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Abstract

Joint models for longitudinaland survival data now have along history of being used in clinical 

trials or other studies in which the goal is to assess a treatment effect while accounting for 

longitudinal assessments such as patient-reported outcomes or tumor response. Compared to using 

survival data alone,the joint modeling of survival and longitudinal data allows for estimation of 

direct and indirect treatment effects, thereby resulting in improved efficacy assessment. Although 

global fit indices such as AIC or BIC can be used to rank joint models, these measures do not 

provide separate assessments of each component of the joint model. In this paper, we develop a 

novel decomposition of AIC and BIC (i.e., AIC = AICLong + AICSurv|Long and BIC = BICLong + 

BICSurv|Long) that allows us to assess the fit of each component of the joint model, and in 

particular to assess the fit of the longitudinal component of the model and the survival component 

separately. Based on this decomposition, we then propose ΔAICSurv and ΔBICSurv to determine 

the importance and contribution of the longitudinal data to the model fit of the survival data. 

Moreover, this decomposition, along with ΔAICSurv and ΔBICSurv, is also quite useful in 

comparing, for example, trajectory-based joint models and shared parameter joint models and 

deciding which type of model best fits the survival data. We examine a detailed case study in 

mesothelioma to apply our proposed methodology along with an extensive set of simulation 

studies.
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1. Introduction

Through the joint modeling of longitudinal and survival data, researchers may reduce bias in 

the estimates of the treatment effect and also increase the power to compare the efcacy of a 

new oncology treatment with the current standard of care [1, 2]. Although the joint analysis 

of longitudinal and time-to-event outcomes has been widely published in statistical journals, 

it has not yet been routinely applied to the analysis of patient-reported outcomes (PROs) for 

the purpose of evaluating the efcacy and tolerability of cancer treatment. One barrier to the 

implementation of these methods has been the lack of usable sofitware to guide the 

programming and evaluation of these joint models. Building on previous joint modeling 

work in a highly symptomatic and particularly fatal condition [malignant pleural 

mesothelioma (MPM)] [3, 4], we develop methods to evaluate model fit in order to identify 

proper model specification.

This work was motivated by the need to adequately assess the differential benefits of 

alternative medical treatments, particularly in oncology applications where the survival 

advantage between competing medications may be modest. In this setting, information from 

the patients’ perspectives can be useful in evaluating actual patients’ experiences on 

dimensions known to be important to them and also associated with treatment outcomes. 

Accordingly, the field of PROs has evolved and has reached a common understanding about 

good clinical practices for the use of PROs [5]. Additionally, the U.S. and European 

regulators have published guidance on the use of these measures to support PRO-based 

claims in pharmaceutical product labeling (European Medicines Agency, 2005; US Food 

and Drug Administration Guidance for Industry, 2009)[6]. Unfortunately, relatively little 

attention has been paid to similarly advancing the analysis of trial-based PRO data; the 

inclusion of PRO assessments is seldom done with the rigor used to specify and analyze 

traditional endpoints of survival and tumor response [7]. Hence, the benefits of good PRO 

practice standards and insightful regulatory guidance have not generally led to informative 

conclusions. Published results concerning the use of joint survival/PRO models should help 

inform decision makers about the impact of anticancer treatment on both survival and 

patient well-being [3, 4, 8]. Joint modeling of these endpoints can provide a comparative 

assessment of patient-reported changes in specifc symptoms or global measures (e.g., 

quality of life or functioning) that correspond to treatment-related changes in survival. 

Therefore, it could be shown that increased survival was accompanied by relatively better 

PRO scores or alternatively that extended progression-free or overall survival was 

experienced at the expense of well-being. To support this joint modeling, we show how to 

evaluate the distinct effects of longitudinal and time-to-event outcomes on the fit of the joint 

model, and we develop the necessary SAS code to facilitate use of these methods.

The literature on joint modeling of longitudinal and survival data has burgeoned to the point 

that it is impractical to make broad general conclusions based on a systematic review of the 

literature. It is, however, practical and useful to describe the two basic fundamental 

approaches in joint modeling of longitudinal and survival to achieve this goal. The first is 

the "trajectory model" (TM) approach, where the trajectory function (mean response) from 

the longitudinal model is substituted into the hazard function of the survival model, thereby 

serving as a time-varying covariate in the survival model. The second basic approach is the 
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"shared parameter model" (SPM), where the longitudinal model and survival model share 

common random effects which then induces correlation between the longitudinal and 

survival components. Both modeling schemes have advantages and disadvantages. The TM 

advantage, compared to the SPM, is that it leads to a straight forward interpretation of the 

association between the longitudinal marker and survival time through the direct inclusion 

of the trajectory function in the hazard. For the SPM, the characterization of the association 

is much more complex and can only be analytically determined once the random effects 

have been integrated out, since the two components of the model are independent 

conditional on these random effects. Typically, this integration cannot be carried out in 

closed form, and even if it were, the resulting dependence structure would be very 

complicated involving lots of parameters and resulting in difcult interpretations.

There have been many papers in the statistical literature concerning these two basic 

approaches. The TM in joint modeling for cancer vaccine trials in malignant melanoma has 

been considered in [9, 10, 11, 12]. The TM models have been also used in quality-of-life 

studies [13, 14, 15, 16], and in AIDS studies [17, 18, 19, 20, 21, 22, 23]. The SPM models 

have been used in other types of biomedical applications [24, 25]. There has been much 

work on using the SPM in joint modeling of survival and longitudinal data focused on AIDS 

studies, and in particular, jointly modeling of survival data and univariate or multivariate 

longitudinal CD4 counts. These articles include [26, 27, 28]. Other researchers who have 

used SPM’s with a multivariate longitudinal response include [29, 30, 31, 32]. An excellent 

general review on joint modeling of longitudinal and survival data was given in [33]. 

Ibrahim, Chen, and Sinha ([34], Chapter 7) also gave an overview of joint modeling 

methods. Joint models for longitudinal and survival data in which the survival component of 

the model is a cure rate model were considered in [35, 10, 11], where the models focus on 

cancer clinical trials.

One important issue in the joint modeling of longitudinal and survival data concerns the 

separate contribution of the model components to the overall goodness-of-fit of the joint 

model. In this paper, we derive a novel decomposition of the AIC and BIC criteria into 

additive components that will allow us to assess the goodness of fit for each component of 

the joint model. More importantly, such a decomposition allows us to develop ΔAICSurv and 

ΔBICSurv to quantify the change of AIC and BIC in fitting the survival data with and 

without the longitudinal data. Thus, ΔAICSurv and ΔBICSurv can be used to determine the 

importance of the longitudinal data to the model fit of the survival data. In addition, 

ΔAICSurv and ΔBICSurv are also very useful in assessing whether a linear trajectory or 

quadratic trajectory is more suitable and in facilitating a direct comparison between TM’s 

and SPM’s. These proposed measures will help the data analyst in not only assessing each 

component of the joint model but also in determining the contribution of the longitudinal 

data to the fit of the survival data.

