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Abstract
Recently, the Center for Drug Evaluation and Research at the Food and Drug Administration
(FDA) released a guidance that makes recommendations about how to demonstrate that a new
antidiabetic therapy to treat Type 2 diabetes is not associated with an unacceptable increase in
cardiovascular risk. One of the recommendations from the guidance is that Phase II and III trials
should be appropriately designed and conducted so that a meta-analysis can be performed. In
addition, the guidance implies that a sequential meta-analysis strategy could be adopted. That is,
the initial meta-analysis could aim at demonstrating the upper bound of a 95% confidence interval
(CI) for the estimated hazard ratio to be < 1.8 for the purpose of enabling a new drug application
(NDA) or a biologics license application (BLA). Subsequently after the marketing authorization, a
final meta-analysis would need to show the upper bound to be < 1.3. In this context, we develop a
new Bayesian sequential meta-analysis approach using survival regression models to assess
whether the size of a clinical development program is adequate to evaluate a particular safety
endpoint. We propose a Bayesian sample size determination methodology for sequential meta-
analysis clinical trial design with a focus on controlling the familywise Type I error rate and
power. The partial borrowing power prior is used to incorporate the historical survival meta-data
into the Bayesian design. Various properties of the proposed methodology are examined and
simulation-based computational algorithms are developed to generate predictive data at various
interim analyses, sample from the posterior distributions, and compute various quantities such as
the power and the Type I error in the Bayesian sequential meta-analysis trial design. The proposed
methodology is applied to the design of a hypothetical antidiabetic drug development program for
evaluating cardiovascular risk.
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1. Introduction
In December 2008, the Center for Drug Evaluation and Research at the Food and Drug
Administration (FDA) released a guidance (www.fda.gov/downloads/Drugs/
GuidanceComplianceRegulatoryInformation/Guidances/ucm071627.pdf) that makes
recommendations about how to demonstrate that a new therapy to treat Type 2 diabetes is
not associated with an unacceptable increase in cardiovascular (CV) risk. The guidance
recommends that Phase II/III trials should be appropriately designed and conducted so that a
meta-analysis can be performed, and the Phase II/III programs should include patients at
higher risk of CV events.

Based on the above recommendations, the plans of meta-analysis assessments should
consider the following. Before submission of a New Drug Application (NDA) or Biologics
License Application (BLA), one must show that the upper bound of the two-sided 95%
confidence interval (CI) for the estimated hazard ratio (HR) for comparing the incidence of
important CV events occurring in the investigational agent to that of the control group is less
than 1.8. This can be demonstrated either by performing a meta-analysis of the randomized
Phase II/III studies or by conducting an additional single, large postmarketing safety trial. If
the premarketing application contains clinical data from completed studies showing that the
upper bound of the 95% CI is between 1.3 and 1.8 and the overall risk-benefit profile
supports approval, a postmarketing trial generally will be necessary to definitively show that
the upper bound of the 95% CI is less than 1.3. On the other hand, if the premarketing
clinical data show that the upper bound of the 95% CI is less than 1.3, then a postmarketing
CV trial generally may not be necessary. This requirement will most likely necessitate the
performance of a specific CV outcome study for any new therapy, but would also almost
certainly include integrating data across randomized Phase II/III studies.

In light of the above new requirement from the FDA, Ibrahim et al. [1] develop a Bayesian
meta-analysis sample size determination method for planning a Phase II/III antidiabetes drug
development program. The proposed method not only computes the sample size for multiple
studies in a program under the meta-analysis framework by properly accounting for the
between study heterogeneity, but also incorporates prior historical information for the
underlying risk in the control group via the partial borrowing power prior. The authors
explore the operating characteristics of a program design in meeting specific criteria for
Type I error and power. That paper investigates the operating characteristics of a program
design for a non-sequential meta-analysis with a single, fixed non-inferiority margin of 1.3.
However, according to the FDA guidance, after showing non-inferiority for the 1.8 margin
(for initial NDA/BLA filing), non-inferiority for the 1.3 threshold can be subsequently tested
at the post-marketing setting. This implies that a sequential meta-analysis may be conducted
during a drug development program. It raises a challenging multiplicity issue from a
statistical point of view with regards to looking at the meta-data multiple times with the
sequential testing procedure using the non-inferiority margin of 1.8 and 1.3 at different
interim analyses. It is thus crucial to preserve the familywise Type I error rate while
maintaining sufficient power in this sequential meta-analysis setting. Family-wise Type I
error rate in the context of sequential analyses is the probability of rejecting a true null
hypothesis in at least one of the entire collection of interim looks.

The group sequential meta-design provides a solution to a practical challenge in the drug
development: when the targeted disease population has a low event rate (e.g., 2% per year),
the individual efficacy trials alone generally are not adequately powered to evaluate a
particular risk. Another motivation is that it allows the sponsors to make earlier decisions
based on interim analysis results for ethical and economical purposes [2]. A drug that is
deemed unsafe or inferior would result in stopping a trial/program early. The literature on
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frequentist statistical methods for group sequential clinical trials with interim monitoring is
enormous and too numerous to list here. We refer the reader to the well known book by
Jennison and Turnbull [2] for extensive references. The literature on Bayesian methods for
group sequential clinical trials is much more sparse and the literature on sequential design
methods for meta-analysis is essentially non-existent. Bayesian methods for group
sequential clinical trials include [3, 4], who consider frequentist operating characteristics of
Bayesian Decision-theoretic designs using backward induction methods. Rosner and Berry
[5] examine a Bayesian group sequential design for a proposed randomized clinical trial
comparing four treatment regimens, where posterior probability calculations determine the
criteria for stopping accrual to one or more of the treatments and frequentist properties of the
design are examined. Freedman and Spiegelhalter [6] develop a Bayesian group sequential
method with boundaries that may be similar to those obtained from Pocock or O’Brien-
Fleming rules, depending on the choice of prior distribution, and they carry out comparisons
of their approach with frequentist rules. Spiegelhalter et al. [7] also review many Bayesian
group sequential methods in their book. Emerson et al. [8] examine the Bayesian evaluation
of group sequential clinical trial design and describe how the Bayesian operating
characteristics of a particular stopping rule might be evaluated and communicated to the
scientific community. They consider a choice of probability models and a family of prior
distributions that allows concise presentation of the Bayesian properties for a specified
sampling plan. However, none of these methods consider sequential design in the meta-
analysis setting as described here. Moreover, their design and monitoring criteria are quite
different from what is proposed here. In this paper, we carry out a meta-analysis sequential
design for designing a Phase II/III drug development program in CV risk using a right
censored time to event endpoint. We use a meta-analysis exponential survival model with
random effects to carry out the proposed design and monitoring plan using a set of novel
Bayesian criteria that preserve the Type I error. In addition, we use the fitting and sampling
prior ideas of [9] in conjunction with a power prior [10] using historical data to carry out the
design. The proposed design is novel and the first of its kind in this setting.

