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Abstract

The zero-inflated Poisson (ZIP) regression model is often employed in public health research to
examine the relationships between exposures of interest and a count outcome exhibiting many
zeros, in excess of the amount expected under sampling from a Poisson distribution. The
regression coefficients of the ZIP model have latent class interpretations, which correspond to a
susceptible subpopulation at risk for the condition with counts generated from a Poisson
distribution and a non-susceptible subpopulation that provide the extra or excess zeros. The ZIP
model parameters, however, are not well suited for inference targeted at marginal means,
specifically, in quantifying the effect of an explanatory variable in the overall mixture population.
We develop a marginalized ZIP model approach for independent responses to model the
population mean count directly, allowing straightforward inference for overall exposure effects
and empirical robust variance estimation for overall log incidence density ratios. Through
simulation studies, the performance of maximum likelihood estimation of the marginalized ZIP
model is assessed and compared to other methods of estimating overall exposure effects. The
marginalized ZIP model is applied to a recent study of a motivational interviewing-based safer sex
counseling intervention, designed to reduce unprotected sexual act counts.

Keywords
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1. Introduction

Zero-inflated count data exist in many areas of medical and public health research. Because
Poisson regression is often inadequate in describing count data with many zeros [1],
Mullahy [2] proposed the zero-inflated Poisson (ZIP) regression model, based on a mixture
of a Poisson distribution and a degenerate distribution at zero. The ZIP model has two sets
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of regression parameters that have latent class interpretations, one for the Poisson mean and
the other for the probability of being an excess zero. These latent classes are often thought to
classify some at-risk and not-at-risk populations, indicating a difference in susceptibility
between the two groups. In a manufacturing example as described by Lambert [3], a
subpopulation of imperfect machines produce defective output at some rate and all other
machines produce perfect output; thus, zero observations are a mixture of perfect machines
and imperfect machines with no defective output. In contrast, hurdle models consider all
zero observations separately from positive realizations, with the notion that all zeros arise
from the same data-generating mechanism, distinct from the process producing positive
observations [2].

While the ZIP model parameters have latent class interpretations on these two
subpopulations, researchers sometimes seek to make inference on the marginal mean of the
sampled population. Examples include population-based sample surveys aimed at describing
an entire population, intervention studies that target populations where all members are
considered to have some risk for the outcome of interest or where interest is in the global
effect in the population as a whole. Albert et al. [4] argue that insufficient emphasis has
been given to the effects of risk factors on the overall population from which the study
sample was drawn and propose estimators of overall exposure effects using a causal
inference perspective under the zero-inflated modeling framework. Although such marginal
effects of predictors are commonly sought, some analysts may find estimating them to be
difficult in the traditional ZIP model framework. While transformation techniques, such as
those employing the delta method for variance estimation, may be employed to estimate
marginal effects of an exposure of interest, these can prove tedious, and the treatment of
covariates is not straightforward [5].

The search for easily implementable overall exposure effect estimation in the ZIP model
leads to the consideration of the marginalized models literature. Heagerty [6] proposed
marginalized multilevel models, which directly model the marginal means by linking
marginal and conditional models with a function of covariates, marginal parameters and
random effects specification. Lee et al. [7] explore hurdle models in the context of
marginalized models to analyze clustered data with excess zeros, marginalizing over the
random effects. Combining overdispersion, random effects and marginalized models
methods, Iddi and Molenberghs [8] obtain population-averaged interpretations for discrete
outcomes. These methods for regression of correlated outcomes combine the desire for
population average interpretations with the convenience of estimation with a likelihood
function constructed with random effects. In a comparatively simple implementation of the
principle of marginalization, the marginalized models approach can be adapted in the ZIP
model in order to achieve population-wide parameter interpretations for independent count
responses with many zeros. Instead of integrating (averaging) over mixtures of distributions
defined by random effects, our approach marginalizes over the Poisson and degenerate
components of the two-part ZIP model to obtain overall effects.

In studies of risky sexual behavior among HIV-positive individuals, one zero-inflated count
variable often studied is the Unprotected Anal and Vaginal Intercourse count (UAVI), the
number of unprotected anal or vaginal intercourse acts with any partner over a specified
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time period. Golin et al. [9] developed the SafeTalk program, a multicomponent,
motivational interviewing-based, safer sex intervention for this at-risk population to reduce
the number of unprotected sexual acts. In several populations, sexual behavior count data
have displayed a distribution with excess zeros [10, 11], and population-averaged effects of
covariates on sexual behavior are often desired.

