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Abstract

We propose a joint model for longitudinal and survival data with time-varying covariates subject

to detection limits and intermittent missingness at random (MAR). The model is motivated by data

from the Multicenter AIDS Cohort Study (MACS), in which HIV+ subjects have viral load and

CD4 cell count measured at repeated visits along with survival data. We model the longitudinal

component using a normal linear mixed model, modeling the trajectory of CD4 cell count by

regressing on viral load and other covariates. The viral load data are subject to both left-censoring

due to detection limits (17%) and intermittent missingness (27%). The survival component of the

joint model is a Cox model with time-dependent covariates for death due to AIDS. The

longitudinal and survival models are linked using the trajectory function of the linear mixed

model. A Bayesian analysis is conducted on the MACS data using the proposed joint model. The

proposed method is shown to improve the precision of estimates when compared to alternative

methods.
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1. Introduction

In many longitudinal studies, time to event data are recorded in addition to longitudinal and

baseline covariates. In such studies, interest often lies in understanding the relationships

between the longitudinal history of a process and its effect on the risk of an event. For

analysis of this type of data, a class of models called joint models has been developed, which
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jointly model both components simultaneously. Joint models have been used extensively in

studies of subjects with Human Immunodeficiency Virus (HIV, [1], [2], etc.) because they

can reduce the bias and improve the efficiency of the estimates ([3], [4]). As with any large

dataset, and particularly in the case of longitudinal data, it is often the case that a high

degree of covariate and response data are missing. Additionally, in an HIV positive

individual, the measurement of viral load (the amount of virus in the blood) is only accurate

down to a particular limit of detection (LD), which is left-censored. Values below the limit

of detection cannot be reliably quantified or distinguished from a “blank” blood sample with

no virus. In many cases ([1], etc.) any missing covariate data are omitted from the analysis,

and estimation proceeds on the complete data, which is called a complete case analysis

(CC). However, when a high degree of covariate data are missing, a great deal of

information is lost in a CC analysis; and when the covariates are missing nonignorably and

the missingness mechanism depends on the outcome variables, the CC analysis is invalid

([5], Section 3.2). In other words, when the covariate is subject to a detection limit

(nonignorable missingness) but the censoring probability does not depend on the response

variable, the CC analysis is not subject to bias but efficiency is lost, assuming a correct

regression function is specified. However, if the censoring probability depends on the

response variable after conditioning on the covariates, the CC estimates of the regression

coefficients are biased ([5], [6]).

This article aims to develop a joint modeling strategy that accounts for both intermittently

missing and left-censored time-varying covariates. The longitudinal data are intermittently

missing if a missing value is followed by an observed value. In other words, the data are

non-monotonically missing. This analysis is motivated by data from the Multicenter AIDS

Cohort Study (MACS, [7]), a prospective study of disease progression in participants

infected with, or at risk for infection with, HIV. The subset of MACS participants who

seroconvert with HIV while under observation are followed from the date of HIV

seroconversion, with many variables including CD4 cell count and viral load measured at

planned study visits every 6 months. Interest lies in the progression of CD4 cell count and

viral load from seroconversion with HIV, and their impact on survival. In this paper we are

concerned with the effect of calendar period (as a proxy for HIV treatment) with survival. In

particular, we assume that HIV treatment (and HIV viral load) affect CD4 cell count, the

primary immunologic marker of HIV disease progression, which in turn affects survival. We

posit joint models that (a) relate the calendar period and viral load to CD4 cell count, and (b)

relate the modeled CD4 cell count to survival. From these joint models we aim to estimate

the effect of calendar period on survival mediated through the modeled CD4 cell count. We

note that any direct effect of calendar period on survival, not mediated through CD4 cell

count, would not be recovered here; but such direct effects are expected to be minor in

comparison to the CD4-mediated effect. Of the available viral load data, 27.1% were

missing and 16.9% fell below a limit of detection. Using a Bayesian analysis, we model the

progression of CD4 cell count over time, while accounting for the missingness and left-

censoring on the available viral load data. The Bayesian approach allows us to fully use the

observed data and account for the missing data under the MAR assumption, which is

superior to the MCAR assumption that is required for a less efficient complete-case analysis.
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There is extensive literature on missing data in longitudinal studies ([8], [9], [10], [11], etc.)