We mention here that there has been some recent work, called “evidence-based methods”
for designing studies and planning clinical trials using meta-analysis or sequential meta-
analysis methods. Within this framework, Sutton et al. [11] describe an evidence-based
algorithm that calculates the required sample size for a planned trial based on the power of
an updated meta-analysis. Their approach ensures adequate power to detect a clinically
important treatment effect in a meta-analysis including previously completed trials as well
as the proposed trial. Rotondi et al. [12] extend the methods of [11] to meta-regression.
Higgins et al. [13] propose a sequential method for random-effects meta-analysis using an
approximate semi-Bayes procedure. They start with an informative prior distribution that
might be based on findings from previous meta-analysis and then update evidence on the
among-study variance. We refer to [13] for more references therein on sequential methods
for meta-analysis. More recently, Roloff et al. [14] develop a method based on conditional
power using a random-effects meta-analysis model for evaluating the influence of the
number of additional studies, of their information sizes and of the heterogeneity anticipated
among them on the ability of an updated meta-analysis to detect a prespecified effect size.
These evidence-based approaches are similar in flavor to what we consider here but with
different goals and approaches.

The rest of the paper is organized as follows. Section 2 presents the design of a hypothetical
drug development program with two categories of meta-trials and multiple interim analyses
for the CV outcome trial and the historical data, which are used to formulate priors for the
background rates of the CV events in subjects treated for Type 2 diabetes from the control
group. Section 3 presents the log-linear random effects regression models for meta-survival
data and the general methodology for the Bayesian sequential meta-analysis design. Section
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4 provides a detailed development of the computational algorithms for the predictive data
generation, the posterior computation, the Type I error, and power developed in Section 3.
In Section 5, we apply the proposed methodology to the meta-analysis sequential design for
evaluating CV risk as described in Section 2 and report and discuss the results from our
simulation studies. We conclude the paper with discussion and future research in Section 6.

2. Motivating Example
The example in this paper considers a hypothetical drug development program for treating
type 2 diabetes mellitus. Our goal here is to appropriately design Phase II/III trials that
would facilitate a sequential meta-analysis during the drug development. Figure 1 displays a
hypothetical drug development program. The program includes eight randomized controlled
efficacy superiority trials (Category 1) and a large randomized controlled CV outcome non-
inferiority trial (Category 2). Category 1 trials target subjects with low or moderate CV risk
with an assumed annualized event rate of 1.2%. Category 2 targets subjects with high or
enriched cardiovascular risk with an assumed annualized event rate of 1.5% as the FDA
guidance advocates the inclusion of such a population. The CV outcome non-inferiority trial
is a long-term study with scheduled interim analyses. By the time of submission of the
NDA/BLA, the Category 1 trials are expected to be complete and Category 2 will undergo
its first interim analysis.

A naïve approach of power calculations is to simply pool the sample size across studies and

to use the following approximation: , 4/total number of endpoints
observed from pooled studies). By combining data from the Category 1 studies and the 1st
interim analysis of the Category 2 study, 200 events are expected with 100% power to detect
the upper 95% CI of the HR < 1.8. By combining data from the Category 1 studies and the
2nd interim analysis of the Category 2 study, 310 events are expected with 100% power to
detect the upper 95% CI of the HR < 1.8. The final analysis, combining data from the final
analysis of the Category 1 studies and the Category 2 study, is expected to have a total of
462 events with 80% power to detect the upper 95% CI of the HR < 1.3. The problem with
this naïve approach is that it does not account for between-study variability. Moreover,
simple pooling is susceptible to the issues related to Simpson’s paradox. Historical data
could also be considered and incorporated appropriately as implemented using meta-analysis
techniques. See Appendix A for published historical data on CV outcome trials in type 2
diabetes patients. The sponsor can also consider decision rules that depend on the outcome
and timeline of the integrated analysis (see Figure 2). For example, consider the following
possible scenarios and decision rules:

Scenario 1. If the upper bound of the two-sided 95% CI for HR is < 1.3 for the
integrated analysis of Category 1 and Category 2a (first interim analysis of CV study),
the sponsor may conclude no elevated CV risk (Success) and decide on submitting the
NDA/BLA.

Scenario 2. If the upper bound of the two-sided 95% CI for HR is ≥ 1.3 and ≤ 1.8, the
sponsor may decide to submit the NDA/BLA while continuing the CV study; and if the
final analysis (Category 1 + Category 2) shows an upper bound < 1.3, the sponsor may
conclude no elevated CV risk (Success).

Scenario 3. If the upper bound of the two-sided 95% CI for HR is > 1.8, the sponsor
may decide to take a 2nd interim analysis at year 3 (Category 1 + Category 2b); if
Category 1 + Category 2b shows an upper bound < 1.3, the sponsor may conclude
success and submit the NDA/BLA; if Category 1 + Category 2b shows an upper bound
between 1.3 and 1.8, the sponsor may decide to submit the NDA and continue to the
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final analysis to confirm success or failure; and if Category 1 + Category 2b shows an
upper bound > 1.8, the sponsor may decide to stop the CV trial for subject safety.

3. The Models and Methods for Bayesian Sequential Meta-analysis Design
3.1. Models for Aggregate Meta-Survival Data

We consider K randomized trials where each trial has two treatment arms (“Control” or “Inv
Drug”). Here “Inv Drug” denotes Investigational Drug. Let trtjk = 0 if j = 1 (control/placebo)
and 1 if j = 2 (“Inv Drug”) and also let xjk denote a trial-level binary covariate, where xjk = 1
if the kth trial recruits subjects with low or moderate CV risk for the jth treatment and xjk = 0
if the kth trial recruits subjects with high CV risk for the jth treatment for j = 1, 2. We further
assume that there are a total of I interim analyses, where the Ith interim analysis is the final
analysis. Let yjki and νjki denote the total subject year duration, and the total number of
events from njk subjects for j = 1, 2 and k = 1, …, K at the ith interim analysis. Write DKi =
{(yjki, νjki, njk, trtjk, xjk), j = 1, 2, k = 1, …, K}, which is the observed aggregate meta-
survival data available for the ith interim analysis for i = 1, …, I. We note that DKI is the
aggregate meta-survival data for the final analysis.

Assuming that the individual level failure time follows an exponential distribution with
mean 1/λjk, the likelihood function of (yjki, νjki) is given by

. We assume a log-linear random effects regression
model for λjk:

(3.1)

for k = 1, …, K. In (3.1), τ2 captures the between-trial variability and ξk also captures the
trial dependence between y1ki and y2ki. Note that under the exponential model, the design
parameter exp(γ1) is precisely the hazard ratio of the treatment, and θ quantifies the CV risk
effect (low or moderate CV risk vs. high CV risk). Let ξ = (ξ1, …, ξK)′ and γ = (γ0, γ1)′.
Using (3.1), the complete-data likelihood function based on the aggregate meta-survival data
DKi is given by

(3.2)

for i = 1, …, I. We see from (3.2) that under the exponential model, the likelihood function
does not depend on the njk’s.