The rest of the paper is organized as follows. A detailed description of the longitudinal and 

survival data from a clinical trial is given in Section 2. The joint models, the time-varying 

covariates models, and the two-stage models are presented in Section 3 along with their 

properties. The proposed decomposition of AIC and BIC is developed in Section 4. An 

extensive simulation study is conducted in Section 5, and a comprehensive analysis of the 
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longitudinal and survival data described in Section 2 is given in Section 6. We conclude the 

paper with a discussion including some proposed extensions to our research in Section 7.

2. The EMPHACIS Data

Our research was motivated by the large phase III multicenter, randomized, single-blind, 

EMPHACIS lung cancer clinical trial (Evaluation of MTA in Mesothelioma in a Phase 3 

Study with Cisplatin). Although the details of this study have been published elsewhere 

[36], we provide the essential background information needed for contextual understanding 

of our proposed methodology. The study drug was pemetrexed (PEM), a multi-targeted 

antifolate (MTA), which was given in combination with cisplatin (Cis) (the PEM/Cis arm), 

and the active-treatment comparator was cisplatin alone (the Cis arm); respectively, 226 and 

222 patients received at least one cycle of chemotherapy. The treatment for both arms was 

structured as six 21-day cycles of therapy; patients receiving treatment benefit could receive 

additional cycles based on investigator discretion.

Malignant pleural mesothelioma is characterized by rapid disease progression, high 

symptom burden, and a relatively short median survival of 12 months afiter diagnosis [37, 

38]. Accordingly, patient-reported assessments are important for evaluation of disease 

progression and patients’ response to therapy. In oncology, the patients’ importance ratings 

on the magnitude of progression-free survival improvement has been shown to depend on 

the severity of disease-related symptoms [39]. We analyzed the disease-specifc patient-

reported Lung Cancer Symptom Scales (LCSS) [40] to evaluate the patient-level association 

of five of the six instrument items (i.e., anorexia, cough, dyspnea, fatigue, and pain) with 

progression-free survival using the EMPHACIS trial data. The sixth LCSS symptom, 

hemoptysis, was not analyzed due to research suggesting that this phenomenon is not 

prevalent in MPM [41]. The three remaining LCSS items are global constructs (interference, 

quality of life, symptoms), and due to their non-specifcity, we also excluded these from our 

analysis. Each questionnaire item was assessed using l00-mm visual analogue scales (0=no 

symptoms, 100 = worst possible symptoms). There were two measurements at baseline. In 

our analysis, we took the average of the two baseline measurements of each longitudinal 

outcome as the baseline outcome and reset the measurement time so that the baseline 

measurement time is zero. Weekly measurements (at days 8 ± 1, 15 ± 1, l9) were taken in 

each 21-day therapy cycle. The LCSS was also assessed approximately every 3 months 

afiter the patient had received his or her last dose of treatment if the patient had not initiated 

subsequent therapy. Progression free survival time (PFS) is defined as the time from 

randomization to the time until documented progression or death from any cause. Beyond 

disease progression, very few LCSS assessments were available.

Previously, researchers have investigated the prognostic effect of baseline PRO outcomes on 

overall survival in patients with MPM [42]. We are, however, interested in the association 

between post-baseline PRO scores and PFS. The main goal of applying joint models in this 

study is to assess the association of each longitudinal LCSS symptom with PFS and the 

treatment effects on each LCSS item and PFS simultaneously. More importantly, with the 

novel decomposition of AIC and BIC, the longitudinal LCSS symptoms can be compared in 

terms of their contribution to the overall fit of the survival data.
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Our cohort consists of 425 patients with at least one post-baseline value for each 

longitudinal outcome. The covariates we consider in this study include race/ethnicity, 

gender, age, Karnofsky status, baseline stage of disease, vitamin supplementation, and 

treatment assignment. Table 1 shows the baseline characteristics of the patients in each 

treatment group and the four descriptive statistics (minimum, median, maximum and mean) 

for PFS.

3. The Models

Suppose that there are n subjects. For the ith subject, let Yi(t) denote the longitudinal 

outcome, which is observed at time t ∈{ai1, ai2,...., aimi}, where ai1 = 0 <ai2 < ... <aimi and 

mi > 1. Note that Yi(0) corresponds to the baseline value. Let ti denote the failure time, 

which may be right-censored, and let δi be the censoring indicator such that δi = 1 if ti is a 

failure time and 0 if ti is right-censored for the ith subject. Also let zi be the treatment 

indicator such that zi = 1 for the treatment and zi = 0 for the control. We further let xi denote 

the p-dimensional vector of covariates. We first consider the joint model for (Yi, ti), which 

consists of the longitudinal component and survival component presented in Subsections 3.1 

and 3.2. We also consider a time-varying covariates (TVC) model for ti, where Yi(t) is 

treated as a time-varying covariate in Subsection 3.3.

3.1. Longitudinal Component of the Joint Model

For the ith subject, we assume a mixed effects regression model for the longitudinal 

outcome Yi(t), which is given by

(3.1)

where  is a polynomial vector of order q for j = 1,..., mi, θi is a 

(q+1)-dimensional vector of random effects, and γ2 is a p-dimensional vector of regression 

coefficients. In (3.1), we further assume θi ~ N(θ, Σ), where θ is the (q+l)-dimensional 

vector of overall effects, Σ is a (q+1)×(q+1) positive definite covariance matrix with lower 

triangle consisting of {Σ00, Σ10, Σ11,..., Σqq}, εi(aij) ~ N(0, σ2), and θi and εi(aij) are 

independent. We note that in (3.1), if q = 1, g(aij) = (1,aij)′ and  yields a linear 

trajectory, and if q = 2,  and  leads to a quadratic trajectory.

3.2. Survival Component of the Joint Model

For failure time ti, we assume the hazard function is of the general form

(3.2)

where λ0(t) is the baseline hazard function, h(·) is a linear function of θi, g(t), γ1zi, and 

with β being a vector of the corresponding regression coefcients, , and 

. Note that in (3.2), θi, g(t), γ1, and γ2 are the parameters or the functions from 
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the longitudinal component of the joint model in (3.1), and λ0, β, α1 and α2 are the only 

parameters pertaining to the survival component. When

(3.3)

where h*(·) is a linear function of , γ1zi, and , (3.2) leads to the TM. In this case, 

the hazard function depends on θi and g only through . When h does not depend on g(t), 

that is,

where h*(·) is a linear function of , γ1zi, and , (3.2) reduces to the SPM.