as well as on joint modeling of longitudinal and survival data ([12], [13], [14], etc.). Wu et

al. [15] review joint modeling with comprehensive references. The literature on detection

limits in longitudinal studies focuses largely on the scenario with the response variable

subject to left censoring, while time-varying covariates subject to left censoring are

considered in this paper. Furthermore, the literature on LDs confines attention to the mixed

effects model for the longitudinal component alone, but rarely considers joint models for the

longitudinal and survival data simultaneously ([16], [17], [18], [19]). Recently, Wu et al.

[20] investigated joint modeling in an AIDS clinical trial with informative dropout by

incorporating a missing data mechanism into the joint model likelihood, and proposed an

EM algorithm for the estimation procedure within the likelihood framework. Thiébaut et al.

[21] considered a bivariate linear mixed model for two biomarkers, with one biomarker

(plasma HIV RNA) subject to left censoring, and a log-normal survival model for the time

to drop out. The model parameters were estimated by a direct maximum likelihood

approach. In this paper, we propose a Bayesian approach for a longitudinal study with

censored and missing time-varying covariate data within the joint modeling framework.

Using data from MACS, the goal of this paper is to jointly model the longitudinal disease

progression and failure from the disease in study participants while accounting for both

intermittent missingness and a limit of detection on a single covariate. The differences of

this paper from the existing literature include that (a) the time-varying covariates are subject

to missingness and a detection limit; (b) the method is developed under a joint modeling

framework; and (c) the proposed Bayesian approach essentially treats the missing and left-

censored covariate values as extra parameters from a computational perspective, and

therefore, it is able to account for the missing and left-censored data without resorting to

asymptotics or numerical maximization.

The rest of this article is organized as follows. In section 2 we give a review of joint models,

and develop notation. In section 3 we develop a Bayesian approach to this problem and

apply this approach to the MACS data. We compare our results with those obtained from ad-

hoc estimation approaches. We conclude the article in section 4 with a discussion.

2. Preliminaries

2.1. The Longitudinal Model

Of the two submodels included in a joint model, the longitudinal component is less

complicated with a model formulation very similar (if not identical) to that of a model fit for

the longitudinal data alone. The dataset consists of N subjects with ni measurements

recorded for subject i, (i = 1, …, N). The response yij (j = 1, …, ni), fixed-effect covariate

vector xij = (x1ij, …, xpij)′, and random-effect covariate vector zij = (z1ij, …, zqij)′ are

recorded at times tij. The longitudinal model is usually specified as a linear mixed effects

model [22]

(1)
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where β is the p × 1 fixed-effect parameter vector, and bi is the q × 1 vector of random

effects for subject i with bi ~ Nq(0, Σb). The error vector εi = (εi1, …, εini)′ is usually

specified as εi ~ Nni(0, ξ−1Ini), where Ini represents the identity matrix of dimension ni. The

trajectory function for the model is defined as ψij(β, bi) = β′xij + bizij. More generally, (1)

can be written in terms of yi(t), the response at any time t. Taking xi(t) = (xi1(t), …, xip(t))′

and zi(t) = (zi1(t), …, ziq(t)) to represent the fixed-effects and random-effects covariate

vectors at time t respectively, the model can be rewritten as

(2)

where the error term εi(t) ~ N (0, ξ−1), and the trajectory function

. In many AIDS studies that use joint models, the longitudinal

component uses random effects with functions of time only [23]. The form of the random

effect covariate vector zi(t) is usually simple, including only random intercept and random

slope effects, or at most a random quadratic effect of time. In this case, the trajectory can be

specified at generic time t, as

(3)

where βb and xb are the parameters and design matrix of the fixed effects that are

corresponding to the random effects. It should be noted that many authors have considered a

more complex version of (3), involving an additional mean-zero stochastic process that does

not depend on zi(t) or bi. This form allows within-subject autocorrelation that accounts for

fluctuations from the hypothesized “smooth” trajectory function included in the model

([23]). This extended form is not considered in the proposed modeling approach presented in

section 3.

