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Abstract

The Case-cohort (CC) study design usually has been used for risk factor assessment in
epidemiologic studies or disease prevention trials for rare diseases. The sample size/power
calculation for the CC design is given in Cai and Zeng [1]. However, the sample size/power
calculation for a stratified case-cohort (SCC) design has not been addressed before. This article
extends the results of Cai and Zeng [1] to the SCC design. Simulation studies show that the
proposed test for the SCC design utilizing small sub-cohort sampling fractions is valid and
efficient for situations where the disease rate is low. Furthermore, optimization of sampling in the
SCC design is discussed and compared with proportional and balanced sampling techniques. An
epidemiological study is provided to illustrate the sample size calculation under the SCC design.
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1. Introduction

Time-to-event is a commonly used endpoint for the risk factor assessment in epidemiologic
studies or disease prevention trials [2—7]. The case-cohort (CC) design, originally proposed
by Prentice [8], has often been used in studying the time to event when the disease is rare
and the cost of collecting the risk factor information is high. A CC sample consists of a sub-
cohort, which is a random sample of the full cohort, and all the subjects with the event
(cases). Statistical analysis methods for analyzing data from the CC study design have been
described in many publications [8-20]. For rare diseases, Cai and Zeng [1] proposed a log-
rank type of test statistic, which is equivalent to the score test based on a pseudo-partial
likelihood function, similar to that was described in Self and Prentice [9]. Furthermore, Cai
and Zeng [1] provided an explicit procedure for calculating the sample size and power based
on their proposed test.
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In studies where the study populations are not homogenous or the original cohort is
assembled through a stratified design, a stratified case-cohort (SCC) design may be more
appropriate [21-22]. The SCC sample consists of the stratified sub-cohorts selected by a
stratified random sampling from the full cohort, and all the cases. For example, the
MONICA, Risk, Genetics, Archiving, and Monograph (MORGAM) study [23] is a
multinational collaborative cohort study that prospectively followed the development of
coronary heart disease (CHD) and stroke events. One goal of this study was to identify risk
genotypes for predicting a CHD event. Since the CHD incidence rate differs by gender, and
genotyping is expensive, a possible cost-effective design can be a stratified case-cohort
design, where the gender is considered as a stratification factor so that the different
proportion of sub-cohort samples is selected for each gender group.

Although stratified methods for analyzing data from the SCC design have been studied
extensively [18, 24], the sample size and power calculations of the SCC design have not
been previously addressed. This paper aims to fill this gap. Specifically, we propose a
stratified log-rank statistic and derive expressions for sample size and power calculations. In
addition, we compare different sampling strategies including proportional sampling,
balanced sampling, and optimal sampling designs. Several simulation studies are presented
to evaluate the proposed method using the MORGAM study. We further compare the
stratified design/test with the unstratified design/test in the conclusion and discussion
section.

2. Stratified case-cohort design and stratified log-rank test

2.1 Notation

Assume that there are n subjects and L strata in a stratified full cohort, and n; subjects in
stratum I (1 =1, ..., L). Assume two groups indicating the expensive and dichotomous
exposure status (for example, the standard versus the wild type single nucleotide
polymorphism) and assume nj; subjects in exposure group j (j = 1, 2) of stratum I. Assuming
that T;j represents the event time and Cj;j the censoring time for subject i in exposure group j
and stratum I (i =1, ..., ny;), it is reasonable to assume the Ty;;s are independent of each
other. Let Xjjj; = Tjjj A Cyjj be the observed time, where a A b denotes the minimum of a and
b, and Ajjj = I (T)j < Cy5j) the failure indicator, in which Ayj; = 1 denotes observed failure and
Ajjj = 0 denotes censoring.

