 10%, the group 1 proportion γl = 0.3, and the log-hazard

ratio θ = 0.5, the SCC sample with the 10% sub-cohort sampling proportion yields a power

of 0.634, while the power for the full cohort and for the stratified random sample are 0.894

and 0.172, respectively. In another example where the full cohort size n = 10,000, the event

proportion pD = 1%, the group 1 proportion γl = 0.3, and the log-hazard ratio θ = 1.0, the

SCC sample with the 1% sub-cohort sampling yields a power of 0.898 while the powers for

the full cohort and for the stratified random sample are 0.996 and 0.067, respectively. The

results in Table 1 suggest that the SCC design is an efficient and attractive solution in

situations with low event proportions and small sub-cohort sampling fractions.

5.2 Type I error and power for the stratified log-rank test

Simulation studies are conducted to evaluate the empirical type I error and the empirical

power for the stratified log-rank test using the SCC, the full cohort, and the sub-cohort data.

The simulation procedures and their results are presented in the Web Appendix (Tables A

and B).

Appendix Table A shows the empirical type I error for the stratified log-rank test using the

SCC (SCC), the full cohort (Full), and the sub-cohort (Sub) samples. The significance level

α is set at 0.05 and the number of strata L = 4. Various values are considered for the full

cohort size n, the stratum proportion vl, the event proportion pDl, the group 1 proportion γl,

and the sub-cohort sampling fraction pl in stratum l. Overall, the empirical type I error rates

in the SCC samples are fairly close to the nominal 0.05 level.

Appendix Table B presents the empirical power for the log-rank tests in the SCC the full

cohort and the sub-cohort samples. In addition, the theoretical power is compared with the

empirical power. It is observed that the test based on the SCC design is more powerful than

using the sub-cohort, and the power based on the full cohort provides the upper bound. Note

that in real studies, it is usually impossible to collect all the full cohort information required

to conduct the log-rank test. As illustrated in Appendix Table B, using only a small fraction

of the subjects, the power of the SCC design is over 50% of the power with the full cohort.

As expected, when the sampling rate increases, the power of the SCC increases. Overall, the

empirical power is very close to the theoretical powers. In the additional simulations, we

consider the different group 1 proportions across strata and the results are similar.
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5.3 Proportional, balanced, and optimal designs comparison

Power comparison under homogeneous and heterogeneous event rates—We

compare the proportional, balanced, and optimal sampling methods in order to investigate

which one is more efficient in the SCC design. Two situations where the event rates are

relatively homogeneous or heterogeneous over the strata are considered for comparison. In

the situation where the event rates are homogeneous, the event proportion pDl at each

stratum is relatively similar to each other. In the situation where the event rates are

heterogeneous, the event proportions pDl over the strata have a wide range. The

corresponding analysis results in both homogeneous and heterogeneous situations are

presented in Table 2.

Results for the SCC with homogeneous event rates are presented for a theoretical power

based on proportional, balanced, and optimal sampling for SCC with various combinations

of the full cohort size n, the event proportion pDl, the group 1 proportion γl, the log hazard

ratio θ, and the sub-cohort size ñ. The number of strata is L = 4 with the stratum proportions

(vl) of 0.1, 0.2, 0.3, and 0.4, respectively. The event proportion pD in the table is a mean

value over all strata. Specifically, at the level of 10%, pDl s are set to 9%, 8%, 11%, and

10% for each stratum. Similarly, at pD = 5%, 4 strata have 4%, 5%, 4.5%, and 6%,

respectively. The sub-cohort sampling fractions pl in stratum l for the proportional,

balanced, and optimal designs are calculated by ñ / n, ñ / Lnvl, and the formula (8),

respectively. The total SCC sizes nscc (prop), nscc (bal), and nscc (opt) are then calculated

using the formula . The theoretical powers Pprop, PBal, and Popt

are calculated using the power formula (4). The power ratio (PBal vs. Pprop) is presented in

percent (%).