2.2. The Survival Model

The second submodel in a joint model is the survival model. This is usually taken as Cox

model with time-dependent covariates [24] with hazard function λi(t) for subject i at time t.

The survival component of the joint model includes a link or connection to the longitudinal

submodel, the unique characteristic that makes the model “joint”. The link in this case is the

inclusion of a portion (or all) of the longitudinal trajectory ψi(β, bi, t) as a covariate within

the survival model. The survival component is therefore expressed as

(4)

Here, h(β, bi, t) is a function of the fixed effects and random effects in the longitudinal

model, with θ a scalar parameter that links the two submodels. The survival covariate vector

xsi(t) = (xsi1, …, xsir)′ usually includes baseline covariates for subject i, with βs representing

the r × 1 parameter vector for these baseline covariates. The baseline hazard function is

given by λ0(t). The form that h(β, bi, t) takes determines the type of joint model that is fit. In

a trajectory model (TM), the longitudinal trajectory is included in the survival component
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([25, 26, 1, 27, 12, 3 ]). There are different approaches to construct the trajectory function.

Some include the mean response composed by the fixed effects model only, and others use

the full longitudinal trajectory with both fixed effects and random effects components. For

example, we can have . In a shared parameter

model (SPM), only the random effects from the longitudinal model are included instead of

the full trajectory ([28, 29, 30]). One example is to take , such that only

the random effects are included in the survival component, or even h(β, bi, t) = bik if only

the kth random effect is considered. In general, the difference between TM and SPM is that

TM includes at least the fixed effects to represent the mean response (it could include the

random effects as well but not necessary) and SPM includes only the random effects. An

excellent general review on joint modeling of longitudinal and survival data was given in

[23]. The parameter βs in (4) is a parameter vector for covariates unique to the survival

submodel and the xsi are additional covariates that are associated with the survival outcome

but not with the longitudinal measurements.

2.3. Likelihood for Joint Model

With both the longitudinal and survival submodels specified, we now combine the two to

form the likelihood for the full joint model. In this case, we will specify the joint model

using a TM in the survival component, such that the full longitudinal trajectory is included

in the hazard function. We take Ti to represent the potential failure time for subject i, and Ci

to represent the potential censoring time for subject i. We define Si = min(Ti, Ci) as the

observed failure/censoring time for subject i, with δi taken as an indicator for observing

failure, with δi = 1 when Ti < Ci, and δi = 0 otherwise. We define ψi(β, bi, t) as the value of

the longitudinal trajectory for subject i at time t and ψij(β, bi) as the value of the longitudinal

trajectory for subject i at visit j. Let f (·) represent a generic density function. When the

covariates are completely observed without censoring or missingness, the likelihood of the

joint distribution of the observed data and random effects from the ith subject can be written

as

(5)

and the likelihood for all subjects is . When the covariates are missing and/or

censored, additional models for those covariates are needed and this will be discussed in

Section 3.

2.4. Fitting the Model

Estimation of a joint model may be performed in at least two ways. The first estimation

approach is to use the EM algorithm. This approach has been used often in past analyses of

AIDS data ([1], [2]). The R package JM [31] was recently released and fits shared parameter
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models using the EM algorithm. A second approach to estimation uses a Bayesian

framework, fitting the model with Markov Chain Monte Carlo (MCMC) methods. This

approach is discussed in detail in Ibrahim, Chen, and Sinha ([32], chap.7), and has been used

by many authors ([33], [34], [35], etc.). Guo and Carlin [36] provide WinBUGS software for

fitting joint models using a Bayesian framework. For the analysis presented in this paper, a

Bayesian framework similar in flavor to that of Ibrahim, Chen, and Sinha [32] is used, with

all computations being carried out in R [37].