3.2. The Key Elements of Bayesian Meta-analysis Design
Let δ1 denote the interim analysis margin and let δ2 be the trial success margin for the
hazard ratio. The hypotheses for “non-inferiority” testing can be formulated as follows:

(3.3)

for m = 1, 2. The meta-trial will continue if H11 is accepted and the meta-trials are
successful if H21 is accepted. We assume that δ1 > δ2. As discussed in Section 1, δ1 = 1.8
and δ2 = 1.3 as specified in the FDA guidelines.

Following [9], let π(s)(γ, θ, τ2) and π(f)(γ, θ, τ2) denote the sampling and fitting priors,
respectively. As discussed in [9] and [15], the meta-survival data DKi for i = 1, …, I are
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simulated from the sampling prior, π(s)(γ, θ, τ2). The distribution of the predictive datasets
DKi is considered to be the prior-predictive distribution of the data. Next, the fitting prior,
π(f)(γ, θ, τ2), is updated with the likelihood of the simulated meta-survival data to obtain the
posterior distribution of γ, θ, and τ2 given the data DKi:

(3.4)

where L(γ, θ, ξ, τ2|DKi) is defined in (3.2). We note that π(f)(γ, θ, τ2) may be improper as
long as the resulting posterior, π(f)(γ, θ, τ2|DKi), is proper. To complete the Bayesian meta-

analysis design, we need to specify two proper sampling priors, denoted by 

and , defined on the subsets of the parameter spaces induced by hypotheses H20
and H21. To ease the presentation, we consider I = 3. Then, DK1 is the data from the first
interim analysis (Category 1 + Categoriy 2a (1st Interim Analysis) as shown in Figure 2);
DK2 is the data from the second interim analysis (Category 1 + Category 2b (the second
Interim Analysis) as shown in Figure 2); and DK3 is the data from Category 1 + Category 2,
which is used in the final analysis. Corresponding to the four possible paths for trial success
as shown in Figure 2, we define

(3.5)

where 1{A} = 1 denotes the indicator function so that 1{A} = 1 if A is true and 0 otherwise.
Then, we propose the following key quantity:

(3.6)

for ℓ = 0, 1. In (3.5), 0 < φ01 < 1 is a prespecified Bayesian credible level for the 1st interim
analysis, 0 < φ02 < 1 is a prespecified Bayesian credible level for the 2nd interim analysis
and the final analysis, the posterior probabilities, P(exp(γ1) ≤ δj|DKi, π(f)), j = 1, 2, are
computed with respect to the posterior distribution of γ1 given the data DKi under π(f)(γ, θ,
τ2), and the expectation Esl is taken with respect to the predictive distribution of (DK1, DK2,

DK3) under  for ℓ = 0, 1. We note that the quantities  and  correspond to
the Bayesian Type I error and power, respectively. One of the nice features of (3.6) is that
φ01 and φ02 play the role of multiplicity adjustments for controlling the familywise Type I
error rate in the Bayesian sequential meta-analysis design.

3.3. Specification of the Fitting and Sampling Priors Using Historical Data
Suppose that the historical data are available only for the control arm from K0 previous
datasets. Let y0k denote the total subject year duration and also let ν0k denote the total
number of events for k = 1, …, K0. In addition, we let x0k denote a binary covariate, where
x0k = 1 if the subjects had a low or moderate CV risk and x0k = 0 if the subjects had a high
CV risk in the kth historical dataset. Suppose that only the trial-level data D0K0 = {(y0k, ν0k,
x0k), k = 1, …, K0} are available from the K0 previous datasets. Similar to (3.1), we assume
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the individual level failure time follows an exponential distribution with mean 1/λ0k and the
log-linear model for λ0k is given by

(3.7)

for k = 1, 2, …, K0. Let ξ0 = (ξ01, …, ξ0K0)′. Then, the complete-data likelihood function
based on D0K0 is given by

. Comparing (3.7) to (3.1), we see that the models for the historical
data and the current data share the common parameters γ0 and τ2. However, the CV risk
effect parameters θ and θ0 are different in these two models. Thus, strength from the
historical data is borrowed through the common parameters γ0 and τ2 and having different
parameters θ and θ0 for the CV risk provides us with greater flexibility in accommodating
different CV risk effects in the current and historical data. In addition, we use the partial
borrowing power prior of [1] as the fitting prior to control the influence of the historical data
on the current study when γ0 and τ2 in the historical data are different than those in the
current study.

We now discuss how to specify the sampling prior and the fitting prior. For the sampling

prior, , ℓ = 0, 1, we take . We

first specify a point mass prior for  with  for ℓ = 0 and Δ{γ1=0}
for ℓ = 1, where Δ{γ1=γ10} denotes a point mass distribution at γ1 = γ10, i.e., P(γ1 = γ10) = 1.
We then specify a point mass prior π(s)(γ0) at the design value of γ0. For example, for the
meta-design shown in Figure 1, we take Δ{γ0=log[−log(1−0.015)]}, since the annualized event
rate for the Category 2 trial is 1.5%. In addition, we specify a point mass prior for each of
π(s)(θ) and π(s)(τ2). For the meta-design given in Figure 1, we take π(s)(θ) = Δ{θ=−0.225} and
π(s)(τ2) = Δ{τ2=τ̃2}, where τ̃2 is an estimate of τ2 from the historical data. For the historical
data shown in Table A1, we obtain τ̃2 = 0.0537.

Following [1], we specify the fitting prior as follows:

(3.8)

where 0 ≤ a0 ≤ 1 and  and  are initial priors. The parameter a0 can
be interpreted as a relative precision parameter for the historical data D0K0. One of the main
roles of a0 is that it controls the heaviness of the tails of the fitting prior in (3.8). As a0
becomes smaller, the tails of (3.8) become heavier. When a0 = 1 with probability 1, (3.8)

corresponds to the update of  using Bayes theorem based on the historical data.
When a0 = 0 with probability 1, then the partial borrowing power prior does not depend on
the historical data. That is, a0 = 0 is equivalent to a prior specification with no incorporation
of historical data. Thus, the a0 controls the influence of the historical data on the current
study. Such control is important in cases where there is heterogeneity between the historical
and current studies. In (3.8), we further specify independent initial priors for (γ0, γ1, θ, θ0,

τ2) as follows: (a) a normal prior  is assumed for each of γ0, γ1, θ, and θ0, where
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 is a prespecified hyperparameter; and (b) we specify an inverse gamma (IG) prior for

τ2, denoted by IG(d0f1, d0f2), with density given by ,
where d0f1 > 0 and d0f2 > 0 are prespecified hyperparameters. We note here that a different

value of  may be specified for each of γ0, γ1, θ, and θ0 so that the prior variances for these
parameters are different. In (3.8), the parameter a0 controls the influence of the historical
meta-data D0K0 on the fitting prior for γ0 and τ2 in π(f)(γ, θ, τ2|a0, D0K0). In our prior
specification, we consider a fixed a0. When a0 is fixed, we know exactly how much
historical meta-data are incorporated in the new meta-trial, and also how the Type I error
and power are related to a0. As shown in our simulation study in Section 5, a fixed a0
provides us additional flexibility in controlling the familywise Type I error rate.