Table 2 indicates that the total SCC sample sizes from the three methods are generally

similar under homogeneous circumstances. For instance, where the full cohort size n =

2,000, the event proportion pD = 10%, the group 1 proportion γl = 0.3, the log hazard ratio θ

= 0.5, and the stratified sub-cohort size = 200, the total SCC sample sizes are 376, 377, and

376 for proportional, balanced, and optimal samplings, respectively. The results show that

the power from proportional method Pprop is at least equal to or larger than PBal in all the

situations and the power ratio (PBal vs. Pprop) has a range from 83% to 100%. These results

suggest that, when the event rates are homogeneous over the strata, the proportional

sampling is more efficient than the balanced sampling. Furthermore, we observe that the

powers from the proportional method and the optimal design remain close, which indicates

that, when the event rates are homogeneous and the exposure group 1 proportion γl is the

same over strata, the proportional method is close to the optimal sampling strategy.

Table 2 also provides results for situations with heterogeneous event rates over strata. The

set-up is similar to the homogeneous situation, except that the event rates are set to a wide

range over strata. Two sets of combination of pDl (l = 1, 2, 3, 4) are examined. Set1 gives the

values of pDl to 9%, 30%, 5%, and 20% for the 4 strata and Set2 gives the values of pDl to

4%, 25%, 10%, and 6% for the 4 strata, respectively. Results in Table 2 indicate that for the

given set up and given ñ, in a heterogeneous situation, the total SCC sample sizes from the

proportional and balanced methods are similar. The power for these two methods is also
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similar with slightly more power for the proportional method in most cases in Set1 and Set2.

As expected, among all three methods, the optimal design yields the highest theoretical

power (Popt) with the smallest total SCC sample size. For instance, where the full cohort

size n = 2,000, the event proportion pDl is as in Set1, the group 1 proportion γl = 0.3, the log

hazard ratio θ = 0.5, and the stratified sub-cohort size = 200, the powers (nscc) are 0.637

(495) for the proportional, 0.590 (496) for the balanced, and 0.731 (485) for the optimal

design. Thus, under the heterogeneous event rate situation, the optimal design indeed

provides more powerful test over the other two designs.

Additional simulation studies are conducted to examine whether the sample size formulae

for each design produce sufficient power, specifically, for a full cohort size n = 2,000 with 4

strata and overall disease rate pD of 5% (4%, 5%, 4.5%, or 6% over the strata) or 10% (9%,

8%, 11%, or 10% over the strata). The group 1 proportion γl is set to 0.3 for all strata and the

log hazard ratio is set to 0.55 or 0.693.

To target a power of 80% at the significance level of 0.05, we first calculate the sub-cohort

size at each stratum ñl, the stratum sampling proportion pl, the total sub-cohort size ñ, and

the total number of subjects in SCC nscc by using the formulae given in Section 4 for each of

the proportional, balanced and optimal sampling designs. We then carry out simulations

using the derived sample sizes to examine whether the empirical powers achieve the target

80%. The simulation procedure is similar to that for Appendix Table B. The results are

summarized in Table 3. From Table 3, we observe that the sample sizes calculated from the

formulae do provide close to sufficient power empirically in each design. The results in

Table 3 also indicate that to achieve the same power, the optimal design gives the smallest

sample size among the three designs, the proportional is the second smallest, and the

balanced has the largest for all 3 samples. The average sub-cohort size saving of the optimal

vs. the balanced approach is approximately 20%.

6. The MORGAM Study

This section presents the MORGAM study [23] as an example to illustrate the efficiency of

a SCC design. The MORGAM study is a multinational collaborative cohort study

prospectively followed the development of CHD and stroke events. A total of 4,559 subjects

including 2,282 males and 2,277 females were assessed at the baseline visit in 1997; by

2003, ninety-six CHD events were observed in males (CHD incidence pDl = 0.042) and 24

in females (CHD incidence pDl = 0.011). The CHD incidence rates differ by gender, and the

testing for genotyping is expensive, so a cost-effective SCC design may be needed. The

SCC design examines the relationship between the genetic risk factor and the CHD

incidence where gender is considered as a stratification factor. The study is designed with

80% power and a 0.05 significance level, and assumes the genetic risk factor frequency is

about 0.4 for both the male and the female strata. The full cohort and strata information for

this design are displayed in Table 4.