3. MACS Data Analysis

3.1. Background

The motivating data for this paper comes from the Multicenter AIDS Cohort study (MACS),

a prospective study of disease progression in participants infected with, or at risk for

infection with, HIV. The data collected by the MACS study is of particular interest because

participants are followed from the time of seroconversion, when they first develop

antibodies to HIV (as a response to contracting the virus). The study population includes

participants who contracted HIV during the study follow-up (1986–2005). Participants in the

study were seen at semiannual visits, where demographic information was recorded along

with laboratory measurements including viral load and CD4 cell count. Survival data for

each participant was also recorded, specifically for deaths attributable to AIDS. Of the 470

subjects in the study who seroconverted with HIV during follow-up, 443 were observed at 3

or more visit times, and were included in the study analysis. Of the 443 subjects, 165

(37.2%) died due to AIDS during the study period and had the time of death recorded.

In studies of HIV progression, interest lies in the relationship between CD4 cell count and

viral load measurements over time. CD4 cell count is a measure of immune system strength,

while viral load is a measure of the amount of circulating virus. These two biomarkers are

inversely correlated, as high levels of virus (viral load) indicate low immune system strength

(CD4 cell count). In this paper, we are concerned with the effect of calendar period (as a

proxy for HIV treatment) with survival. In particular, we assume that HIV treatment (and

HIV viral load) affect CD4 cell count, the primary immunologic marker of HIV disease

progression, which in turn affects survival. A complication that often arises in HIV studies is

that viral load values are subject to a lower limit of detection. Values of viral load falling

below this limit are unable to be detected by laboratory tests. In long-term longitudinal

studies such as MACS, it is common for the limit of detection to change over time, as newer

technology is able to detect even lower levels of viral load. In total, 16.9% of the available

viral load data fell below the limit of detection. Additionally, 27.1% of the viral load data

were missing intermittently in the dataset. A trajectory plot for CD4 cell count and viral load

since seroconversion for a random sample of 50 participants in the study is given in figure 1.

In the top panel, the solid lines represent the measured CD4 cell count trajectories of

individual subjects and dotted lines connect the CD4 cell count measurements at the latest

visit and at the death time assuming the last observation carried forward. Note that avoiding

making the last observation carried forward assumption is one of the reasons to implement a

joint modeling analysis. A Cox model using CD4 cell count as a time-varying covariate is

also not appropriate since a step function or some interpolations would have to be assumed
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for the CD4 cell count measurement. Another reason of considering joint model for the

analysis conducted here is because the CD4 cell count tends to be measured with error and

thus modeling the CD4 count by a mixed model accounts for this measurement error. The

viral load trajectory is plotted in the bottom panel using similar legends with additional LD

information.

One additional limitation to the public-use MACS data was that time of visit for each

participant was only available at the year level, no month or day dates are supplied. For a

participant with multiple visits in the same year, the available data only lists the year of the

visit and the chronological ordering of multiple visits in the same year (i.e., that one visit

precedes another). To account for this limitation, exact visit dates were imputed for each

subject in the dataset. For a subject with two visits in year X, the time of the first visit was

imputed at X + 0.25, with visit 2 at X + 0.75. For a subject with 3 visits, time was imputed

as X + 0.17, X + 0.5, and X + 0.83. The time of HIV seroconversion was imputed as the

midpoint between times of the first visit where HIV antibodies were detected and the visit

immediately preceding this visit. For a particular subject’s data to be included in the

analysis, baseline covariates for race and age at seroconversion needed to be recorded. For

this analysis to be valid, we assume that the probability of missingness for the covariates of

race and age does not depend on the longitudinal outcome variables (CD4 and VL) and

survival outcome. This assumption is not testable but is likely to be true in the MACS study

because intervention was not introduced at baseline. Additionally, at least CD4 cell count or

viral load measurement needed to be recorded for a patient to be included in the analysis.

3.2. Joint Model for MACS Analysis

To account for both the longitudinal trajectory of CD4 cell count and survival, a joint model

was specified for the analysis. The observed CD4 cell count is subject to measurement errors

and hence need to be modeled. We use a joint model rather than a two-stage approach to

properly account for the variability yielded from the longitudinal model in the survival

model. In particular, the longitudinal component of the model is specified as a mixed-effects

model, with a random slope and intercept for each subject. Both CD4 and viral load were

log10 transformed, with CD4ij and VLij representing the log10 transformed values of CD4

and viral load for subject i and visit j, occurring at time Timeij. Additionally, a covariate was

included to account for the indirect effect of Highly Active Antiretroviral Treatment therapy

(HAART), an HIV treatment that consists of several antiretroviral drugs being taken

concurrently. HAART treatment has had a dramatic positive effect on the survival of HIV

([38], [39]). Though records for HAART treatment are available in the MACS public-use

data, we instead use HAART calendar period as an instrumental variable [40] for HAART.