To obtain inference across the marginalized means of the ZIP model, this article proposes a
new method for zero-inflated counts in which overall exposure effect estimates are easily
obtained via a model for the marginal mean count. Section 2 reviews the traditional ZIP
model and outlines issues with overall exposure effect estimation in the ZIP model. Section
3 introduces the marginalized ZIP model that includes parameters with log-incidence density
ratio (IDR) interpretations which are estimated by a maximum likelihood procedure. Section
4 presents a simulation study, which examines the properties of the marginalized ZIP and
compares it to existing methods for estimating marginal effects. Section 5 presents analysis
of the SafeTalk sexual behavior data, using the marginalized ZIP model. A discussion
follows in Section 6.

2. Traditional ZIP Model

The ZIP regression model allows the count variable of interest, say Y;, i =1, ..., nto take the
value of zero from a Bernoulli distribution, with probability v;, or be drawn from a Poisson
distribution, with mean y;, with probability 1 — ;. Thus,

Y;=0 with probabilityy;+(1 — ¢;)e™H
=k with probability(1 — v;)e il /kl k€ 2T

The likelihood for this ZIP model is

L(ap. ply)= [T 12—t )1 = )] TL (L = w)e ™ /)]

y;=0 1= yi >0

Lambert [3] proposed models for the parameters L and vj: logit (v); )= Z;,,), and

10g(ui)=X;51 where y = (y1, ..., Ypy)" is @ (p1 X 1) column vector of parameters associated
with the excess zeros, B = (By, .., Bpy)’ is a (p2 X 1) vector of parameters associated with the

/ ’
Poisson process, and Zi, ., ,and X, ., are the vectors of covariates for the i" individual
for excess zero and Poisson processes, respectively.

Importantly, the parameters y and  have latent class interpretations; that is, y; is the log-
odds ratio of a one-unit increase in the j! element of Z on the probability of being an excess
zero and f; is the log-incidence density ratio of a one-unit increase in the jth element of X on
the mean of the susceptible subpopulation. In general, no simple summary of the exposure
effect on the overall population mean of the outcome is directly available. Specifically,
consider the marginal mean of Y;, say v; = E[Y;], often the primary interest of investigators.
The relationship between v; and the parameters from the ZIP model is
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vi=(1— 1/11),%:17/ @

In (2), the population mean is a function of all covariates and parameters from both model
parts. For the jth covariate in a ZIP model where Z; = X; as is commonly specified, the ratio
of means for a one-unit increase in x;j is

1+exp(jy;+2,7)
1+exp| (j+1)v;+2;3]

E(Yi|13ij:j+1,i‘i:fi):
E(Y;|zi=j, %;=2;)

exp(f;)

where x; indicates all covariates except x;; and yNis created by removing v; from y. Thus,
unless yj = 0, the incidence density ratio (IDR) is not constant across various levels of the
extraneous covariates included in the logistic portion of the ZIP model. Additionally, in
order to make statements regarding the variability of any IDR estimates at fixed levels of the
non-exposure covariates, formal statistical techniques, such as the delta method or bootstrap
resampling methods, are required [4]. The computational tools needed for these
transformations are typically not readily available in standard software packages, meaning
that these calculations can be arduous for many applied analysts.

3. Marginalized ZIP Model

Because population-wide parameter interpretations are desired, the overall mean v; can be
modeled directly to give overall exposure effect estimates. The marginalized ZIP model
specifies

logit(i) =2y
)Xo

(3
Then,
l/i:exp(X;a) 0]

allows log-IDR interpretations of the elements of a. Thus, exp(a;) is the amount by which
the mean v; is multiplied per unit change in X, providing the same interpretation as in
Poisson regression. In order to utilize the ZIP model likelihood framework, we redefine y; =
exp(8;), where §; is not necessarily a linear function of model parameters. Rather, solving v;
= (1 - wj)u;, with substitution for (3), provides