In the SCC design, the exposure status is obtained for all the cases and a stratified sub-
cohort sample. Specifically, we assume that fi; subjects are randomly sampled into a sub-

cohort from n; subjects in stratum I, and the sub-cohort size is ﬁzz;ﬁz. Let &jj= 1 denote
that subject i in group j and stratum | is selected into the sub-cohort and &;; = 0 otherwise.
Let y be the proportion of subjects in group 1 and (1-y) the proportion of subjects in group
2 in stratum I. All subjects in the sub-cohort and all events in the L strata make up the
stratified case-cohort sample.
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2.2 Test statistic

A log-rank type of test is used to compare the hazard rates between the two groups in SCC.
The null hypothesis is Hg: Aj1(t) = Ap(t), 1 =1, ..., L, t € [0, I'], where T" is the length of
study period and Aj;(t) the cumulative hazard function of the event time t in group j in
stratum I. To construct a log-rank type test for the stratified case-cohort sample, we first
notice that a weighted stratified log-rank test statistic for the full cohort [9] may be

ZJ OYu(®)Yie(t) [dNu(t) dNp(t) _

expressed as 0 Y (t)+Y 12(t) Yut) Yl , Where 1j;(t) is the number
of subjects at risk and NU(t) is a counting process representing the number of events at time t
in group j and stratum I, and «(t) is a weight function. The formula above can also be

expressed as

L L Ao Xm)YZQ(Xm) L 02 Aiow(X10)Y 11 (Xiia)

Wy= = — .
thZl Y (X)) +Y(Xun) =2 Y (Xue)+Y 2(Xusg)

0]

For the full cohort, the log-rank test statistic is known to be the same as the score function of
the Cox partial likelihood function [1, 9].

The test statistic 737* requires the covariate information of the full cohort; in a SCC sample
the covariate information is only available for the subjects in the sub-cohort and the cases.
We propose to use the sub-cohort data to approximate 7.,- (t) by )7“- (t)/p), where )7” (t) is the
number of subjects at risk for group j and stratum | in the sub-cohort, and p) is the sampling
fraction of the sub-cohort in stratum 1. Hence, we obtain the following stratified case-cohort
test statistic:

L Amw(Xm)le(Xm) L U2 Agiow (Xpin) Y i1 (Xiio)

w,=S"w, - d ,
; ;; Vi (Xin)+Ye(Xn) S5 Y n(Xuz)+Y 2(Xis)

@

where Y (t):Z:ile(Xlij > t), and fiy; is the number of subjects in group j and stratum | in
the sub-cohort. Since all the quantities in the summation contribute to Wy, only if Ajj; = 1 or
Aji» = 1, W, can be obtained based on the observed data. It is also easy to verify that this test
statistic is the score function of the stratified version of the pseudo partial likelihood
function, and, following the results in [9], W,, has an asymptotic normal distribution.

2.3 Asymptotic variance

The asymptotic variance of W, is the summation of the asymptotic variance of Wy, from all
the strata. The traditional case-cohort design is considered as a special case of SCC with the
number of strata L = 1 [9, 18]. Assume the proportion of subjects in group 1 is ¢ = n;1/n;, n
€ (0, 1), and fi}/n; converges to p; in stratum | as n goes to oo (i.e., p; = limfi;/n;). According
to Self and Prentice [9], under Hg, n"2W,, has an asymptotic normal distribution:

2_ 2 _
n~Y2w,—p N(0, 2 + ), where 7 _;vlgl and v ;Um with v; = ny/n, where g2 and i

correspond to the asymptotic variance of the log-rank test based on stratum I in the full
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cohort, and the variation resulting from sampling from stratum I for the sub-cohort,
respectively. Under the null hypothesis Ho: Aj1(t) = Ajp(t) = Ay(t), t € [0, T, let Sy(t) = S);(t)
=P(T)j 2 1), and m;j (t) = P(Cjj 2 1), then the results in Self and Prentice [9] give

— w(t) w(w) dS;(w) dS;(t)
0= I s e e 0wt A 6 ) St Sy where
Qu(t, w)="ZEy(1=7) St V w)[ (v () (w)mia (8 V w)+(1=y) w2 (8) i (w)ma (¢ V w)]

with event time w € [0, I'] and a V b denoting the maximum of a and b.