In (3.2), we further assume a piecewise constant hazard model for λ0(t). Specifcally, we first 

construct a finite partition of the time axis, 0 = s0 < s1 < s2 < ... < sK−1 < sK = ∞. Thus, we 

have K intervals (0,s1], (s1,s2], ... , (sK−1,sK]. Then, we assume a constant baseline hazard 

within each of the K intervals, that is,

(3.4)

Finally, we write λ = (λ1,...,λK)′. Using (3.4), the complete-data likelihood function for the 

survival component for the ith subject can be written as

(3.5)

where λ(t|λ0, β, α, θi, g(t), γ,zi, xi) is given in (3.2).

Remark 3.1 In (3.2), when β = 0,  and the hazard function 

reduces to . In this case, we fit 

the survival data alone (without the longitudinal data) and the likelihood function in (3.5) for 

the ith subject reduces to

(3.6)

3.3. The Time-Varying Covariates (TVC) Model

If ti is of primary interest, the time-varying covariates model (see, for example, [43, 44]) can 

be used to model the failure time ti, in which Yi(t) can be considered as a time-varying 

covariate. Under the TVC model, the hazard function is assumed to be

(3.7)
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where λ0(t) is the baseline hazard function. Since the longitudinal outcome Yi(t) is observed 

only at each of ai1, ... , aimi, we let Yi(t) = Yi(aij) for aij ≤ t <ai,j+1 for j = 1, ... , mi, where 

ai,mi+1 = ∞. Similar to (3.2), a piecewise constant hazard model in (3.4) is assumed for λ0(t) 

in (3.7). Finally, we notice that in the TVC model (3.7), Yi(t) is a one-dimensional covariate 

and therefore, β is one-dimensional as well.

3.4. The Two-Stage (TS) Model

Instead of directly using the longitudinal outcome Yi(t) as a covariate in (3.7), (i) we first fit 

(3.1) to the longitudinal data alone, obtain the estimates of θi, γ1, and γ2, denoted by , 

and ; and compute ; and (ii) we then use  as a time-

varying covariate in the survival model, in which the hazard function is defined as 

. At first, it appears that the 

above hazard function is similar to (3.7). However, there is a substantial difference between 

Yi(t) and . The longitudinal outcome Yi(t) is observed only at each of the time points 

ai1, ..., aimi while  is defined at any time t. In addition,  is much less variable than 

Yi(t) since  is a smooth function of t and Yi(t) is random. The model defined here is 

known as the two-stage (TS) model [33].

4. Assessing the Contribution of Longitudinal Data When Modeling the 

Survival Data

For the joint model discussed in the previous section, we develop a new method to assess the 

contribution of the longitudinal data when fitting the survival data. We first introduce some 

notation. We rewrite (3.1) as follows:  where Y i =(Yi(ai1),...,Yi(aimi))' , 

Wi is a mi by (p + q + 2) matrix whose ith row is , and εi 

=(εi(ai1),...,εi(aimi))’ ~ N(0,σ2Imi). The complete-data likelihood function of the longitudinal 

outcomes for the ith subject is given by

(4.1)

for i = 1,...,n. Note that the density of θi is given by

(4.2)

Let φ = (λ, β, α, γ,σ2, θ, Σ). Using (3.5), (4.1), and (4.2), the observed-data likelihood 

function for (Yi,ti,δi) for the ith subject is given by

(4.3)
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for i = 1,..., n. Let  denote the maximum likelihood estimate (MLE) of φ from the joint 

model. Using (4.3), the Akaike Information Criterion (AIC) [45] for the joint model is given 

by

(4.4)

and the Bayesian Information Criterion (BIC) [46] is defined as

(4.5)

4.1. AIC and BIC Decomposition

To assess the contribution of longitudinal data to the fit of the survival data, we need to 

decompose AIC in (4.4) into two parts: one part for the longitudinal data and the other part 

for the survival data conditional on the longitudinal data. Write φ1 =(γ,σ2, θ, Σ) and φ2 =(λ, 

β, α). We are led to the following theorem.

Theorem 4.1 Let f(θi|Y i,Wi, φ1) be the conditional density of the random effects θi given 

Y i, and also let , which is the likelihood 

function corresponding to the marginal distribution of Yi. Then AIC in (4.4) has the 

following decomposition:

(4.6)

where , 

, 

and  and  are the MLEs of  and .

The proof of Theorem 4.1 is given in the Appendix. BIC in (4.5) has a similar 

decomposition as in (4.6); this result is stated in the following corollary, and the proof of 

this corollary directly follows that of Theorem 4.1.

Corollary 4.1 BIC in (4.5) can be decomposed as BIC = BICLong + BICSurv|Long, where 

BICLong = AICLong + dim(φ1)(log n − 2), and BICSurv|Long = AICSurv|Long + dim(φ2)(log n − 

2).

Remark 4.1 We note that the AIC decomposition in (4.6) and the BIC decomposition in 

Corollary 4.1 hold for general longitudinal data models, which may not be normal. 

However, for normally distributed longitudinal data, f(θi|Yi,Wi, φ1) and L(φ1|Yi,Wi) in 

Theorem 4.1 are available in closed form. It is easy to see that
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and

Thus, the observed-data likelihood function of the longitudinal data takes the form:

(4.7)

After some algebra, we also obtain the conditional distribution of the random effects θi 

given the longitudinal data, which is given by

Remark 4.2 SPM and TM discussed in Section 3 can be implemented in SAS via PROC 

NLMIXED. The NLMIXED procedure calculates , , and the overall AIC using adaptive 

Gaussian quadrature to approximate (4.3). For normally distributed longitudinal data, 

AICLong can be computed using (4.7) and , which may be implemented in SAS via PROC 

IML. Subsequently, AIC–AICLong gives AICSurv|Long. Alternatively, given  and , we 

may use a Monte Carlo (MC) method to compute AICSurv|Long using (4.6) and an MC 

sample generated from . This alternative approach can be used to validate 

the total AIC obtained from PROC NLMIXED.

4.2. ΔAICSurv and ΔBICSurv

AICLong (BICLong) measures the contribution to the total AIC (BIC) due to the longitudinal 

data while AICSurv|Long (BICSurv|Long) quantifes the contribution to the total AIC (BIC) due 

to the survival data with the additional information from the longitudinal data. Let

(4.8)

where L0(λ, α|ti,δi,zi, xi) is defined by (3.6). We now propose the following two model 

assessment criteria:

(4.9)

Both ΔAICSurv and ΔBICSurv measure the gain of the fit in the survival component due to 

the longitudinal data with a penalty for the additional parameters in the survival component 
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of the joint model. The model with a large value of ΔAICSurv (ΔBICSurv) is more preferred. 