§i=X;a+log| 1+exp(Ziy)].
Substituting v; =exp(Z;v)/(1+exp(Z;v)) and Wi = exp(s;) into (1), the likelihood of the

marginalized ZIP model for (y,a) is
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s =1 ’ ’ ’ ’ ’ rYs ’
L('y,a|y):H(1+eZﬂ) H (eZn_Fef(1+0Xp(Zn))CXp(X,~a))>< H [e*(1+cxp(zﬂ))cxp(Xia)(1+6Zn) Xioi [(y.1)] )
Yi yi=0 yi>0

!/
with score equations U;= [ et } where

el I(yi=0)i(1 — i —L(eril—yi) ™! — _ /
w1 - ) (5=0)
Gi(1 — ;) teri—v) 41

’

i

760:2 [(yi — (1= 9i)"HI(3:>0) —

and vj = vj(a) and v = yj(y). Given the Fisher information I(y,a), the model-based standard
errors of the parameter estimates are

S€h (7, &)= V diag(I (v, O‘)il)'

To address possibly overdispersed counts relative to the ZIP model, the robust (empirical)
estimates of the standard errors are

1 1/2

se,, (7, &)={diag[I(v, )" (iUiUi/)I(%a)] o

i=1

with substitution of the MLE’s yAand a for v and a, respectively [12].

While parameter estimation can be implemented using various techniques, such as MCMC
methods or the EM algorithm, all results herein are obtained through nonlinear optimization
by the quasi-Newton method, implemented in SAS 9.3 IML (SAS Institute, Cary, NC). SAS
NLMIXED can also be utilized to estimate parameters, and sample code has been provided
in the Appendix. As SAS NLMIXED does not readily provide robust variance estimates, the
SAS IML code to calculate the robust estimates of standard error for our motivating
example has been provided in the online supplementary material. Additionally, the
likelihood derivations, as well as those used to obtain the Fisher information, are provided in
the Appendix.

4. Simulation Study

Simulation studies were performed to examine the properties of the new marginalized ZIP
model under different scenarios, implemented in SAS 9.3 IML. Let Y; be the zero-inflated
Poisson outcome of interest for the it participant. Also, let x;; be the exposure variable of
interest and let x;, be an additional covariate desired in a regression model. In the SafeTalk
example, Y; is the UAVI count, xj; is an indicator of randomization to SafeTalk intervention,
and the additional covariate X;» is the baseline UAVI count. Thus the simulated marginalized
ZIP regression model is
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logit(v) =yo+mzin+y22i2
log(vi) =aotaizi+aszi

To examine the finite sample performance of the marginalized ZIP in estimating specific
parameter estimates, we simulated data using the above model. Specifically, xj; ~
Bernoulli(0.5) and x;, follows the standard lognormal distribution, where X1, X;» are
generated independently for a fixed sample size, creating an essentially balanced covariate
Xj2 across the binary exposure of interest xj;. Together with fixed vectors of y and a, these
X1 and x;» were used to define y; and ;, which were employed to randomly generate excess
zeros and Poisson counts, the latter through p; = v; = (1 — ;). Then the marginalized ZIP
model was fit to these simulated data and all parameter estimates retained for examination;
the simulation was performed 10,000 times and summary measures were calculated.
Specifically, for sample sizes of 100, 200 and 1000, Table 1 presents the relative median
bias, simulation standard deviation, median model-based and robust standard errors and their
corresponding coverage probabilities for each parameter in the model; 95% Wald-type
confidence intervals are used. In Table 1, the true parameter values are {yg = 0.60, ag =
0.25, Y1 = -2, al = |Og(1.5), Y2 =dp = 0.25}.

From Table 1, we note that the marginalized ZIP has low bias for a and the bias generally
decreases with increasing sample size. For sample size of 1000, the model-based standard
errors are similar to the standard deviation of the simulated parameter estimates, implying
adequate estimation of the standard error of the parameter estimates; otherwise, standard
errors are slightly underestimated for smaller sample sizes and more so for yAthan a. For all
sample sizes, Wald-type confidence intervals of most the marginalized ZIP parameters have
model-based coverage probabilities near the expected 0.95, and coverage probabilities
created using the robust standard error have fractionally less coverage. For the sample size
of 100, the marginalized ZIP Wald-type confidence intervals have slightly less than
desirable coverage for the skewed extraneous covariate parameters y, and a,, but the
coverage nears the expected 0.95 as the sample size increases.