The estimator for the asymptotic variance for W, 6‘2”, can be derived based on the

arguments similar to those in Cai and Zeng [1]. Specifically, &3‘,” is given by 6‘2%, =62 44),
where

Ay (X)) Vi1 (X )Yzz(Xh ) ! Ay g o (X DX 0 < Xi)
21— ij ij j i) o j i
1/} IZ ( Pz)JZhZ { (Yn(Xzz;)Jrle(Xm)) z_jl Zl Y (X )+ (X ) @)

Ay (X)) Vi1 (X )YZQ(Xlz )
1 b ij i il
( pl)]zllzl (Yll(Xl'L_7)+Yl2(Xlz7))

HMh

_1
n )

with p; = fij/n| being the estimate of p;, and ozAbeing the estimate of o2 given by

521 {iml A (X)) Y i2(Xiin)? n S nzi Aigw (Xii2)Y i1 (Xiiz)* }
= - - 3 - - 3 ("
T USim (Y (Xa)+Y 2(X6))™ i1 (Vi (Xe)+Y i2(Xi2))

Since all the quantities expressed above contribute to o2 and wanly when Ajjp =1 or Ajjp =

1, 62% can be obtained from the observed data. The derivations are given in the Web
Appendix.

Therefore, to test the equality of the cumulative hazard function of the event time between
the two groups in SCC, i.e., to test the null hypothesis Hg: Aj1(t) = Ajp(t), 1=1, ..., L, t € [0,
I'] vs. the alternative hypothesis Ha: Aj1(t) # Aj2(t) (two-sided) at the significance level q,

we reject Hg if ‘”_WWn/ Vo, ’ >7Z1-a/2, where Z,, is the (1002)™ percentile of the
standard normal distribution.

3. Sample size and power calculation

The sample size and power estimation formula is derived and simplified based on the
alternative hypothesis Ha: Aj(t) = e? Ajp(b), t € [0, T where #=0(1/ V'), where the log-
hazards ratios between the two exposure groups are assumed to be constant across the strata.
We further assume the following conditions: (i) the censoring distributions are the same in
the two groups; (ii) the number of failures is very small (i.e., failure proportion 0 italic> pp
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< 1) in the full cohort; and (iii) there are no ties of failures. For the sample size and power
calculation, we consider the test statistic with w(t) = 1.

Under the alternative hypothesis Ha, the asymptotic expectation of n"Y2W,, is the same as
the asymptotic expectation of the usual log-rank test statistic for the full cohort under Hp
and can be approximated by
_ Yiu(t)Y(t) _
1/2 T ll 12 1/2
Zfo Y ()+Y it )[dA 1()—dAp(t)] ~ n 20(1 ) Pu , where Dj; is the total
number of fallures in group j( =1,2) in stratum I. Addltlonally, o2 can be approximated by

/”Zl ((1=7)* D47 Dyo) following the exact approximation and algebra as Cai and
Zeng [1] for each stratum. To simplify g, since the failures are much fewer than the stratum

sizes, we approximate ZjZIsz(t) by (n; — D|/2), where D| = D1 + Dyp. Since the size of
the risk set in stratum | of the sub-cohort is about p; times the size of the risk set in stratum |

1& (1-p)

. + _ 2
of the full cohort,  can be approximated by n; (ni—Dy/2)p, %(1=1)(Pu+Do)

. Hence,
the non-centrality parameter for /21, / ﬁ under the alternative is approximately
n Y2y 16(1—y) D
\/1/712%:1((1*7’1)2DZ1+%2D12)+1/7121L:1(#%%(1—%)(Dz1+Dl2)2, which can be
n205 3 (n(1=7)pp 1)

1—
simplified as \/ZJL:1 {%(l_%)pmvl(l—k(lf(’Tf;mﬁpﬁn)}, where ppy is the failure
proportion in stratum | and v; is the proportion of stratum I in the full cohort (v = ny/n).
Consequently, the power function is