To address an important practical issue of how ΔAICSurv and ΔBICSurv are related to the 

magnitude of the longitudinal outcomes, we establish a useful result, which is formally 

stated in the following theorem.

Theorem 4.2 The criteria ΔAICSurv and ΔBICSurv are invariant to location and scale 

transformations of the longitudinal outcomes. Specifcally, consider a linear transformation: 

 for j =1,...,mi and i = 1,...,n, where b and c > 0 are two known 

constants. The resulting criteria corresponding to the transformed longitudinal outcomes 

's are denoted by ΔAICSurv(b, c) and ΔBICSurv(b, c). Then, we have ΔAICSurv(b, c)= 

ΔAICSurv and ΔBICSurv(b, c) = ΔBICSurv for all −∞ <b< ∞ and c > 0.

The proof of Theorem 4.2 is given in the Appendix. We note that if  and c = S, where 

 and , then the 's are the 

standardized longitudinal outcomes. This linear transformation invariant property of 

ΔAICSurv and ΔBICSurv allows us to standardize the longitudinal outcomes to improve 

numerical stability in fitting the joint model of the longitudinal and survival data as well as 

computing ΔAICSurv and ΔBICSurv using existing statistical sofitware such as SAS.

5. Simulation Studies

In this section, we conduct extensive simulation studies to examine the empirical 

performance of ΔAICSurv and ΔBICSurv in model comparison as well as in the determination 

of the contribution of the longitudinal data to the goodness-of-fit of the survival model. In 

the simulation studies, we consider four types of models, namely, SPM, TM, TS and TVC 

models. Although the definitions of ΔAICSurv and ΔBICSurv are based on the joint model, 

they can be extended to the TS and TVC models as well. Specifcally, for the TVC model, 

AIC is given by

(5.1)

where 

and λ(t|λ0, β, α,zi, xi, Yi(t)) is given in (3.7). We define ΔAICSurv as follows: ΔAIC = 

AICSurv,0 − AICSurv|Y, where AICSurv,0 is given by (4.8). ΔBICSurv can be defined in a 

similar fashion. Replacing Y by  in (5.1), ΔAICSurv and ΔBICSurv can be defined for the 

TS model.

Three simulation studies are considered (i) to examine the performance of ΔAICSurv and 

ΔBICSurv in selecting the true model (Simulations I and II) and determining the true 

longitudinal outcome that is most related to the survival model (Simulation III); (ii) to 

investigate the empirical properties of the maximum likelihood estimates of the parameters 
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in the joint model (Simulations I and II); and (iii) to test the robustness of the computational 

procedure to the dimension of the model parameters (Simulation II). In all three simulation 

studies, we independently generate 500 simulated datasets, and in each dataset there are n = 

400 subjects. The treatment indicator zi is generated from a Bernoulli(0.5) distribution. The 

time points aij’s at which the longitudinal outcomes are taken are fxed at (0, 21, 42, 63, 84, 

105, 126)/30.4375, where 30.4375 is the average number of days in each month and is 

obtained by 365.25/12. Other data generation details are given as follows.

Simulation I: The true model is SPM with linear trajectory denoted by SPML. Specifcally, 

the longitudinal data is simulated from a N(μi(aij),σ2) distribution, where μi(aij) = θ0i + θ1iaij 

+ γzi, and ti* is generated from [−λexp{β1(θ0i + γzi)+ β2θ1i + αzi}]−1log(1 − U), where U ~ 

U(0, 1). The design values of the parameters are given in Table 2. The censoring time Ci is 

generated from an exponential distribution with mean 100. The right censoring percentage is 

roughly 8% which mimics the real data analysis. The failure time and censoring indicator 

are calculated as  δi and  and 0 otherwise.

Simulation II: The true model is SPM with quadratic trajectory denoted by SPMQ. The 

data generation process follows the same steps as in Simulation I. The design values of the 

parameters are shown in Table 2.

Simulation III: The same setting as in Simulation I is used to generate the longitudinal data 

and survival times under the true model SPML. This dataset is denoted by DLong. We also 

generate three additional sets of longitudinal data, which are associated with the one 

generated in Simulation I. These additional longitudinal trajectories are simulated from 

, where , and then the 

longitudinal data are generated from N(μli(aij), 0.52) for l =1, 2, 3, where σ1 = 0.1, σ2 = 0.5, 

and σ3 = 1. These three sets of longitudinal data each are coupled with the same survival 

times as in DLong to form four additional datasets. These resulting datasets are denoted by 

DLong1,...,DLong3.

In Simulation I, we fit SPML, TML (TM with linear trajectory and 

 in (3.3)), the TS model with linear trajectory, 

and the TVC model (all with K = 1, where K is defined in (3.4)) to each simulated dataset. In 

Simulation II, we fit SPML, SPMQ, TML, TMQ (TM with quadratic trajectory), the TS 

model, and the TVC model to each simulated dataset. In Simulation III, we fit SPML to each 

of the datasets DLong, DLong1, DLong2, DLong3 and the corresponding results are labeled as 

Long, Longl, Long2, and Long3.

In both Simulations I and II, we compute the estimates of the parameters under the true 

models. Let η denote a parameter in the true model. Also let  and  be the MLEs of η 

and the standard error of  from the bth simulated dataset for b =1, 2,..., 500. We define the 

simulation estimate (EST) and the standard error (SE) to be  and 

. We also define the simulation standard deviation (SD) and the root of the 
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mean squared error (RMSE) as  and 

, where η*is the true value of η. Finally, we define the coverage 

probability (CP) of the 95% confidence intervals as , where Lb and 

Ub are the 95% lower and upper limits in the bth simulation. The ESTs, SEs, SDs, RMSEs, 

and CPs for the parameters in SPML and SPMQ are reported in Table 2. From this table, we 

see that for all parameters, the ESTs are very close to the corresponding true values, the SEs 

are very close to the SDs, and the CPs are always around 95% under both SPML and SPMQ.

Suppose we compare a total of J candidate models. Let ΔAICSurv,jb and ΔBICSurv,jb denote 

the values of ΔAICSurv and ΔBICSurv from the bth simulated dataset. Then, the frequency of 

ranking Model j as the best according to ΔAICSurv criterion is defined as 

 A similar frequency can be defined for 

the ΔBICSurv criterion or the other criteria. If Model l is the true model, the average 

misspecification rate according to ΔAICSurv is given by 

.