This approach is similar to those in past HIV studies ([41],[42]), allowing us to circumvent

potential bias in results due to residual confounding by indication that could occur if we

used the direct HAART variable. We define the HAART calendar period as all visit times

occurring after January 1, 1998. We define covariate PDij as an indicator for the HAART

calendar period, such that PDij = 1 if Timeij > 1/1/98, and PDij = 0 otherwise. The final

longitudinal model is specified as
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(6)

where β = (β1, β2, βb0, βb1)′ is the vector of parameters for the fixed effect covariates and tij
is the time since seroconversion. Viral load is included to better explain the variability in the

CD4 cell count. Following standard estimation approaches for a linear mixed-effects model,

the joint distribution of the random effects bi = (bi0, bi1)′ was again assumed bivariate

normal, with mean 0 and covariance matrix Σb. The error term εij is assumed to have a

normal distribution with εij ~N (0, ξ−1).

A TM was chosen for the analysis such that the full longitudinal trajectory was included in

the survival model. This trajectory is specified as ψi(β, bi, t, VLi(t)) = β1VLi(t) + β2PDi(t) +

βb0 + βb1t + bi0 + bi1t, where VLi(t) and PDi(t) represent their respective values at time t. We

also denote ψij(β, bi, VLij) = β1VLij + β2PDij + βb0 + βb1tij + bi0 + bi1tij, the value of the

longitudinal trajectory for subject i at visit j. Other baseline covariates of interest included

the age at which a subject contracted HIV (AGEi), and race (RACEi), with RACEi = 1 if

subject i is white, and RACEi = 0 otherwise. We again define θ as the parameter linking the

longitudinal and survival submodels, with βs = (βs1, βs2)′ as the parameters corresponding to

the baseline covariates. The Cox submodel with time-dependent covariates is specified

below, with λ(t) and λ0(t) representing the hazard and baseline hazard functions at time t,

respectively, and is given by

(7)

We did not include direct viral load effect in the survival model because while there are

almost certainly direct effects of viral load on survival not mediated through CD4 cell count,

especially for non-AIDS related mortality, these effects are expected to be small relative to

the CD4-mediated effects.

Viral load data were measured longitudinally in the MACS data with potential correlation

within the same patients. To account for this correlation, a sequence of conditional densities

was used to model the joint density of the viral load data as

(8)

where VLi = (VLi1, …,VLini). To do this, a simple linear regression model was specified for

the baseline viral load. A multiple linear regression model adjusting for the previous viral

load measurement, age, race, and the time since seroconversion was specified for viral load

after baseline, where the baseline viral load measurement, VLi1, is defined as the viral

measurement at the first visit after seroconversion with HIV. In particular, we have VLi1 ~ N

(μv, τ−1) and

(9)
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where α = (α0, α1, α2, α3, α4) is the vector of unknown parameters and . The

VL model considered here is similar to, although not exactly the same as, the random

intercept model. We used this model instead of the random intercept and slope model used

for CD4 cell count because (a) as shown in Figure 1, compared to CD4 cell count, the VL

measure has larger variability in the intercept than in the slope; (b) compared to the current

model, which is already computational intensive, the random intercept and slope model

requires even more computational effort and the MCMC algorithm tends to be less stable.