S (n(=)p 1)
\/Zlel {(’71(1—’71)1)[,1111)(14-%?[)1)}

@ Z(1/2+n1/2|0‘

O

where n is the total number of subjects in the full cohort, &is the log hazard ratio, a is the
significance level, pp is the failure proportion in stratum 1, v; is the proportion of stratum I,
1 is the proportion of subjects in group 1 and (1-7y) is the proportion of subjects in group 2
in stratum [, and p, is the sub-cohort sampling fraction in stratum . For rare diseases, pp is
very small. By dropping ppy/2, the formula (4) can be further simplified as

o (Za/2+n1/26 i (n(1=7)pp,v) )
\/ZlL:1 {(Fn(1_Vl)le’Ul)(l‘f'(l/pl—l)le)} )

When L = 1, the above function can be further simplified as

Al/2 Y(1=7)py
® (Z y2+n 7o) p+(1—p)P,, ), in which pp is the failure proportion and fi = np. This is
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the same power function of the CC design as reported in Cai and Zeng [1]. When p; =1, we
obtain the power function of the stratified log-rank test for the full cohort, which is given by:

L
®(Zajztn/?|6) \/Elzl(w(l—v’z)pmvz)- (5)

4. Proportional, balanced, and optimal designs

This section describes the power issues for two commonly used stratified sampling methods,
namely the proportional and balanced designs. Also described is an allocation strategy that
maximizes the power.

4.1 Proportional design

The proportional design is commonly used in stratified studies. Under the proportional
design, the number of subjects in the sub-cohort at each stratum is proportional to the size of
the stratum in the population. For example, consider the full cohort size n= 2,000, and there
are 4 strata with the strata proportion of 0.1, 0.2, 0.3 and 0.4; i.e., there are 200, 400, 600,
and 800 subjects in the 4 strata, respectively. The sub-cohort consists of 200 subjects. With
the proportional design, the numbers of samples in each stratum are 20, 40, 60, and 80,
respectively. Under such a design, the sub-cohort sampling proportions are the same for all
strata, i.e., py = p for I.

To detect a log hazard ratio of &with power £ and significance level a, the required total
sub-cohort size is at least:

[ b (- e/ Oposd) ]
| B 0Pt (1P (120 /2) |

(6)

where [X] denotes the smallest integer that is bigger than x, and

nl/QGZlel (n(A—=v)pp,v1)
Zy_ajatZs . The sampling proportion p = fi/n, and the required number

of subjects in stratum l'is iy = fivj, 1 =1, 2, ..., L.

By=

4.2 Balanced design

Another popular stratified sampling approach is the balanced design. Under such a design,
the number of subjects in a sub-cohort is the same across the strata. For example, consider
the full cohort size n= 2,000 with 4 strata, and a total of 200 subjects is required for the sub-
cohort, each stratum would contain 50 sampled subjects. To detect a log hazard ratio &with
a power gand a significance level a, the required total sub-cohort size fi is at least

Lok (w(=w)p?, v/ (1= /2))
Bg_ZlL:I (’7’1(1_%)1)01’”1 (1_pm/ (1_pm/2)))

M
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The sub-cohort size in stratum I is fi; = Ai/L and the sub-cohort sampling proportion p; = fiy/n
= fi/(Lnvy).

4.3 Optimal design

In many studies, the number of subjects that can be included in sub-studies is limited
because of financial and resource constraints. In these studies, we are given the total number
of subjects in the sub-cohort. The distribution of the number of subjects to each of the
stratum in the sub-cohort needs to be determined. We consider an optimal design strategy
which provides the highest power under such situation. Specifically, we propose an optimal
design with a set of p; which provides the highest power for a given fi. This optimization
problem is solved by using the Lagrange multipliers method following the steps below.

Maximizing the power function for a given fi is equivalent to minimizing the denominator

L 1-p
2121(%(1_7l>p171“1)(1+ (1-p,,/2) plpDz) in the formula (4), a function of p,, subject to
L

lzlplvz:fl/n, a constraint function of p;. We obtain the Lagrange function

_ L 1— L n
20 )=Y1, (=00 (4 o)) 3 (X0 )=, )

Furthermore, we have

L B 1—p;
o)t (0P 1 )

L ~
g A ) 3)
opy opt (ZL _) opy
_ 'Yl(lf’\/l)pr)lvlpr)],/(lfpnl/Q) _ 9= (p1,\) _ A l:lplvl_% _\~L n__
=— pY: +A % v;=0,and o= N —lelplvl—ﬁ_().