Additionally, a simulation study was performed to compare the new marginalized ZIP model
to several existing methods for estimating overall exposure effects, namely Poisson
regression, both with and without Pearson scaling for overdispersion. Using data generation
as described above, the marginalized ZIP and Poisson models were both applied, examining
estimates of the log-IDR and standard error of log-IDR. Additionally, 95% Wald-type
confidence intervals for the log-IDR were created using the point estimate and respective
standard error. For all methods described, Table 2 presents the relative median bias in
estimating the IDR and log-IDR, Table 3 presents coverage probabilities and Table 4
displays power. For the marginalized ZIP and Poisson regression models, robust estimators
of the covariance matrix were also employed to calculate the 95% Wald-type confidence
intervals, as well as their corresponding coverage probabilities and power. Results are
presented for varying levels of the true incidence density ratio €*1, where {yg = 0.60, ag =
0.25, y1 = -2, a1 = {log(1), log(1.25), log(1.5), log(2)}, v2 = ap = 0.25}.
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With regards to bias, Table 2 shows that the marginalized ZIP model has low relative bias in
estimating both the log-IDR and IDR while the Poisson model consistently overestimates
the overall exposure effect. Although the bias of the Poisson model generally decreases with
increasing sample size, the marginalized ZIP relative median bias is notably smaller for each
effect and sample size.

Table 3 displays the coverage probabilities for the 95% confidence intervals for each method
described. While the marginalized ZIP model has appropriate coverage across effect size
and sample size, each of the various Poisson methods have less than desirable coverage,
which is not surprising given the relative bias results in Table 2. Examining the power from
each method, the marginalized ZIP model has increasing power with increasing effect size
and sample size (Table 4). Table 4 also provides observed Type | error rates for each model,
where a1 = 0. Note the inflated Type | error for each of the Poisson models, which increases
with sample size. Tables 2, 3 and 4 collectively show the inability of the Poisson model to
consistently and efficiently estimate overall exposure effects in the presence of a highly
skewed independent covariate, which can arise in practice as seen in our motivating
example.

In addition to the simulation scenario with a lognormal covariate presented here, the
marginalized ZIP model performance was also assessed in the presence of a binary
covariate. Under this binary covariate scenario, both the Poisson model with robust variance
estimates and Poisson model scaled for overdispersion had comparable bias, coverage
probabilities and power to the marginalized ZIP model (results presented in the online
supplementary material).

Finally, simulation results which compare the marginalized ZIP model performance to the
traditional ZIP model with delta method transformations at fixed levels of the covariate, as
well as the average predicted value ratio from Albert et al. [4] are presented in the online
supplementary material. In the presence of the lognormal extraneous covariate, the
traditional ZIP model has increased relative median bias compared to the marginalized ZIP,
less than desired coverage probabilities and inflated Type | error. However, in the presence
of a binary covariate, the traditional ZIP model with transformations at the mean covariate
value yielded similar bias, coverage and power performance to the marginalized ZIP model.
Unlike the marginal inference of the marginalized ZIP and Poisson regression models
presented, the traditional ZIP model method does not estimate the marginal mean, but the
‘overall’ mean at fixed covariate levels.

5. Motivational Interviewing Intervention Example

Reducing risky sexual behavior among people living with HIVV/AIDS is one area of focus
among infectious disease researchers, and one measure of risky behavior is the UAVI count,
the number of Unprotected Anal or Vaginal sexual Intercourse acts within a given time
period. The SafeTalk program was developed as a motivational interviewing-based
intervention to reduce sexual behavior, particularly UAVI [9,13]. To assess SafeTalk’s
efficacy at reducing unprotected sex acts in this population, a randomized clinical trial was
performed with subjects recruited at three sites being randomized to receive either SafeTalk

Sat Med. Author manuscript; available in PMC 2015 December 20.
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or a nutritional intervention as control. The participants were then surveyed every four
months for one year to measure their self-reported sexual acts in the previous three-month
period. The primary research question for this study is whether those in the SafeTalk
intervention have lower UAVI than those in the control at the eight-month follow-up visit,
indicating cross-sectional methods are appropriate despite the longitudinal nature of the data
collection.