4. The Development of Computational Algorithms
Let T0 denote the enrollment duration and also let Ti denote the time of the ith interim
analysis for i = 1, …, I. We have T0 ≤ T1 < ···< TI. The assumption T1 ≥ T0 implies that the
first interim analysis is scheduled only after all patients have been enrolled. Then, we use the
sampling prior, π(s)(γ, θ, τ2), to generate the predictive data DK1, …, DKI. We view the
distribution of DKi as the prior predictive distribution of the data. The algorithm for
generating the prior predictive data sets DK1, …, DKI is given as follows.

The Predictive Data Generation Algorithm
Step 1. Generate (γ, θ, τ2) ~ π(s)(γ, θ, τ2);

Step 2. Generate ξk ~ N(0, τ2) independently for k = 1, …, K;

Step 3. Compute λjk = exp{γ0 + γ1trtjk + θxjk + ξk};

Step 4. Generate  independently for ℓ = 1, …, njk, j = 1, 2, and k = 1, …,
K;

Step 5. Generate accrual times  independently for ℓ = 1, …, njk, j = 1, 2,
and k = 1, …, K;

Step 6. Compute , and

 for j = 1, 2, k = 1, …, K, and i = 1, …, I; and

Step 7. Set DKi = {(yjki, νjki, njk, trtjk, xjk), j = 1, 2, k = 1, …, K} for i = 1, …, I, which
give I sequential meta-data sets.

We note that the above predictive data generation algorithm can be further extended to allow
for additional censoring due to the patient withdrawing early from the study. Specifically,
Step 6 can be modified as follows:

Step 6*. Generate  independently, where g(c*|xjk) is a pre-specified distribution
for the censored random variable, compute

, and  for j
= 1, 2, k = 1, …, K, and i = 1, …, I.

Next, we briefly discuss how to sample from the posterior distributions. Let ξ = (ξ1, …, ξK)′.
Using (3.2) and (3.8), the posterior distribution of (γ, θ, τ2, ξ, θ0, ξ0) given the meta survival
data DKi available at the ith interim analysis takes the form
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(4.1)

We develop the Gibbs sampling algorithm in Appendix B to sample (γ, θ, τ2, ξ, θ0, ξ0) from
the posterior distribution in (4.1) for each of i = 1, …, I.

Finally, we discuss how to compute  in (3.6). In this regard, we consider I = 3 and
propose the following computational algorithm.

Simulation-based Algorithm for Computing Bayesian Type I Error and Power
Step 0. Set trtjk, njk, and xjk for j = 1, 2, and k = 1, …, K, and also set δ1, δ2, a0, φ01, φ02,
T0 ≤ T1 < T2 < T3, M (the Gibbs sample size), and N (the number of simulation runs).

Step 1. Generate DK1, DK2, and DK3 via the predictive data generation algorithm.

Step 2. (Interim Analysis 1). Run the Gibbs sampling algorithm to generate a Gibbs

sample { , m = 1, …, M} of size M from the posterior distribution in (4.1) given

DK1. Compute , ηf
= 1{P̂21 ≥ φ01}, and ηI1 = 1{P ̂11 ≥ φ01}. If ηf = 1, go to Step 6.

Step 3. (Final Analysis (see Figure 2)). If ηf = 0 and ηI1 = 1, run the Gibbs sampling

algorithm to generate a Gibbs sample { , m = 1, …, M} of size M from the posterior

distribution in (4.1) given DK3. Compute  and
recalculate ηf = 1{P̂23 ≥ φ02}. Go to Step 6.

Step 4. (Interim Analysis 2). If ηf = 0 and ηI1 = 0, run the Gibbs sampling algorithm to

generate a Gibbs sample { , m = 1, …, M} of size M from the posterior distribution
in (4.1) given DK2. Compute

, and ηI2 = 1{P̂12 ≥
φ02}. Recalculate ηf = 1{P̂22 ≥ φ02}. If ηf = 1, go to Step 6.

Step 5. (Final Analysis*). If ηf = 0, ηI1 = 0, and ηI2 = 1, run the Gibbs sampling

algorithm to generate a Gibbs sample { , m = 1, …, M} of size M from the posterior

distribution in (4.1) given DK3. Compute  and
recalculate ηf = 1{P̂23 ≥ φ02}.

Step 6. Repeat Steps 1–5 N times.

Step 7. Compute the proportion of {ηf = 1} in these N runs, which gives an estimate of

.
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5. Applications to A Meta-Analysis Sequential Design for Evaluating CV
Risk

We consider the meta-analysis sequential design discussed in Section 2. From Figure 1, we
have K = 9. Using the historical data shown in Table A1, we have K0 = 5 and we denote
these five historical trials by k = 1, 2, …, 5. Then, we set x0k = 0 for k = 1, 2 and x0k = 1 for k
= 3, 4, 5. The interim analysis margin and trial success margin were set as δ1 = 1.8 and δ2 =
1.3. To ensure that the familywise Type I error rate is controlled under 5%, we considered
various values of φ01 and φ02 such as 0.96, 0.97, and 0.98. These values were discussed in
[15] and recommended in the 2010 FDA Guidance, “Guidance for the Use of Bayesian
Statistics in Medical Device Clinical Trials”, released on February 5, 2010 (www.fda.gov/
MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071072.htm). In
the fitting prior (3.8), we chose an initial prior N(0, 10) for each of γ0, γ1, θ, and θ0, and d0f1
= 2.001 and d0f2 = 0.1 for the initial prior for τ2. Note that this choice of (d0f1, d0f2) leads to
a prior variance of 9.98 (about 10) for τ2. Thus, we specify relatively vague initial priors for
all the parameters.

As shown in Figure 1, we have (n11, n21) = (25, 125), (n12, n22) = (140, 210), (n13, n23) =
(1400, 2100), (n14, n24) = (100, 300), (n15, n25) = (75, 300), (n16, n26) = (185, 555), (n17,
n27) = (250, 500), and (n18, n28) = (188, 376). Then, given the above values of (n1k, n2k) for
k = 1, …, 8 and various values of n9 = n19 = n29, we generated DKi for i = 1, 2, 3 using the
predictive data generation algorithm presented in Section 4 using the sampling priors for (γ0,
γ1, θ, τ2) specified in Section 3.3. We wish to find the minimum size n9 and a value of a0
under various choices of (φ01, φ02) so that the power is at least 80% and the familywise
Type I error rate is controlled at 5%. The powers and Type I errors for various values of n9,
(φ01, φ02), and a0 are shown in Table 1 and plotted in Figure 3. In all computations of the
familywise Type I errors and powers, N = 10, 000 simulations and M = 10, 000 with 1000
burn-in iterations within each simulation were used.