After solving these two sets of equations, we obtain the optimal sub-cohort sampling
proportion

n \/71(1—’71)/(1—]7171/2)}?,31
St (Y n(=7)/ (1=ppy /2)Pp 1)

pi= ®

Hence, the optimal power for a given fi is calculated as

w210 ((L—y)p )

Jﬁ/nzle (H0=20P 01 (1=pps/ (1=p /D) +(Shs (V=30 =P/ Do)
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To achieve a power gwith a significance level a based on the optimal design, the required

[ n(Sh G0/ pp/2ppn) ]
total sub-cohort size is given by {Bg—ZzLﬂ(%(1—%)%1”1(1—%1/ (1-p,./2))) |,

_ n1/2621L:1 (71 (1 _7l)le vl)
where 2 Zy—a/2+Zg . Therefore,

(V=) 1=Pp/2)py ) (SEr /31— (1=P i /2)P )
B%_Elel(’71(1—"/1)le'1)1<1_le/(1—]3131/2))) .

pi=

From the formula (8), we observe that under the situation when p is similar across the strata

. . . . s Poi Dy
and ppy is very small (disease is rare), the optimal “l—p_“ or nzzfln. Furthermore, under

D
the homogeneous situation where pp, is similar across the strata, the optimal p is close to
fi/n the estimate p from the proportional design. It means that the proportional design is

nearly optimal when the event rate is homogeneous across the strata.

We obtain the number of subjects in stratum | using fij = pjnv, and the SCC total sample size

L
nsee=ny__ (pro+(1=p1)pp,v1), in which py is obtained from the formulae in the sections
for the proportional, balanced, or optimal design above, depending on the desired design.

4.4 Practical note: minimal detectable log-hazard ratio

The denominator of the total sub-cohort size fi formula in the previous section needs to be
positive. This condition is written as

Y EEGi=0p,e) -5k (=00, 0/ 1=y /2)
n' 23 ((1=n)p ) .

0| >00 = (Z1-a/2+Zp)

Since the failure rate ppy is usually fairly small for the case-cohort studies,

N (Z1-0/21Zp)
Poi—Pp/ |1~ 5 ) 7 Pou. Hence, nl/2 \/Zl:1 (v:(1=71)pp,v1), Which is the log-
hazard ratio that can be detected with the entire cohort. This condition implies that the
stratified case-cohort design will not be able to detect a hazard ratio smaller than the one that
can be detected by using the entire cohort, which is a reasonable restriction.

5. Numeric results

5.1 Theoretical power

Table 1 shows the theoretical power of the SCC design, as well as the power of the full
cohort and the sub-cohort. The power function (4) is used to calculate Pscc, the power of
the SCC design, while formula (5) is used to calculate P, the power of the full cohort.
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The sub-cohort power Pg, is obtained by substituting n with fi in the full cohort power

function, where fi is the sub-cohort size ﬁznzlilvzpz. The power Pry, Psce, and Pgyp, are
calculated for the different combinations of the full cohort size n, the event proportion ppy,
the group 1 proportion y, the log-hazard ratio 6, and the sub-cohort sampling fraction p; in
stratum |. The significant level is set at a = 0.05 and the number of strata is L = 4. The event
proportion pp in the table is a mean value over all strata. For instance, at the mean value of
10%, pp) are set to 9%, 8%, 11%, and 10% for each of the 4 strata, respectively. Similarly,
at the mean value of 5% (1%), pp) are set to 4%, 5%, 4.5%, and 6% (0.8%, 1%, 1.2%, and
0.9%) for each of the 4 strata, respectively. In the example where the full cohort size n =
2,000, the event proportion pp = 10%, the group 1 proportion » = 0.3, and the log-hazard
ratio &= 0.5, the SCC sample with the 10% sub-cohort sampling proportion yields a power
of 0.634, while the power for the full cohort and for the stratified random sample are 0.894
and 0.172, respectively. In another example where the full cohort size n = 10,000, the event
proportion pp = 1%, the group 1 proportion » = 0.3, and the log-hazard ratio 6= 1.0, the
SCC sample with the 1% sub-cohort sampling yields a power of 0.898 while the powers for
the full cohort and for the stratified random sample are 0.996 and 0.067, respectively. The
results in Table 1 suggest that the SCC design is an efficient and attractive solution in
situations with low event proportions and small sub-cohort sampling fractions.