For a viral load observation VLij falling below a limit of detection LDij, the prior

distribution is truncated at LDij, taking a nonzero density only below LDij. For viral load

observations that are missing, no such truncation is needed. The missing viral load values

are assumed to be missing at random, as parameters involving viral load are distinct from

the others in the model. Because of this assumption, the complete-data likelihood that now

accounts for the missing and left-censored viral load will be appended to (5) to include the

viral load covariate distribution. We will again denote S = (S1, …, SN ) as the vector of

observed failure/censoring times for each subject, with δ = (δ1, …, δN) taken as the vector of

failure time indicators (with δi = 1 if observed failure and 0 otherwise). Therefore, the

likelihood of the joint distribution of the observed data, random effects and viral load values

VL can be expressed as follows:

(10)

Figure 2 shows the underlying diagram for joint modeling strategy. Thus, the full formula

for the complete-data likelihood for subject i is given by

(11)

Note that the V Li(t) used in the survival function component of the likelihood is the

predicted value from model (9) by plugging the covariates and varying t values. Since the

random effects b are not observed and the viral load measurements VL are subject to

missingness and left censoring, the observed-data likelihood requires integration of equation

(11) over b and VL. The proposed fully Bayesian approach will treat b and the missing/left-

censored VL values as extra “parameters” to be sampled in the Markov Chain Monte Carlo

(MCMC) algorithm. Following Ibrahim, Chen, and Sinha ([32], section 7.3), independent

uniform improper priors were taken for β, βs, and α, with π(β) ∝ 1, π(βs) ∝ 1, and π(α) ∝ 1.
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Additional priors are specified as follows: ξ ~ Gamma(10−3, 10−3), μv ~ N (0, 105), ηv ~

Gamma(10−3, 10−3), τ ~ Gamma(10−3, 10−3), . The baseline hazard

function λ0(t) was specified as having the form of a piecewise constant hazard, taking the

constant value λk for each of the k = 1, …,10 time intervals (sk,sk+1] that span the range of

the observed times tij. Computation of  was then performed

using the approximation given in Ibrahim, Chen, and Sinha ([32], p. 277–278). It can be

shown that with this choice of priors, the joint posterior distribution is proper.

Gibbs sampling was performed by sampling from the full conditional distribution for each

model parameter. A derivation of the conditionals is given in the Appendix. For parameters

with a closed-form full conditional distribution, sampling is straightforward. For parameters

with no closed-form full conditional distributions, sampling was performed using the

Adaptive Rejection Metropolis Sampling (ARMS) of Gilks, Best, and Tan [43]. Estimation

was performed using Gibbs samples from 10,000 iterations, with a burn-in of 1000

iterations. For comparison, several simpler models were also applied to the MACS data.

First, a two-stage model was fit, in which each of the two submodels was fit separately. In

the first stage, the longitudinal submodel in equation (6) was fit independently of the

survival component. The fitted trajectory from the longitudinal component was then fixed,

and was included as a covariate in the survival model in equation (7). The second stage

fitted this survival model, giving parameter estimates for the survival component only. Such

a model is computationally simpler because the likelihood functions for each model are

separate, and are not combined as in equation (11). Additionally, a joint model was also fit

to only 56% of the total observations with fully observed values of viral load (complete-case

analysis). A joint model was also fit in which substituted values of viral load were used for

all left-censored viral load values. For a viral load measurement falling below the limit of

detection LDij, the common substitution of  was used as the “true” viral load value

at the specified visit. This substitution analysis was then performed on 72.9% (56%

observed + 16.9% substituted) of the total observations after removing 27.1% observations

with missing viral load values. For all the analyses, the values of VL and age at

seroconversion were normalized to achieve MCMC convergence. In particular, the

logarithmic transformed viral load values were normalized as (VL − 3.8)=1.3, and age at

seroconversion was normalized as (AGE − 35.3)=8.3. The simulation results from the two-

stage, complete-case, substitution, and full joint models are given Table 1. Posterior

estimates are taken from the 9000 sampled values. Figure 3 provides trace plots and

probability density histograms (with overlaid kernal smoothed density functions) for

parameters of interest from the full joint model.

3.3. Results

The results in Table 1 show that decreasing CD4 cell count is associated with an increased

risk of death, as expected. Specifically, the full joint model predicts that each 10% decrease

in CD4 cell count results in a 15.8% (= e−3.215 log10(0.9) − 1) increase in the risk of death.

This estimate ranges from 13.6% in the two-stage model to 20.5% in the substitution model.