From Table 1, we see that with no incorporation of historical meta-survival data, (i) the
Type I errors are less than 0.05 for all three values of (φ01, φ02) and the three sample sizes
except for one case in which (φ01, φ02) = (0.98, 0.96) and n9 = 2750, and (ii) for all the three
values of (φ01, φ02), the power always increases as n9 increases. Thus, without incorporation
of historical meta-survival data, 80% power was not achieved for n9 = 2500, n9 = 2750, and
n9 = 3000 under all three values of (φ01, φ02) and the power was 0.7968, which is very close
to 80%, when (φ01, φ02) = (0.98, 0.96) and n9 = 3250. With incorporation of historical meta-
survival data and controlling the 5% familywise Type I error rate, the maximum powers
were 0.7449 at a0 = 0.015 and (φ01, φ02) = (0.98, 0.97) when n9 = 2500; 0.7358 at a0 =
0.005 and (φ01, φ02) = (0.98, 0.97) when n9 = 2750; and 0.7817 at a0 = 0.015 and (φ01, φ02)
= (0.98, 0.97) when n9 = 3000. Thus, the sample size of n9 = 3000 or less was not
sufficiently large to achieve 80% power while the familywise Type I error rate was
controlled at 5% or less. When n = 3250, the maximum power was 0.8101 at a0 = 0.0215
and (φ01, φ02) = (0.98, 0.97). We also observe from Table 1 that (i) when a0 = 0.0250, all
the Type I errors exceeded 0.05; and (ii) the gains in power were about 4.7%, 2.2%, 3.7%,
and 4.9% with incorporation of 1.5%, 0.5%, 1.5%, and 2.15% of the historical data for n9 =
2500, 2750, 3000, and 3250, respectively, when (φ01, φ02) = (0.98, 0.97).

The four quantities, ( ) for ℓ = 0, 1, defined in (3.5) allow
us to examine the power and Type I error contributed from each of the interim analyses and
the final analysis. Table 2 shows the results under various choices of (φ01, φ02) and a0 when

n9 = 3250. We see from Table 2 that when φ01 increases, both the power ( ) the Type I
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error ( ) at the first interim analysis decrease. For example, when (φ01, φ02) = (0.96,
0.97), the Type I errors from the first interim analysis were 0.0390, 0.0466, and 0.0499,

which constitute the majority of the familywise Type I errors ( ’s), namely, 0.0565,
0.0661, and 0.0705, for a0 = 0, 0.015, and 0.0215, respectively. On the other hand, when
(φ01, φ02) = (0.99, 0.96), the Type I errors from the first interim analysis were 0.0094,
0.0117, and 0.0127; the corresponding powers were 0.2997, 0.3514, and 0.3583; the
familywise Type I errors were, 0.0426, 0.0512, and 0.0536; and the overall powers were
0.7915, 0.8265, and 0.8342 for a0 = 0, 0.015, and 0.0215, respectively. For all of the choices

of (φ01, φ02) and a0,  and  for ℓ = 0, 1 contributed less to the familywise Type

I errors and the overall powers than  and  for ℓ = 0, 1. However,  and

 for ℓ = 0, 1 become larger when φ01 increases. The results shown in both Tables 1
and 2, indicate that (i) a smaller value of φ01 leads to a premature termination of the meta
CV study and a larger familywise Type I error, (ii) a larger value of φ01 prevents a
premature termination but requires a longer waiting time to complete the meta CV study,
(iii) (φ01, φ02) = (0.98, 0.97) provides a good overall performance of the Bayesian sequential
meta-design under the various scenarios we considered, and (iv) the incorporation of
historical data leads to a reduction in sample size. To carry out a sensitivity analysis
regarding the use of random effects versus fixed effects models, we fit the fixed effects
model to the same predictive data used in Table 1 to recalculate the sample size. The results
are reported in Appendix C. The results shown in Table A2 are similar to those shown in
Table 1. Thus, the Bayesian sample size calculations are quite robust to the use of random
effects or fixed effects models. Although the power, Type I error and sample sizes are the
key components, we also examine the posterior summary statistics of the parameters in the
random effects model and the results along with detailed discussion are given in Appendix
D.

The key quantities in (3.5) and (3.6) can be extended to allow for different credible levels at
the 2nd interim and final analyses as follows:

(5.1)

and

(5.2)

for ℓ = 0, 1, where  and  are given in (3.5) and 0 < φ03 < 1 is a prespecified
Bayesian credible level for the final analysis. We note that in (5.1) and (5.2), 0 < φ02 < 1 is a
prespecified Bayesian credible level only for the 2nd interim analysis. The Bayesian
sequential meta-design with (5.1) and (5.2) is more general and flexible. It is easy to see that
when φ01 = φ02 = 1, (5.1) and (5.2) reduces to the one given in Ibrahim et al. (2012), which
results in a meta-design without any interim analyses. Using (5.1) and (5.2), we considered
(φ01, φ02, φ03) = (0.98, 0.97, 0.96). The resulting powers and familywise Type I errors were
0.7747 and 0.0477, 0.7932 and 0.0512, 0.8148 and 0.0584, 0.8221 and 0.0603, and 0.8243
and 0.0613, respectively, for a0 = 0, 0.005, 0.015, 0.0215, and 0.025 when n9 = 3000; and
0.7972 and 0.048, 0.8138 and 0.0507, 0.8332 and 0.0577, 0.8398 and 0.0618, and 0.842 and
0.0623, respectively, for a0 = 0, 0.005, 0.015, 0.0215, and 0.025 when n9 = 3250. These
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results were similar to those shown in Table 1. Thus, our proposed meta-design is quite
robust with respect to choices of (φ01, φ02) or (φ01, φ02, φ03). Finally, we considered (φ01,
φ02, φ03) = (1, 1, 0.96) and in this case, there were no interim analyses and consequently,
there is no multiplicity issue. Under this setting, when n9 = 3250, the powers and Type I
errors were 0.7868 and 0.0394, 0.8037 and 0.041, 0.8225 and 0.0469, 0.8289 and 0.0497,
0.8326 and 0.0503, and 0.8341 and 0.0517, respectively, for a0 = 0, 0.005, 0.015, 0.0215,
and 0.025. These results show that the meta-design without an interim analysis led to about a
2% gain (0.8326 versus 0.8101) in power compared to those with interim analyses while the
Type I error is about the same (0.0503 versus 0.0502). However, the meta-design without an
interim analysis requires a longer waiting time for the completion of the meta CV study.
Therefore, the meta-design with interim analyses offers much more flexibility (e.g., stopping
early for safety concerns) while only losing a negligible amount in power.