Table 3 shows the means of ΔAICSurv and ΔBICSurv as well as the frequencies of ranking 

each model as best based on ΔAICSurv and ΔBICSurv for 500 simulated datasets for all three 

simulations. In Simulations I and III, the true model is SPML with K = 1 while the true 

model is SPMQ with K = 1 in Simulation II. In all three simulations, the true model always 

has the largest mean of either ΔAICSurv or ΔBICSurv and the highest frequency of ranking 

the true model as best based on either ΔAICSurv or ΔBICSurv. The average misspecification 

rates according to ΔAICSurv and ΔBICSurv in Simulation I, II, and III are 0.24 and 0.538, 

0.058 and 0.272, 0.136 and 0.136, respectively. We also see from Table 3 that the 

differences in the means of ΔAICSurv between SPML and TML or SPMQ and TMQ are 

greater than the differences in the means of ΔBICSurv. These results are expected since TML 

and TMQ have fewer regression coefcients than SPML and SPMQ, and BIC penalizes the 

dimension of the parameters more than AIC. Similar results are observed based on the 

frequency of ranking each model as best. Thus, the performance of ΔAICSurv is slightly 

better than ΔBICSurv in correctly identifying the true model. It is interesting to note that 

although neither TM nor the TS model is the true model, TM outperforms the TS model in 

both Simulations I and II. In Simulations I and II, the TVC model fits the data the most 

poorly based on both ΔAICSurv and ΔBICSurv.

In Simulation III, the true longitudinal outcome is Long, and Longl is obtained by adding 

random errors to both the random intercept and slope of the linear trajectory in Long for l = 

1,..., 3. Longl to Long3 become gradually further apart from Long since the standard 

deviation of the random errors increases from 0.1 to l. Since we fit the same model to each 

of these five datasets, the differences between ΔAICSurv and ΔBICSurv are the same for 

Long, Longl, ... , Long3. Thus, only the results based on ΔAICSurv are reported in Table 3. 

We see from this table that Long has the largest mean of ΔAICSurv and the highest 
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frequency of ranking Long as best, and the mean and frequency corresponding to Longl 

decrease as l increases. The results for Long and Long1 are very close, which is expected 

since Longl is obtained by adding a very small amount of noise to Long.

In addition, Figure 1 shows the boxplots of the ΔAICSurv and ΔBICSurv differences between 

the true model and the competing models, respectively. From Figure 1 (a), (b), and (c), we 

see that most of these boxes are above zero, which indicates that the true model does fit the 

data much better than the competing models based on ΔAICSurv. All boxes for ΔBICSurv 

differences in Figure 1 (e) are also above O. However, the medians of the ΔBIC differences 

between SPML and TML or between SPML and TS shown in Figure 1 (d) are very close to 

O. These results are consistent with those based on the means of ΔAICSurv and ΔBICSurv 

and the frequencies of ranking each model as best.

6. Analysis of the EMPHACIS Data

In this section, we carry out a detailed analysis of the EMPHACIS data using the models 

discussed in Section 3 and the ΔAICSurv and ΔBICSurv criteria proposed in Section 4. As 

stated in Section 2, data from n = 425 patients are used, and the longitudinal and survival 

data we consider are one of five patient-reported LCSS outcomes corresponding to anorexia, 

cough, dyspnea, fatigue, and pain along with progression free survival time in months. The 

treatment indicator zi = 1 if the ith patient received pemetrexed/cisplatin and zi = 0 if the ith 

patient received cisplatin alone, and the covariates (Table l) include race (xi1), gender (xi2), 

age (xi3), Karnofsky status (xi4), baseline stage of disease (xi5), and vitamin supplementation 

(xi6). All six covariates (p = 6) are binary, each taking a value of 0 or 1. Specifcally, xi1 = 1 

if white, xi2 = 1 if male, xi3 = 1 if age ≥ 65, xi4 = 1 if Karnofsky status is high, xi5 = 1 if stage 

I/II, and xi6 = 1 if full vitamin supplementation. In all calculations, we standardized all five 

patient-reported LCSS outcomes. The LCSS original-scaled item means (standard 

deviations) were 30.79 (27.19), 11.48 (17.93), 31.41 (26.33), 39.38 (27.06), and 24.64 

(24.90) for anorexia, cough, dyspnea, fatigue, and pain, respectively. The total numbers of 

completed longitudinal assessments (i.e., ) including the baseline measurements 

were 5504, 5544, 5553, 5530, and 5546 for anorexia, cough, dyspnea, fatigue, and pain.

We fit the SPML, SPMQ, TML, TMQ, TS and TVC models, where SPML, SPMQ, TML, 

and TMQ are defined in Section 5, to the PFS data paired with one of the five LCSS 

longitudinal outcomes corresponding to anorexia, cough, dyspnea, fatigue, and pain. As 

suggested by an anonymous referee, we also considered the joint model with a quadratic 

trajectory in the longitudinal component and only a linear trajectory in the the survival 

component, where the models corresponding to SPMQ and TMQ are denoted by SPMQL 

and TMQL. The six covariates (xi’s) and the treatment indicator were included in all the 

models we estimated. As shown in Table 1, the maximum values of PFS were 27.1 and 21.8 

months for the pemetrexed/cisplatin arm and the cisplatin alone arm, respectively. For all the 

models, we used the piecewise constant hazard model given in (3.4) for the baseline hazard, 

and the partition intervals were constructed based on the percentiles such as the first (Q1), 

second (Q2), and third (Q3) quartiles of the PFS times.
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We used the ΔAICSurv and ΔBICSurv criteria as well as the AICSurv|Long and BICSurv|Long 

criteria to determine the number of intervals (K) in (3.4). We first fit the PFS data alone 

using (3.6). The values of AICSurv,0 and BICSurv,0 defined by (4.8) were 2225.80 and 

2258.22 for K = 1, 2206.29 and 2242.76 for K = 2, and 2209.71 and 2254.28 for K = 4. We 

considered two methods for constructing the three intervals: inserting two intervals within 

the first interval or the second interval using the piecewise constant hazard model with K = 

2. The resulting piecewise constant hazard models with (s0 = 0, s1 = Q1, s2 = Q2) and (s0 = 

0, s1 = Q2, s2 = Q3) are denoted by K = 3(1) and K = 3(2). Similarly, we constructed the 

partitions for K > 3. This approach is desirable when more events occur early in the follow-

up. Another advantage of this approach is that the resulting partitions are nested and, hence, 

the log-likelihood of the joint model increases in K when the longitudinal component 

remains fxed. The values of AICSurv,0 and BICSurv,0 were 2208.27 and 2248.79 for K = 3(1) 

and 2207.73 and 2248.25 for K = 3(2). These results indicate that when we fit the PFS data 

alone, the piecewise constant hazard model with K = 2 fits best according to both AICSurv,0 

and BICSurv,0. We then fit the PFS data and the LCSS longitudinal data jointly. For ease of 

presentation, we discuss the case for the longitudinal outcomes corresponding to pain only 

since the results were similar for anorexia, cough, dyspnea, and fatigue. Figure 2 shows the 