5.2 Type | error and power for the stratified log-rank test

Simulation studies are conducted to evaluate the empirical type | error and the empirical
power for the stratified log-rank test using the SCC, the full cohort, and the sub-cohort data.
The simulation procedures and their results are presented in the Web Appendix (Tables A
and B).

Appendix Table A shows the empirical type | error for the stratified log-rank test using the
SCC (SCC), the full cohort (Full), and the sub-cohort (Sub) samples. The significance level
a is set at 0.05 and the number of strata L = 4. Various values are considered for the full
cohort size n, the stratum proportion v, the event proportion pp), the group 1 proportion y,
and the sub-cohort sampling fraction p; in stratum I. Overall, the empirical type | error rates
in the SCC samples are fairly close to the nominal 0.05 level.

Appendix Table B presents the empirical power for the log-rank tests in the SCC the full
cohort and the sub-cohort samples. In addition, the theoretical power is compared with the
empirical power. It is observed that the test based on the SCC design is more powerful than
using the sub-cohort, and the power based on the full cohort provides the upper bound. Note
that in real studies, it is usually impossible to collect all the full cohort information required
to conduct the log-rank test. As illustrated in Appendix Table B, using only a small fraction
of the subjects, the power of the SCC design is over 50% of the power with the full cohort.
As expected, when the sampling rate increases, the power of the SCC increases. Overall, the
empirical power is very close to the theoretical powers. In the additional simulations, we
consider the different group 1 proportions across strata and the results are similar.
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5.3 Proportional, balanced, and optimal designs comparison

Power comparison under homogeneous and heterogeneous event rates—We
compare the proportional, balanced, and optimal sampling methods in order to investigate
which one is more efficient in the SCC design. Two situations where the event rates are
relatively homogeneous or heterogeneous over the strata are considered for comparison. In
the situation where the event rates are homogeneous, the event proportion ppy at each
stratum is relatively similar to each other. In the situation where the event rates are
heterogeneous, the event proportions pp over the strata have a wide range. The
corresponding analysis results in both homogeneous and heterogeneous situations are
presented in Table 2.

Results for the SCC with homogeneous event rates are presented for a theoretical power
based on proportional, balanced, and optimal sampling for SCC with various combinations
of the full cohort size n, the event proportion pp, the group 1 proportion y, the log hazard
ratio 6, and the sub-cohort size fi. The number of strata is L = 4 with the stratum proportions
(v;) of 0.1, 0.2, 0.3, and 0.4, respectively. The event proportion pp in the table is a mean
value over all strata. Specifically, at the level of 10%, pp s are set to 9%, 8%, 11%, and
10% for each stratum. Similarly, at pp = 5%, 4 strata have 4%, 5%, 4.5%, and 6%,
respectively. The sub-cohort sampling fractions py in stratum | for the proportional,
balanced, and optimal designs are calculated by fi / n, fi / Lnv;, and the formula (8),
respectively. The total SCC sizes ng.c (prop), nse (bal), and ng.. (opt) are then calculated

L
using the formula nzl:l(pzvz+(1—pz)pmvz). The theoretical powers Pprop, Pal, and Pop
are calculated using the power formula (4). The power ratio (Pga) VS. Pprop) is presented in
percent (%).