Additionally, CD4 cell count and viral load levels are shown to be inversely related, with

each 10% increase in viral load resulting in a predicted 0.64% (= 1 − 10−0.087 log10(1.1)/1.3)
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decrease of CD4. This estimated decrease ranges from 0.42% in the two-stage model to

0.74% in the complete-case model. Neither race nor the age at seroconversion were found to

be significantly correlated with risk of death. The calendar period associated with HAART

treatment was shown to result in an increase in CD4 cell count values in all models. For the

full joint model, a participant during the HAART calendar period is expected to have a CD4

cell count value that is 42.9% (= 100.155 − 1) higher than a participant in the pre-HAART

period. Combining this estimate with θ (the survival model estimate for CD4 cell count)

indicates that the HAART calendar period is associated with a 39.2% (= 1 − e−3.215*0.155)

decrease in the risk of death for any particular participant. The results from the two-stage,

substitution, and complete-case models show a predicted decrease of 38%, 41%, and 44%,

respectively. The results in Table 1 also demonstrate that the full joint model may provide

standard error estimates that are smaller than the complete-case model and substitutional

model, and is more efficient than these two models. Furthermore, the standard errors of the

parameter estimates of the survival model in the two-stage model tend to be smaller than the

other three approaches. This is because in the two-stage model, the uncertainty of the

estimation in the first stage longitudinal model is not incorporated in the second stage of the

survival model estimation.

For the results presented in Table 1, the seroconversion date was defined as the midpoint of

the last seronegative and the first seropositive dates. For the MACS data, the median and

interquartile range of the seroconversion period are 0.5 and (0.5, 0.75) in years. We also

conducted sensitivity analysis on the definition of the seroconversion date by assigning the

seroconversion dates as the first seropositive dates or at the last seronegative dates of the

individual patient. We found that the parameter estimates of interest were robust to the

seroconversion date in the MACS data (Table 2).

4. Discussion

We have proposed a joint model for the analysis of longitudinal and survival data that

accounts for both missingness and left-censoring in the longitudinal covariates. The

proposed model allows the use of a much greater proportion of available data when

longitudinal covariates are missing or left-censored. In many infectious disease studies,

measures of biomarkers are subject to a lower limit of detection, resulting in many left-

censored cases. The proposed methodology accounts for this left-censoring, and also

intermittent missingness that can be considered MAR and conditionally depends on the

outcome. Previous analyses on only complete-case data are unable to capture the

information contained in the missing and/or left-censored biomarkers. Note that the

proposed method can also be used to check whether the whole effect of treatment could be

captured through CD4 or if there is a remaining effect on survival by including the calendar

period in the xsi and evaluating its regression coefficient estimate. This is known as the issue

of imperfect surrogate markers.

The analysis of the MACS data presented in Table 1 shows that posterior estimates obtained

from a joint model can be strongly influenced by the inclusion of observations with

covariates that are missing or left-censored. In the available data, only 56% of the viral load

measurements were observed, with 27.1% missing and 16.9% falling below the limit of
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detection. Consequently, a complete-case analysis could only be performed on roughly half

of the available data points. Including all cases in the proposed joint model is clearly more

desirable, and as shown, can produce results that vary from the complete-case results.

However, in the MACS data, we did not see a large difference in the estimated relative

hazard for the calendar period associated with HAART. Yet, the precision was notably

better for the proposed method compared to a complete-case analysis.

The computing time necessary to fit the proposed model can vary widely depending on the

software that is used. The analysis results presented here were conducted in R [37], which

was able to run approximately 2000 iterations in 24 hours. A simulation study for such a

complicated modeling approach is beyond the scope of this paper due to intensive

computational time. This relatively long computing time could likely be lessened by using

alternative programming languages, such as C or Fortran.

While the proposed modeling approach can improve estimation with missing data in joint

models, the assumptions still specify that the intermittently missing covariates are MAR. In

many analyses, this assumption may not be correct, as missing data can often arise from a

more complicated mechanism. Future research is needed to develop joint models for more

complex missing data mechanisms.