MLEs of λ and the values of AICSurv|Long and BICSurv|Long for K = 1, 2, 3, and 4 under 

SPML. From Figure 2, we see that AICSurv|Long and BICSurv|Long were 2199.30 and 2239.82 

for K = 1; 2161.84 and 2206.42 for K = 2; 2l63.01 and 2211.64 for K =3(1); 2163.84 and 

2212.47 for K = 3(2); and 2164.98 and 2217.66 for K = 4, respectively. Clearly, the best 

values of AICSurv|Long and BICSurv|Long were obtained under SPML with K = 2. Thus, 

according to AICSurv|Long and BICSurv|Long, SPML with K = 2 fits the PFS data the best. We 

also see from Figure 2 that for K = 2, λ2 =0.276 is much larger than λ1 = 0.138, indicating 

that the exponential model (i.e., K = 1) did not fit the PFS data well. All of the above results 

suggest that it is sufcient to choose K = 2 in fitting the PFS data. We note that the issue of 

interval choice has also been discussed in [47], [48], and [49].

Table 4 shows AIC, AICLong, ΔAICSurv, BIC, BICLong, and ΔBICSurv for SPML, SPMQ, 

SPMQL, TML, TMQ, and TMQL and ΔAICSurv and ΔBICSurv for the TVC and TS models. 

The ΔAICSurv’s and ΔBICSurv’s are plotted in Figure 3. We see from Table 4 that pain had 

the largest values of ΔAICSurv and ΔBICSurv under SPML, SPMQ, SPMQL, TML, TMQ, 

TVC, and TS; fatigue had the largest values of ΔAICSurv and ΔBICSurv under TMQL and 

the second largest values of ΔAICSurv and ΔBICSurv under the other seven models; and 

cough had the smallest values of ΔAICSurv and ΔBICSurv. These results indicate that pain 

led to the most gain in fitting the PFS data while cough had the least contribution to the fit of 

the PFS data. However, AIC and BIC were not able to determine the contribution of the 

longitudinal data in fitting the survival data for these five sets of LCSS longitudinal 

outcomes under the joint modeling framework. We observe from Table 4 that the smallest 

values of AIC and BIC were attained by dyspnea under SPML, SPMQ, TML, and TMQ. 

Afiter examining AIC Long and BICLong, we found that dyspnea had the smallest values of 

AICLong and BICLong. Thus, AICLong and BICLong were the main contributions to the 

smallest values of AIC and BIC for dyspnea. From Table 4, we also see that (i) the values of 

ΔAICSurv under SPMQ are greater than those under SPMQL for anorexia, cough, dyspnea, 

and pain while the value of ΔAICSurv under SPMQ is very similar to the one under SPMQL 
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for fatigue; and (ii) the values of ΔBICSurv under SPMQL are greater than those under 

SPMQ for anorexia, cough, dyspnea, and fatigue due to the extra parameter in the survival 

component under SPMQ. However, the values of ΔAICSurv and ΔBICSurv under TMQ are 

consistently higher than those under TMQL since under the TM, both TMQ and TMQL 

share the same number of parameters in the survival component. We note that on the one 

hand, ΔAICSurv and ΔBICSurv are defined primarily based on the likelihood function of the 

survival data; on the other hand, AIC and BIC are constructed using the likelihood function 

of both the longitudinal and survival data. Thus, since the total number of longitudinal 

outcomes were different among these five symptoms, AIC and BIC were indeed not 

comparable among them. Within each of these five symptoms, AIC and BIC selected SPMQ 

over SPML and TMQ over TML, due to the fact that AIC Long and BIC Long were in favor 

of quadratic trajectories over linear trajectories. These results indicate that the quadratic 

trajectories fit the longitudinal data better.

Tables 5 and 6 show the hazard ratios (HR’s, the exponentiated parameters) and p-values of 

the direct treatment effect on PFS (α), the overall treatment effect (α* = α1 + β1γ1 or α* = α1 

+ βγ1), and the regression coefficients β associated with random trajectories under SPML, 

SPMQ, SPMQL, TML, TMQ, and TMQL. From these two tables, we see that except for 

cough and dyspnea, the HR’s for the overall treatment effect on PFS that ranged from 0.620 

to 0.645 for the joint model were smaller than the HR of 0.647 when we fit the PFS data 

alone. It is interesting to mention that under TML and TMQ, the order in the magnitude of 

the HR’s for β is consistent with the values of ΔAICSurv and ΔBICSurv. For example, pain 

had the largest HR’s, namely, 1.464 and 1.5O4 under TML and TMQ, while cough had the 

smallest HR’s, namely, 1.194, 1.237, and 1.019 under TML, TMQ and TMQL.

7. Discussion

We have proposed novel decompositions of AIC and BIC to individually assess the 

contributions of each component in joint models of longitudinal and survival data, and we 

use ΔAICSurv and ΔBICSurv to determine the contribution of the longitudinal data to the fit 

of the survival data. We conducted extensive simulation studies to examine the empirical 

performance of ΔAICSurv and ΔBICSurv and demonstrated our proposed methodology on a 

detailed case study in mesothelioma. The proposed methodology is quite useful in also 

comparing and choosing between a trajectory-based model or a shared parameter model, 

which is important, since these two classes of models are often used and the choice of which 

one to use is not always clear. Our proposed criteria also help in the assessment of the 

survival model, in determining how many intervals to choose, for example, in the piecewise 

constant hazard model.

All computations in Section 5 and 6 were done in SAS. PROC NLMIXED was used to 

obtain the MLEs and AIC, and PROC IML was used to compute AICLong. The Riemann 

integral was used to compute the cumulative hazard function in (3.5) for the trajectory 

models. The Monte Carlo (MC) method for estimating AICSurv|Long discussed in Remark 4.2 

was also implemented in PROC IML. As an illustration, for anorexia, cough, dyspnea, 

fatigue, and pain under TML with K = 1, the AICSurv|Long’s computed from AIC−AICLong 

using PROC NLMIXED were 2210.94, 2223.57, 2217.17, 2205.12, and 2200.94, while 
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those obtained by the Monte Carlo method with an MC sample of size 10,000 were 2211.00, 

2223.58, 2217.17, 2205.09, and 2200.93, respectively, which empirically validates the AIC 

obtained from PROC NLMIXED. Due to the nature of the joint model, there are more 

random effects in SPMQ than SPML, and hence, the computations for SPMQ are much 

more intensive than that for SPML. When the patients were followed much longer for the 

survival times than for the longitudinal outcomes, we used a constant extrapolation afiter the 

time of the last observed longitudinal outcome for the trajectory  to adjust the hazard 

functions for all TM’s and TS. The results shown in Table 2 empirically confrm that the 

NLMIXED procedure is quite reliable in computing the MLEs of the parameters in the joint 

model and they are robust with respect to the dimension of the model parameters. Finally, 

we note that each simulation with 500 simulated datasets took about l hour on a Dell PC 

with an Intel i5 processor, 2.40 GHz CPU, and 6 GB of memory. The SAS macros are 

available from the authors upon request.