Table 2 indicates that the total SCC sample sizes from the three methods are generally
similar under homogeneous circumstances. For instance, where the full cohort size n =
2,000, the event proportion pp = 10%, the group 1 proportion » = 0.3, the log hazard ratio &
= 0.5, and the stratified sub-cohort size = 200, the total SCC sample sizes are 376, 377, and
376 for proportional, balanced, and optimal samplings, respectively. The results show that
the power from proportional method Ppyqp is at least equal to or larger than Pgyy in all the
situations and the power ratio (Pgg VS. Pprop) has a range from 83% to 100%. These results
suggest that, when the event rates are homogeneous over the strata, the proportional
sampling is more efficient than the balanced sampling. Furthermore, we observe that the
powers from the proportional method and the optimal design remain close, which indicates
that, when the event rates are homogeneous and the exposure group 1 proportion y is the
same over strata, the proportional method is close to the optimal sampling strategy.

Table 2 also provides results for situations with heterogeneous event rates over strata. The
set-up is similar to the homogeneous situation, except that the event rates are set to a wide
range over strata. Two sets of combination of pp; (1 = 1, 2, 3, 4) are examined. Setl gives the
values of ppj to 9%, 30%, 5%, and 20% for the 4 strata and Set2 gives the values of pp) to
4%, 25%, 10%, and 6% for the 4 strata, respectively. Results in Table 2 indicate that for the
given set up and given fi, in a heterogeneous situation, the total SCC sample sizes from the
proportional and balanced methods are similar. The power for these two methods is also
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similar with slightly more power for the proportional method in most cases in Setl and Set2.
As expected, among all three methods, the optimal design yields the highest theoretical
power (Pgpt) with the smallest total SCC sample size. For instance, where the full cohort
size n = 2,000, the event proportion pp is as in Setl, the group 1 proportion y = 0.3, the log
hazard ratio = 0.5, and the stratified sub-cohort size = 200, the powers (ngc) are 0.637
(495) for the proportional, 0.590 (496) for the balanced, and 0.731 (485) for the optimal
design. Thus, under the heterogeneous event rate situation, the optimal design indeed
provides more powerful test over the other two designs.

Additional simulation studies are conducted to examine whether the sample size formulae
for each design produce sufficient power, specifically, for a full cohort size n = 2,000 with 4
strata and overall disease rate pp of 5% (4%, 5%, 4.5%, or 6% over the strata) or 10% (9%,
8%, 11%, or 10% over the strata). The group 1 proportion y is set to 0.3 for all strata and the
log hazard ratio is set to 0.55 or 0.693.

To target a power of 80% at the significance level of 0.05, we first calculate the sub-cohort
size at each stratum fij, the stratum sampling proportion pj, the total sub-cohort size fi, and
the total number of subjects in SCC ngc by using the formulae given in Section 4 for each of
the proportional, balanced and optimal sampling designs. We then carry out simulations
using the derived sample sizes to examine whether the empirical powers achieve the target
80%. The simulation procedure is similar to that for Appendix Table B. The results are
summarized in Table 3. From Table 3, we observe that the sample sizes calculated from the
formulae do provide close to sufficient power empirically in each design. The results in
Table 3 also indicate that to achieve the same power, the optimal design gives the smallest
sample size among the three designs, the proportional is the second smallest, and the
balanced has the largest for all 3 samples. The average sub-cohort size saving of the optimal
vs. the balanced approach is approximately 20%.

6. The MORGAM Study

This section presents the MORGAM study [23] as an example to illustrate the efficiency of
a SCC design. The MORGAM study is a multinational collaborative cohort study
prospectively followed the development of CHD and stroke events. A total of 4,559 subjects
including 2,282 males and 2,277 females were assessed at the baseline visit in 1997; by
2003, ninety-six CHD events were observed in males (CHD incidence pp = 0.042) and 24
in females (CHD incidence pp; = 0.011). The CHD incidence rates differ by gender, and the
testing for genotyping is expensive, so a cost-effective SCC design may be needed. The
SCC design examines the relationship between the genetic risk factor and the CHD
incidence where gender is considered as a stratification factor. The study is designed with
80% power and a 0.05 significance level, and assumes the genetic risk factor frequency is
about 0.4 for both the male and the female strata. The full cohort and strata information for
this design are displayed in Table 4.