6. Discussion
The FDA guidance on CV evaluation for diabetes drug development implies that a sponsor
may take a two-step development strategy: 1) conducting and completing a set of Phase II/
III studies to file an NDA/BLA first by meeting the criterion of the upper bound of 95% CI
for HR < 1.8; 2) combining the data from step 1 and another CV outcome trial in order to
finally show the upper bound of 95% CI for HR < 1.3. The CV outcome trial should be
designed to include the high CV risk patient population, and can start either right after the
initial approval or even during the Phase II/III development so that the interim data from the
trial can be used as part of the filing data package. There are statistical implications of this
sequential meta-analysis design strategy. In this paper, we have extended the work of [1]
and developed a novel Bayesian sequential meta-experimental design approach to deal with
different statistical challenges in this setting. The approach not only computes the sample
size for multiple studies in a drug development program under the meta-analysis framework
by properly considering the between study heterogeneity, but also the sample size can be
reduced by borrowing historical information for the underlying CV risk in the control
population via the partial borrowing power prior. More importantly, the Bayesian approach
offers great flexibility in addressing the multiplicity issue in the context of sequential meta-
analysis. The operating characteristics of the meta-design against various scenarios and
decision rules can be explored easily through the MCMC simulations.

In this paper, we used a hypothetical drug development program with rules and decisions of
sponsor to demonstrate our proposed methodology. The example is one of many scenarios
that can be posed for a diabetes drug development program. Furthermore, our methodology
can be easily extended to other program scenarios for Type 2 diabetes with different study
designs, timelines and decision rules, or other diseases with regards to different safety risks.
The hypothetical example given in Section 2 contains the information of Categories 1 and 2
(Figure 1). The evaluations of CV risk use the final data from Category 1 and the interim or
final data from Category 2 (Figure 2). In practice, many sponsors would like to submit initial
filing based on the completed study data from Category 1, while the Category 2 CV
outcome study is still ongoing. In this case, it is important to evaluate the CV risk as soon as
possible during the initial filing review stage. Thus, it is ideal to understand the CV risk by
combining the final data from Category 1 and the interim data from Category 2. This poses
several practical considerations from both the operational and regulatory perspectives. The
considerations are mainly regarding dissemination of interim results. Two common
questions from sponsors are (1) what levels of interim analysis results in Category 2 should
be submitted for regulatory evaluations; and (2) If the decision of the market approval
includes the evaluations containing the interim data, how it should be addressed in the
approved package insert while the Category 2 CV outcome study is still ongoing. To
maintain trial integrity of conducting the CV outcome study, one possible approach could be
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letting the Data Monitoring Committee (DMC) conduct a planned meta-analysis by
combining the final data from Category 1 and the interim data from Category 2. The sponsor
can share the blinded DMC recommendation with the regulatory agencies afterwards and
propose high level blinded information, and clearly specify that it contains the interim data
from an ongoing study, in the package insert. Regardless, there are no standard solutions to
these questions. Sponsors should proactively discuss these issues with regulatory agencies to
get consensus at the pre-filing stage.

In this paper, we have developed a general and flexible Bayesian sequential meta-design
with incorporation of historical data. We examined the empirical performance and various
characteristics of the proposed meta-design via an extensive simulation study. Our proposed
method effectively controls the familywise Type I error rate by selecting appropriate
credible levels (φ0k’s) in the key design quantity given by (3.6) or (5.2). In the types of trials
considered in this paper, since the CV event rates are so low, and the patient populations are
rare, it appears that meta trial design is the only feasible way to go as mandated by the FDA.
It appears that individual trial design is not feasible in this context. A common clinical
development plan should have multiple phase 2 and 3 studies. In the area of developing type
II diabetes drug, the common practice is to evaluate efficacy from multiple studies enrolling
various patients in different disease status and/or background therapies. Meanwhile, the
sponsor will continue to cumulate the safety data (either through extension phases of the
existing studies, or conduct large scale long term safety studies after certain development
milestones). With the need of having multiple studies, the concept of meta-design is a
reasonable approach to enhance the evaluations of the integrated safety analysis, which is
important for both sponsor and regulatory agents to reduce the risks to the society. This
concept is coherent to the regulatory guideline mentioned in Section 1. As far as a0 is
concerned, our experience with the power prior shows that fixed a0 is just as effective and
flexible as random a0 and is less computationally intensive. Moreover, fixed a0 has a cleaner
interpretation and allows the user more control on the historical data than random a0. These
issues are discussed in [10]. Our recommendation in this paper is to use a meta-trial design
due to the study populations and low event rates, and if there is historical data, to
incorporate such data via the power prior with fixed a0. The proposed Bayesian design is
flexible, adaptive, and yields excellent operating characteristics.

Throughout the paper, we only considered the exponential regression model, which is one of
the limitations of our proposed approach. However, the exponential model is attractive in the
sense that the individual patient level survival data is not required. Another major
motivation for using the exponential model in this paper is that the historical data itself was
only available in aggregate form, thus the exponential model was most natural in this
setting, even if we had individual patient level data for the trials themselves. Had we used a
different survival model such as the Weibull regression model for the design, individual
patient level data would be needed in the design since the likelihood function of the Weibull
regression model does indeed depend on subject-level failure times and censoring indicators
from njk subjects and does not share the same properties as the exponential model. If
individual patient level survival data are available, then the proposed methodology can be
easily extended to other survival regression models such as piecewise exponential regression
models and cure rate regression models in [16]. In addition, in (3.1), the random effect is
assumed to be associated only with the trial effect. This assumption implies that the
treatment effect is constant across all trials. This assumption may be reasonable since (i) it is
not known whether the treatment effects are different across trials; and (ii) as shown in
Figure 1, the Category 2 trial has a large sample size, which may play a dominant role in
determining the treatment effect. We also note that the historical data are available only for
the control arm. Thus, there is no a priori information available about the magnitude of the
among-trial variability on the treatment effects from previous trials. This poses a major
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challenge in the design of a sequential meta-analysis clinical trial. However, our method can
be extended to allow for the inclusion of additional random treatment effects. Due to the
complexity of the proposed method, we defer this extension to a future research topic to be
investigated more thoroughly.

Though our proposed Bayesian meta-experimental design is general and flexible, it is
computationally intensive and the key quantities given in (3.5) and (3.6) are certainly not
available in closed form. However, the simulation-based algorithms developed in Section 4
are relatively easy to implement. We indeed implemented our methodology using the
FORTRAN 95 software with double precision and IMSL subroutines. The FORTRAN 95
code is available upon request. We have written very user-friendly SAS code using PROC
MCMC for the fixed effects model discussed in [1]. This software is currently being used by
practitioners at Amgen and elsewhere. We are now in the process of generalizing this SAS
code to the methodology developed in this paper as well as developing a user-friendly R
interface of our available FORTRAN code.
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Appendix A: Historical Data to Inform Background Rates for CV Events
Around the time that the FDA CV risk guidance document was published, the final results of
the two large scale randomized controlled CV outcome studies in Type 2 diabetes patients
were published. The event rates of the controlled groups of these two studies are used as the
historical information in the example of this paper (see Table A1). These two studies are
described as follows.