In our simulation study, we observed that ΔAICSurv and ΔBICSurv correctly identify the true 

survival component in the joint model. In the analysis of the EMPHACIS data, we showed 

that the survival model with K = 2 fit the data the best along with SPML and TMQ. There 

are several potential extensions of the proposed method. The proposed methodology would 

be quite useful in situations where we wish to simultaneously jointly model a multivariate 

longitudinal marker, such as several PRO outcomes, with a time-to-event outcome, such as 

PFS. The proposed ΔAICSurv and ΔBICSurv can be very useful in this context as they can tell 

us about the overall contribution of the multivariate longitudinal marker to the fit of the 

survival data. The proposed methodology is also useful for multivariate survival data, such 

as PFS and OS for example, and then ΔAICSurv and ΔBICSurv can be used in assessing the 

contribution of the longitudinal data to the fit of the multivariate survival data. Finally, 

ΔAICSurv and ΔBICSurv can also be used in joint models for multivariate longitudinal and 

multivariate survival data and hence identify the combinations of longitudinal outcomes that 

are most highly associated with a multivariate time-to-event. These extensions are currently 

under investigation.

Acknowledgments

We would like to thank the Editor, the Associate Editor, and the two anonymous reviewers for their very helpful 
comments and suggestions, which have led to a much improved version of the paper. Dr. M.-H. Chen and Dr. J. G. 
Ibrahim's research was partially supported by NIH grants #GM 70335 and #CA 74015.

Appendix: Proofs of Theorems

Proof of Theorem 4.1

Let Dobs = {(Yi,ti,δi,zi, xi), i =1,…,n} denote the observed data. We frst observe that

(A.1)

Using (4.3) and (A.1), the joint likelihood for all subjects is given by
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(A.

2)

Taking -2log of (A.2) yields

(A.

3)

The AIC decomposition in (4.6) directly follows from (4.4) and (A.3), which completes the 

proof.

Proof of Theorem 4.2

Since AICSurv,0 depends on the survival data alone and BICSurv|Long = AICSurv|Long + 

dim(φ2)(log n − 2), it is sufcient to show

Let Yi =(Yi(ai1),…,Yi(aimi))′ and  denote the original and 

transformed longitudinal outcomes, respectively. Then we have , where 

. Write , where Wi1 is a mi × (q + 1) matrix and 

Wi2 is a mi × (p + 1) matrix. The conditional density of Yi is given by

where Imi is the mi × mi identity matrix. We then obtain

Write , ,  and . Let 

, , 

 and . Since θi ~ N (θ, ∑), we have

(A.4)

Similar to (3.2), we write the hazard function corresponding to Y_^{i ;* _^} as
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(A.

5)

where λ0
*(t) is the baseline hazard function, which is assumed to take the same form as λ0(t) 

given by (3.4). Then complete-data likelihood function for the survival component in (3.5) 

under the transformed longitudinal data becomes

(A.

6)

By comparing (A.4) and (A.5) to (4.1), (4.2), and (3.2), we obtain that  for 

SPM,  for TM, β* = cβ, and α* = α.

Let  and  denote the MLEs of the model parameters under 

the original longitudinal data and the transformed longitudinal data coupled with the same 

survival data, respectively. Using the transformation invariance principle of MLE, we have 

, , , ,  for 

SPM,  for TM,  and .

Corresponding to  and , we write  and 

. Write  and . Let  and 

. The conditional distribution of the random effects θi given the original 

longitudinal data takes the form

(A.7)

and the corresponding density is given by

(A.

8)

Note that  and 

. Replacing the original data and parameters with the transformed ones 

in (A.7) yields
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(A.9)

and the conditional density of θ*
i is given by

(A.

10)

Using (A.6), (A.8), and (A.10) and after some algebra, we can show that

(A.11)

and

(A.12)

Using (A.11) and (A.12), we have AICSurv|Long (b, c)

which completes the proof.
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Figure 1. 
Boxplots of the ΔAICSurv differences ((a), (b), and (c)) and the ΔBICSurv differences ((d) 

and (e)) between the true and competing models.
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Figure 2. 
The diagrams of the MLEs of λ, AICSurv|Long and BICSurv|Long with various values of K 

under SPML for pain.
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Figure 3. 
Plots of ΔAICSurv (a) and ΔBICSurv (b) under the SPML, SPMQ, SPMQL, TML, TMQ, 

TMQL, TVC, and TS models with K = 2.
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Table 1

Baseline characteristics of patients and summary of PFS in each treatment group

Pemetrexed/Cisplatin
n=208 (%)

Cisplatin
n=217 (%)

Covariates Race: White 189 (91%) 202 (93%)

Gender: Male 169 (81%) 177 (82%)

Age: ≥ 65 80 (38%) 83 (38%)

Karnofsky: High (90-100) 112 (54%) 124 (57%)

Stage: I/II 48 (23%) 46 (21%)

Vitamin Supplement: Full 156 (75%) 158 (73%)

PFS
(in months)