Assume that a hazard ratio of 2 is to be detected. Note that the minimal detectable hazard

ratio based on the entire MORGAM study is 1.9. Table 4 presents the sample size

calculation using the proportional, balanced, and optimal sampling methods. Under the
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optimal (proportional) design, a total of 154 (210) subjects is required for the sub-cohort,

123 (105) of which are from the male stratum and 31 (105) from the female stratum; the

total SCC sample size is 269 (325). The balanced design requires a sample size similar to

that of the proportional method because of the similar strata proportion vl for the male and

the female (i.e., 2,282 subjects are in the male stratum and 2,277 in the female stratum).

However, both the proportional and balanced methods require approximate 20% more sub-

cohort subjects than the optimal design.

Interestingly, under the optimal design, the sub-cohort size at stratum l is proportional to the

ratio of the number of the events at stratum l vs. all events, that is, . For instance, D

ninety-six events were observed in the male stratum, which is 80% of the total number of

events observed in the full cohort (120). The required sub-cohort size at the male stratum is

123, 80% of the overall sub-cohort size (154).

The non-event vs. event ratio has been examined for all three sampling methods. All

methods yield a ratio greater than 1 to ensure the good precision of testing. The optimal

method has the smallest overall non-event vs. event ratio of 1.2 among all methods,

supporting the conclusion that the optimal method is the most efficient among others.

7. Conclusion and discussion

We have proposed a stratified log-rank type test statistic for the SCC design and provided

the power calculation formula. We have investigated the proportional, balanced, and optimal

sampling methods, and derived the corresponding sample size calculation formulae. The

simulation studies show that the proposed stratified log-rank type test statistic is valid for the

finite SCC samples. The simulations also indicate that the power of the SCC design can be

fairly high compared with the full cohort when the event rate is low. The empirical power is

similar to the theoretical power.

Additional simulation studies have also been conducted to compare the proportional,

balanced, and optimal samplings methods. The results show that when the event rates are

relatively homogeneous across the strata, the proportional method is superior to the balanced

method and is close to the optimal method. However, when the event rates are

heterogeneous over the strata, the power for the proportional method is slightly higher than

that for the balanced in most of the finite samples. Overall, the optimal method yields the

highest power along with the smallest required sample size among all three methods.

Stratified sampling is commonly used in the survey sampling to improve the estimation

precision for the population quantity of interest. In some situations, the stratified sampling

may be unnecessary but it often leads to the more efficient estimators as compared with the

unstratified design, e.g., a more precise estimation of the exposure risk effects, especially

when subjects from the same stratum are homogeneous (due to the strong association

between the exposure group and the stratum). Furthermore, the stratified design ensures the

representation of the small subgroups in the population. When the sampling is stratified, it is

natural to consider a stratified test, although an unstratified test statistic can be used when
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the association between the stratum and the outcome is proportional. Our proposed stratified

and nonparametric test statistic naturally accounts for the non-proportionality if it exists.

Our paper only considers the combination of stratified sampling and stratified test when

strata in both the design stage and the test stage are the same. In practice, the stratified

sampling and the stratified test may be used very differently: when there is a strong

association between stratified variable and exposure, the stratified sampling may be used to

improve the design efficiency; however, if one believes a strong non-proportional

association between failure time and exposure variable across strata, the stratified test needs

to be adopted to ensure the test validity. In the Web Appendix III, we use the power formula

(4) to compare the stratified design with the unstratified design analytically. The results

show that in general, the stratified design tends to have a higher power than the unstratified

design with stratified or unstratified test. Therefore, when both associations are present, it is

necessary to take the current approach with both stratified sampling and stratified test. In the

situation when the disease proportions or the strata distribution are not available, we suggest

to conduct a pilot study to obtain this information before planning a stratified case-cohort

study.

The situation becomes more complex when the stratified variable in the design stage is not

the same as the stratified variable in the test stage. Generalizing our sample size/power

calculation to address this complex situation will be an interesting future study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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