Assume that a hazard ratio of 2 is to be detected. Note that the minimal detectable hazard
ratio based on the entire MORGAM study is 1.9. Table 4 presents the sample size
calculation using the proportional, balanced, and optimal sampling methods. Under the
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optimal (proportional) design, a total of 154 (210) subjects is required for the sub-cohort,
123 (105) of which are from the male stratum and 31 (105) from the female stratum; the
total SCC sample size is 269 (325). The balanced design requires a sample size similar to
that of the proportional method because of the similar strata proportion v| for the male and
the female (i.e., 2,282 subjects are in the male stratum and 2,277 in the female stratum).
However, both the proportional and balanced methods require approximate 20% more sub-
cohort subjects than the optimal design.

Interestingly, under the optimal design, the sub-cohort size at stratum | is proportional to the

ratio of the number of the events at stratum | vs. all events, that is, fzz:%ﬁ. For instance, D
ninety-six events were observed in the male stratum, which is 80% of the total number of
events observed in the full cohort (120). The required sub-cohort size at the male stratum is
123, 80% of the overall sub-cohort size (154).

The non-event vs. event ratio has been examined for all three sampling methods. All
methods yield a ratio greater than 1 to ensure the good precision of testing. The optimal
method has the smallest overall non-event vs. event ratio of 1.2 among all methods,
supporting the conclusion that the optimal method is the most efficient among others.

7. Conclusion and discussion

We have proposed a stratified log-rank type test statistic for the SCC design and provided
the power calculation formula. We have investigated the proportional, balanced, and optimal
sampling methods, and derived the corresponding sample size calculation formulae. The
simulation studies show that the proposed stratified log-rank type test statistic is valid for the
finite SCC samples. The simulations also indicate that the power of the SCC design can be
fairly high compared with the full cohort when the event rate is low. The empirical power is
similar to the theoretical power.

Additional simulation studies have also been conducted to compare the proportional,
balanced, and optimal samplings methods. The results show that when the event rates are
relatively homogeneous across the strata, the proportional method is superior to the balanced
method and is close to the optimal method. However, when the event rates are
heterogeneous over the strata, the power for the proportional method is slightly higher than
that for the balanced in most of the finite samples. Overall, the optimal method yields the
highest power along with the smallest required sample size among all three methods.

Stratified sampling is commonly used in the survey sampling to improve the estimation
precision for the population quantity of interest. In some situations, the stratified sampling
may be unnecessary but it often leads to the more efficient estimators as compared with the
unstratified design, e.g., a more precise estimation of the exposure risk effects, especially
when subjects from the same stratum are homogeneous (due to the strong association
between the exposure group and the stratum). Furthermore, the stratified design ensures the
representation of the small subgroups in the population. When the sampling is stratified, it is
natural to consider a stratified test, although an unstratified test statistic can be used when
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the association between the stratum and the outcome is proportional. Our proposed stratified
and nonparametric test statistic naturally accounts for the non-proportionality if it exists.

Our paper only considers the combination of stratified sampling and stratified test when
strata in both the design stage and the test stage are the same. In practice, the stratified
sampling and the stratified test may be used very differently: when there is a strong
association between stratified variable and exposure, the stratified sampling may be used to
improve the design efficiency; however, if one believes a strong non-proportional
association between failure time and exposure variable across strata, the stratified test needs
to be adopted to ensure the test validity. In the Web Appendix I11, we use the power formula
(4) to compare the stratified design with the unstratified design analytically. The results
show that in general, the stratified design tends to have a higher power than the unstratified
design with stratified or unstratified test. Therefore, when both associations are present, it is
necessary to take the current approach with both stratified sampling and stratified test. In the
situation when the disease proportions or the strata distribution are not available, we suggest
to conduct a pilot study to obtain this information before planning a stratified case-cohort
study.

The situation becomes more complex when the stratified variable in the design stage is not
the same as the stratified variable in the test stage. Generalizing our sample size/power
calculation to address this complex situation will be an interesting future study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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