Minimum 0.4 0

Median 6.1 3.6

Maximum 27.1 21.8

Mean 7.0 4.8
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Table 2

Parameter estimates of SPML and SPMQ in Simulations I and II

Simulation Param. True EST SE SD RMSE CP

I α −0.4 −0.399 0.105 0.104 0.104 0.956

γ 0.05 0.050 0.087 0.088 0.088 0.950

β 1 0.3 0.301 0.067 0.066 0.066 0.960

β 2 1.2 1.211 0.246 0.234 0.234 0.958

σ 0.5 0.500 0.008 0.008 0.008 0.954

logλ −1.7 −1.700 0.076 0.076 0.076 0.964

θ 0 −0.01 −0.007 0.063 0.063 0.063 0.944

θ 1 0.08 0.079 0.014 0.014 0.014 0.934

Σ 00 0.7 0.698 0.058 0.058 0.058 0.936

Σ 10 −0.03 −0.030 0.013 0.013 0.013 0.944

Σ 11 0.06 0.059 0.006 0.006 0.006 0.930

II α −0.4 −0.411 0.113 0.116 0.116 0.946

γ 0.03 0.033 0.088 0.086 0.086 0.956

β 1 0.3 0.307 0.075 0.076 0.077 0.946

β 2 1 0.994 0.142 0.146 0.146 0.938

β 3 5 4.989 0.209 0.211 0.211 0.942

σ 0.5 0.499 0.009 0.009 0.009 0.952

logλ −1.7 −1.690 0.082 0.081 0.082 0.942

θ 0 −0.02 −0.022 0.065 0.067 0.067 0.936

θ 1 0.1 0.097 0.037 0.038 0.038 0.950

θ 2 −0.1 0.099 0.017 0.017 0.017 0.944

Σ 00 0.7 0.700 0.063 0.062 0.062 0.954

Σ 10 −0.08 −0.080 0.037 0.038 0.038 0.952

Σ 11 0.3 0.298 0.039 0.038 0.038 0.968

Σ 20 0.01 0.009 0.016 0.016 0.016 0.942

Σ 21 −0.05 −0.049 0.014 0.013 0.013 0.946

Σ 22 0.1 0.099 0.008 0.008 0.008 0.936
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Table 3

Mean of ΔAICSurv (ΔBICSurv) and frequency of ranking each model as best based on ΔAICSurv (ΔBICSurv)

ΔAICSurv ΔBICSurv

Simulation Model Mean Frequency Mean Frequency

I SPML 42.55 380 34.57 231

TML 38.38 76 34.39 181

TS 38.16 32 34.17 70

TVC 30.70 12 26.71 18

II SPML 588.66 29 580.68 136

SPMQ 596.68 471 584.70 364

TML 419.99 0 416.00 0

TMQ 419.52 0 415.53 0

TS 418.56 0 414.57 0

TVC 399.51 0 395.52 0

III Long 42.55 432

Long1 38.37 67

Long2 15.64 1

Long3 6.46 0
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Table 4

AICs and BICs for models with K = 2

Model Anorexia Cough Dyspnea Fatigue Pain

SPML AIC 14205.13 14451.48 12101.25 13184.26 13030.39

AICLong 12017.95 12248.34 9912.26 11005.53 10868.55

ΔAICSurv 19.11 3.15 17.30 27.56 44.46

BIC 14302.38 14548.73 12198.50 13281.51 13127.64

BICLong 12070.63 12301.02 9964.94 11058.20 10921.23

ΔBICSurv 11.01 −4.95 9.20 19.45 36.35

SPMQ AIC 14123.05 14250.06 11908.13 13058.18 12778.41

AICLong 11933.53 12046.68 9714.28 10873.93 10610.07

ΔAICSurv 16.77 2.91 12.44 22.04 37.95

BIC 14240.57 14367.57 12025.64 13175.69 12895.92

BICLong 12002.42 12115.56 9783.17 10942.82 10678.96

ΔBICSurv 4.62 −9.25 0.29 9.89 25.80

SPMQL AIC 14124.36 14251.34 11911.54 13057.48 12788.89

AICLong 11933.24 12046.45 9713.94 10873.82 10609.26

ΔAICSurv 15.17 1.40 8.70 22.63 26.67

BIC 14237.82 14364.80 12025.00 13170.94 12902.35

BICLong 12002.12 12115.34 9782.83 10942.70 10678.15

ΔBICSurv 7.06 −6.70 0.60 14.53 18.56

TML AIC 14204.92 14449.26 12106.26 13185.81 13038.62

AICLong 12017.75 12248.29 9911.77 11005.07 10867.68

ΔAICSurv 19.12 5.32 11.81 25.56 35.35

BIC 14298.12 14542.46 12199.45 13279.01 13131.82

BICLong 12070.43 12300.97 9964.45 11057.75 10920.36

ΔBICSurv 15.07 1.27 7.76 21.50 31.30

TMQ AIC 14118.40 14244.30 11904.94 13049.48 12773.67

AICLong 11933.39 12046.50 9713.94 10873.95 10609.29

ΔAICSurv 21.29 8.50 15.29 30.77 41.92

BIC 14227.80 14353.70 12014.34 13158.89 12883.07

BICLong 12002.27 12115.39 9782.82 10942.84 10678.17

ΔBICSurv 17.23 4.45 11.24 26.72 37.86

TMQL AIC 14128.97 14254.40 11916.77 13067.97 12805.13

AICLong 11933.74 12046.45 9713.94 10874.12 10609.33
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Model Anorexia Cough Dyspnea Fatigue Pain

ΔAICSurv 11.07 −1.65 3.47 12.45 10.49

BIC 14238.38 14363.81 12026.18 13177.38 12914.54

BICLong 12002.63 12115.34 9782.83 10943.01 10678.21

ΔBICSurv 7.02 −5.70 −0.58 8.40 6.44

TS ΔAICSurv 18.45 5.17 11.55 24.77 34.32

ΔBICSurv 14.40 1.11 7.50 20.72 30.27

TVC ΔAICSurv 19.52 4.25 15.04 27.76 48.60

ΔBICSurv 15.47 0.20 10.99 23.71 44.54
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Table 6

Estimates for the survival components of TMs with K = 2

Longitudinal
Symptom

α* α 1 β 

Model HR P-value HR P-value HR P-value

TML Anorexia 0.631 <.0001 0.609 <.0001 1.365 <.0001

Cough 0.650 <.0001 0.647 <.0001 1.194 0.0056

Dyspnea 0.642 <.0001 0.655 <.0001 1.255 0.0002

Fatigue 0.630 <.0001 0.627 <.0001 1.417 <.0001

Pain 0.628 <.0001 0.655 <.0001 1.464 <.0001

TMQ Anorexia 0.629 <.0001 0.607 <.0001 1.409 <.0001

Cough 0.647 <.0001 0.642 <.0001 1.237 0.0010

Dyspnea 0.640 <.0001 0.657 <.0001 1.291 <.0001

Fatigue 0.628 <.0001 0.626 <.0001 1.486 <.0001

Pain 0.635 <.0001 0.655 <.0001 1.504 <.0001

TMQL Anorexia 0.630 <.0001 0.621 <.0001 1.164 0.0008

Cough 0.650 <.0001 0.650 <.0001 1.019 0.5561

Dyspnea 0.640 <.0001 0.645 <.0001 1.089 0.0220

Fatigue 0.629 <.0001 0.628 <.0001 1.161 0.0003

Pain 0.642 <.0001 0.649 <.0001 1.135 0.0007
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