In the analysis of the MACS data, the time of HIV seroconversion was imputed as the

midpoint of the last seropositive and the first seronegative dates, which corresponds to

assigning all mass at the midpoint of the support region as discussed in the paper by

Sweeting et al. [44]. Since the non-parametric maximum likelihood estimate may not be

unique [44], an alternative is to make a parametric assumption on the joint distribution of the

seroconversion date and the AIDS-related death date. For example, let X and Z denote the

unknown dates of seroconversion and death, respectively. The time to AIDS-related death is

then defined as T = Z − X. The likelihood of the joint distribution can be modified by

conditioning on X and Z, and can be expressed as

(12)

where m(Xi, Zi; γ) is the joint density of (X, Z) given the parameters γ. For a patient who

died from AIDS, the time pair (x, z) are known to lie within the region ,

and for a patient censored without AIDS-related death, the time pair (x, z) are known to lie

within the region , where  is the last seronegative date,  is the

first seropositive date, di is the AIDS-related death date, and ci is the censoring date. In the
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full joint modeling framework, the estimation procedure can be conducted by modifying the

sampling distributions presented in the Appendix and including additional sampling layers

for xi, zi and γ. These extensions along with joint models for more complex missing data

mechanisms are currently under investigation.
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Appendix

Sampling Distributions

The following section displays the full conditional distributions for the joint model with

likelihood given by (11). We use the same notation given in section 3.2, with slight

modifications as detailed here. We define CD4i = (CD4i1, …, CD4ini)′, VLi = (VLi1, …,

VLini)′, PDi = (PDi1, …, PDini)′, and ti = (ti1, …, tini)′ to denote the covariate vectors of

CD4, viral load, treatment period, and time for subject i. For ease of exposition, we will

define zi = (RACEi, AGEi)′ and βs = (βs1, βs2)′, such that . The

baseline hazard function λ0 is specified as piecewise constant, taking the the value λk fore

each of the k = 1, …, K time intervals, with λ = (λ1, …, λK)′. For time interval k, we use dk

to denote the number of failures that occur within that interval. Computation of

 was performed using the approximation given in Ibrahim,

Chen, and Sinha (2001, p. 277–278). The notation for this approximation is as follows:

To simplify the notation when writing the full conditionals, we will take Ω = (λ, θ, βs, ξ, Σb,

β, b, μb, α, ηv, μv, τ) to denote the set of all parameters in the model. We will use the

notation Ω(−β) to denote the set Ω without the parameter β (and similar notation when

excluding other parameters). We will use the notation Di to denote the set of complete data

for subject i, that is, Di = (CD4i, VLi, PDi, ti, Si, δi, zi). We use the shorthand notation

Di(−VLi) to denote the set of complete data Di not including VLi. The full set of complete

data are denoted by D = (D1, …, DN) (with D(−VLi) denoting the set of complete data

excluding VLi).

1. β: π(β) ∝ 1.
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2. bi: P(bi) ~ N2(μb, Σb)

3. ξ: P(ξ) ~ Gamma(Shape = aξ, Rate = bξ)

4.

Where A = Nτ + ημv, , and .

5. τ: P(τ) ~ Gamma(Shape = aτ, Rate = bτ)
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6. α: π(α) ∝ 1

Therefore

7. ηv: P (ηv) ~ Gamma(Shape = aη, Rate = bη)
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8.
, (I = Identity matrix)

9. θ, βs: π(θ), π(βs) ∝ 1.

10. VLij: P (VLij) ~ N (μv, μv)I(0 ≤ VLij ≤ cij), where cij = ∞ when VLij is missing, and

cij = Lij when VLij is left-censored at limit of detection Lij. I() denotes the indicator

function.

where
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, when j = 1;

, when 1

< j < ni; ,

when j = ni.

11. λk: P(λk) ~ Gamma(Shape = aλ, Rate = bλ)
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Figure 1.
CD4 Cell Count and Viral Load Trajectories for Random Sample of 50 Participants
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Figure 2.
Joint Modeling Strategy. Solid box: observed; dashed box: predicted; arrow: information

used in the modeling of the corresponding variable.

Chen et al. Page 21

Stat Med. Author manuscript; available in PMC 2015 November 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Trace Plots and Sampled Densities of Selected Parameters from Full Joint Model
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