Table A1

Historical Data to Inform Background Rates for CV Events in Subjects Treated for Type 2
Diabetes (Control Arm)

Reference/Control Type
Number of
Subjects (N)

Number of
CV Events Total patient years Annualized event rate

ACCORD (2008) Standard therapy 5123 371 16000 2.29%

ADVANCE (2008) Standard
therapy

5569 590 27845 2.10%

Saxagliptin (2009) Total Control 1251 17 1289 1.31%

Liraglutide (2009) Placebo 907 4 449 0.89%

Liraglutide (2009) Active Control 1474 13 1038 1.24%

ACCORD Study
The Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial was designed to
determine whether a therapeutic strategy targeting normal glycated hemoglobin levels (i.e.,
below 6.0%) would reduce the rate of cardiovascular events, as compared with a strategy
targeting glycated hemoglobin levels from 7.0 to 7.9% in middle-aged and older people with
Type 2 diabetes mellitus and either established cardiovascular disease or additional
cardiovascular risk factors. The key result based on 10,251 patients with a mean of 3.5 years
of follow-up was published in 2008 [17].
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ADVANCE Study
The Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release
Controlled Evaluation (ADVANCE) trial was designed to assess the effects on major
vascular outcomes of lowering the glycated hemoglobin value to a target of 6.5% or less in a
broad cross-section of patients with Type 2 diabetes. The key result based on 11,140 patients
with a median of 5 years of follow-up was published in 2008 [18].

Moreover, other historical data can be obtained from the briefing documents of the FDA
advisory meetings for Saxagliptin and Liraglutide in April, 2009 [19]. For Saxagliptin and
Liraglutide, the events were the Major Adverse Cardiac Events (MACE). In Section, we
develop a Bayesian method to elicit the priors using these five historical datasets as shown
in Table A1.

Appendix B: The Gibbs Sampling Algorithm and Full Conditional
Distributions

We use the Gibbs sampling algorithm to sample from the posterior distribution in (4.1)
given DKi and D0K0 for i = 1,…, I. The full conditional distributions required in the Gibbs
sampling algorithm are (i) [γ|θ, ξ, θ0, ξ0, DKi,D0K0, a0]; (ii) [θ|γ, ξ DKi]; (iii) [ξ|γ, θ, τ2,DKi];
(iv) [θ0|γ0, τ2,D0K0, a0]; (v) [ξ0|γ0, θ0, τ2,D0K0, a0]; and (vi) [τ2|ξ, ξ0]. We sample, γ, θ, ξ,
θ0, ξ0, and τ2 from the above full conditional distributions in turn. For (i), using the initial
fitting prior in (3.8), the conditional density for [γ|θ, ξ, θ0, ξ0,DKi, D0K0, a0] is given by

(B.1)

For (ii) and (iv), the full conditional densities are given, respectively, as follows:

(B.

2)

and

(B.

3)

For (iii), given, γ, θ, τ2, and DKi, the ξk’s are conditionally independent and the conditional
density for ξk is given by

(B.

4)
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for k = 1, …, K. Similarly, for (iv), given γ0, θ0, τ2, and D0K0, the ξ0k’s are conditionally
independent and the conditional density for ξ0k takes the form

(B.

5)

for k = 1, …, K0. It is easy to show that the full conditional distributions in (B.1) to (B.5) are
log-concave in each of these parameters. Thus, we can use the adaptive rejection algorithm
of [20] to sample (γ, θ, ξ, θ0, ξ0). Finally, for (vi), the full conditional distribution [τ2|ξ, ξ0]
is an inverse gamma distribution given by

(B.6)

and, hence, sampling τ2 is straightforward.

Appendix C: Powers and Type I Errors under the Fixed Effects Model
Following [1], the log-linear fixed effects model for λjk assumes log λjk = γ0 + γ1trtjk + θk for

k = 1,…,K. To ensure identifiability, we assume that . For the historical
trial-level meta-survival data, under the fixed effects model, we assume log λ0k = γ0 + θ0k

for k = 1, 2,…,K0, where  and . The likelihood function and
the partial borrowing fitting prior under the fixed effects model are given in [1]. Under the
fixed effects model, the models for the historical data and the current data share only one
common parameter, namely, γ0. We then fit the fixed effects models to the same predictive
data used in Table 1 to recalculate the powers and Type I errors. In all calculations, we
chose an initial prior N(0, 10) for each of γ0, γ1, θk, and θ0k under the fixed effects model.
Table A2 shows the power and Type I errors under various values of n9 and (φp1, φ02).
Under the fixed effects model, 80% power with the corresponding familywise Type I error
of 5% or less was not achieved for n9 = 2500, n9 = 2750, and n9 = 3000. However, 80%
power was achieved for n9 = 3250 when (φ01, φ02) = (0.98, 0.96) and a0 = 0 or when (φ01,
φ02) = (0.98, 0.97) and a0 = 0.1625. Compared to the random effects model, the fixed effects
model allows for more incorporation of the historical data (i.e., a larger value of a0) in order
to achieve 80% power while the familywise Type I error maintains at 5% since the models
for the historical data and the current data share only one common parameter, namely, γ0.
These results are consistent with those shown in [1].

Table A2

Powers and Type I Errors Based on the Fixed Effects Model

(φ01, φ02) a0

Sample Size per Group for Trial 9

n9 = 2500 n9 = 2750 n9 = 3000 n9 = 3250

Power Type I Error Power Type I Error Power Type I Error Power Type I Error

(0.97, 0.97) 0 0.7138 0.0493 0.7293 0.0489 0.7573 0.0498 0.7748 0.0493

0.10 0.7395 0.0556 0.7509 0.0523 0.7748 0.0512 0.7932 0.0517

0.15 0.7602 0.0618 0.7693 0.0573 0.7929 0.0579 0.8099 0.0587
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(φ01, φ02) a0

Sample Size per Group for Trial 9

n9 = 2500 n9 = 2750 n9 = 3000 n9 = 3250

Power Type I Error Power Type I Error Power Type I Error Power Type I Error

0.20 0.7765 0.0680 0.7874 0.0631 0.806 0.0631 0.8221 0.0634

(0.98, 0.96) 0 0.7400 0.0502 0.7553 0.0518 0.7807 0.0499 0.8014 0.0494

0.10 0.7612 0.0553 0.7767 0.0558 0.7953 0.0519 0.8174 0.0537

0.15 0.7792 0.0606 0.7919 0.0608 0.8116 0.0565 0.8301 0.0581

0.20 0.7971 0.0672 0.8039 0.0645 0.8255 0.0616 0.8398 0.0636

(0.98, 0.97) 0 0.7039 0.0422 0.7183 0.0434 0.7479 0.0414 0.7651 0.0414

0.10 0.7274 0.0451 0.7410 0.0469 0.7661 0.0424 0.7853 0.0438

0.15 0.7466 0.0511 0.7591 0.0508 0.7835 0.0479 0.8006 0.0488

0.1625 0.7520 0.0534 0.7629 0.0516 0.7859 0.0485 0.8086 0.0500

0.20 0.7642 0.0581 0.7740 0.0555 0.7954 0.0528 0.8120 0.0540

Appendix D: The Posterior Estimates at Interim and Final Analyses
Due to the nature of the sequential meta-analysis design, we examine the empirical
performance of the posterior estimates at each of interim and final analyses under each of

the sampling priors  and  used in calculating the power and type I
error. As discussed in Section 3.3, the design values of (γ0, γ1, θ, τ2), denoted by (γ0,DV,

γ1,DV, θDV, ), are (−4.192, 0, −0.225, 0.054) and (−4.192, 0.262, −0.225, 0.054) under

 and , respectively. To evaluate the performance of the posterior
estimates, we generate N = 10, 000 data sets for each of DK1, DK2, and DK3 with n9 = 3250.

For the ith simulated data set, we compute the posterior means ( , θ̂(i), τ̂2(i)), the
posterior standard deviations (sd(γ0)(i), sd(γ1)(i), sd(θ)(i), sd(τ2)(i)), and the 95% highest

posterior density (HPD) intervals { }
for i = 1,…,N. We then calculate the average of the posterior means (EST), the average of
the posterior standard deviations (SD), the simulation standard error (SE), the root of the
mean squared errors (RMSE), and the coverage probability (CP) of the 95% HPD intervals
for each parameter under each simulation setting. Mathematically, for example, for γ1 (the
primary design parameter), EST, SD, SE, RMSE, and CP are defined as follows:

, and , where the indicator function

 if  and 0 otherwise. These quantities are
calculated in a similar fashion for γ0, θ, and τ. Table A3 shows the simulation results. For
the simulated data DK1 at the 1st interim look, the averages of the posterior means of γ1 are
very close to the corresponding design values, the CP’s of γ1 are almost 95%, and the SD’s
and the SE’s are almost the same when a0 = 0 or a0 = 0.0215. For the simulated data sets
DK2 and DK3 at the 2nd and final looks, the averages of the posterior means of γ1 are slightly
higher than the corresponding designed values, and the SD’s are slightly higher than the
SE’s, resulting in the CP’s around 96% to 97%. When a0 = 0, the averages of the posterior
means of γ0 are slightly higher than the designed value, the SD’s are slight larger than the
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SE’s, and the CP’s are around 97%. When a0 = 0.0215, the averages of the posterior means
of γ0 are larger than the designed value, which is expected since the prior mean of γ0 =
−3.807 based on the historical data D0K0. Based on the design of the predictive data
generation, the follow-up times for subjects with high CV risk are always longer than those
for subjects with low or moderate CV risk. This unbalanced design leads to biased estimates
for θ especially when a0 = 0.0215. Again, due to a small number of meta studies, the
averages of the posterior means for τ2 are slightly higher than the designed value and the
corresponding SD’s are also high, which leads to high CP’s in all cases.

Table A3

Summary of the Posterior Estimates at Interim and Final Analyses

Analysis a0 Para-meter

Under  for Power Under  for Type I Error

EST SD SE RMSE CP (%) EST SD SE RMSE CP (%)

IA1 0 γ0 −4.125 0.318 0.263 0.272 97.32 −4.126 0.314 0.262 0.270 97.21

γ1 0.005 0.144 0.145 0.145 94.99 0.268 0.136 0.138 0.138 94.93

θ −0.325 0.374 0.316 0.332 96.94 −0.321 0.363 0.307 0.322 97.12

τ2 0.086 0.091 0.033 0.046 99.99 0.084 0.085 0.033 0.045 99.99

0.0215 γ0 −4.001 0.211 0.129 0.231 91.72 −4.002 0.210 0.130 0.230 91.64

γ1 −0.016 0.141 0.140 0.141 95.13 0.246 0.133 0.133 0.134 94.93

θ −0.431 0.292 0.234 0.312 92.87 −0.426 0.284 0.226 0.303 92.87

τ2 0.074 0.061 0.023 0.031 100.0 0.073 0.059 0.024 0.030 99.99

IA2 0 γ0 −4.153 0.279 0.250 0.253 96.81 −4.162 0.281 0.252 0.253 97.10

γ1 0.034 0.123 0.104 0.110 97.25 0.314 0.115 0.099 0.112 95.90

θ −0.531 0.336 0.240 0.389 92.35 −0.421 0.327 0.238 0.309 97.02

τ2 0.068 0.068 0.003 0.015 100.0 0.070 0.066 0.002 0.016 100.0

0.0215 γ0 −4.024 0.199 0.132 0.214 91.11 −4.029 0.201 0.132 0.210 92.09

γ1 0.015 0.121 0.101 0.102 97.87 0.295 0.113 0.095 0.100 97.19

θ −0.647 0.279 0.139 0.445 75.43 −0.541 0.270 0.140 0.346 89.62

τ2 0.063 0.050 0.012 0.015 100.0 0.065 0.050 0.012 0.016 100.0

Final 0 γ0 −4.146 0.274 0.245 0.249 96.81 −4.153 0.277 0.247 0.250 97.04

γ1 0.025 0.105 0.093 0.097 96.88 0.300 0.099 0.089 0.096 95.98

θ −0.531 0.333 0.236 0.387 92.92 −0.420 0.325 0.236 0.306 97.12

τ2 0.068 0.068 0.003 0.015 100.0 0.070 0.066 0.003 0.016 100.0

0.0215 γ0 −4.025 0.197 0.133 0.213 90.95 −4.028 0.199 0.132 0.211 91.65

γ1 0.011 0.104 0.091 0.092 97.29 0.286 0.098 0.086 0.089 96.93

θ −0.643 0.277 0.137 0.440 75.93 −0.535 0.268 0.138 0.340 90.14

τ2 0.063 0.050 0.012 0.015 100.0 0.065 0.050 0.012 0.016 100.0
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Figure 1.
Design of meta studies with two categories and interim analyses (IAs) for evaluating the CV
risk. 1Interim analysis scheduled 2 years after the first subject enrolls in the CV study.
Category 1 studies are complete at this time. 2If the upper limit of the 95% CI for the hazard
ratio exceeds 1.8 in the first interim analysis, a second interim analysis is scheduled 1 year
after the first interim analysis (3 years after the first subject enrolls). 3Time is relative to the
start of the CV study. Randomization ratio: control vs treatment.
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Figure 2.
Diagram of decision rule and timeline for the meta experimental design with interim
analyses.
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Figure 3.
Plots of Type I error and power versus a0 for n9 = 2500, 2750, 3000, and 3250.
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