For this analysis, there are 357 participants with non-missing UAVI counts at the 8-month
visit, excluding eight participants with UAVI counts greater than 18 for the purposes of this
illustration. Figure 1 shows the distribution of UAVI counts, which contains 300 (84%)
zeros and 8 ‘10+’ counts (2.2%). Since the randomization scheme stratified by site, the
marginalized ZIP model to be fit is

logit (1) =Yo+71Zi1+7Y2Ti2+Y3Ti3+YaTis
log(v;) =ap+anzi+asziptoasriz+aizia

where x;; is an indicator of whether the ith participant received the SafeTalk intervention and
Xi2 and xi3 are indicators of whether the it" participant was randomized at the second and
third study sites, respectively. Additionally, the analysis controls for baseline UAVI count

Xig.

In order to calculate the ‘overall’ effect of the SafeTalk treatment for the traditional ZIP
model, the proportions observed at Site 2 (0.3221) and Site 3 (0.0588) and mean baseline
UAVI count (0.9748) are used for the delta method calculations. For the traditional ZIP with
delta method, the log-IDR for the intervention is 0.2133 (0.2872), which yields an IDR
estimate of 1.2378 and 95% confidence interval (0.705, 2.173). For Sites 1, 2 and 3, the IDR
(and corresponding 95% confidence intervals) from the transformed ZIP with fixed mean
baseline UAVI count are 1.2360 (0.706, 2.165), 1.2399 (0.704, 2.184), and 1.2429 (0.701,
2.203), respectively. Examining the range of IDR across baseline UAVI counts, the IDR and
corresponding 95% confidence intervals for zero and 18 baseline UAVI counts are 1.2487
(0.702, 2.222) and 0.9598 (0.727, 1.267). For this particular example, there does not appear
to be much difference in the IDR of treatment across sites, but note the moderate change in
IDR estimates for the different baseline UAVI counts. Although none of these estimates are
statistically significant, the estimates for different combinations of covariates demonstrate
the lack of a single IDR measure when using traditional ZIP with the delta method. In fact,
particular transformed ZIP analyses may yield very different IDR estimates for various
combinations of covariate values. Also, notice the transformed ZIP methods require more
effort and expertise in deriving and programming than the direct estimation of the log-IDR
through the marginalized ZIP model.

Table 5 presents the results of the marginalized ZIP analysis on the SafeTalk example. By
exponentiating a1, the estimate of the IDR for treatment is exp(—0.0666) = 0.9355; thus, the
marginalized ZIP model reveals those on SafeTalk intervention have 6% fewer unprotected
sexual acts at the eight-month followup visit than those participants randomized to control.
The 95% model-based Wald-type confidence interval for the treatment IDR is (0.559,
1.567), implying there is no significant difference between the two treatment groups.
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However, this illustrative analysis is not considered definitive due to the deletion of large
UAVI counts. Because the traditional ZIP with delta method is limited by the substitution of
specific levels of the extraneous covariates, the overall effect of SafeTalk is difficult to
summarize briefly. However, the marginalized ZIP model gives one IDR of SafeTalk
intervention, adjusted for all the other covariates. In terms of model fit, the full likelihood
values for the marginalized ZIP and traditional ZIP models are —291.28 and -288.51,
indicating that the two models have similar fit to the SafeTalk data.

6. Conclusion

A marginalized ZIP model was proposed for population-averaged inference of count data
with many zeros. The new statistical approach directly models the marginal means of
mixtures of two discrete distributions, one consisting of Poisson counts and the other of
structural zeros. This model formulation offers meaningful statements about an exposure
effect on an entire population in contrast to the traditional ZIP model whose regression
parameters have interpretations for unobservable latent classes. Whereas an ‘average’ effect
of an exposure in a population can be determined with additional computations following
the fit of a traditional ZIP model, the modeling approach proposed in this article provides
direct estimates of a homogeneous exposure effect that does not require post-modeling
computations. Indeed, the proposed model’s marginal effects of interest are given by log
incidence density ratios that have the same interpretations as in Poisson regression. Also, an
offset term can easily be included in the marginalized ZIP model to allow more flexibility
through modeling incidence densities. The logistic model part for excess zeros in the new
formulation is not of primary interest, but rather its role is to provide adjustment for
overdispersion due to excess zeros. Based on the research question and perceived data
structure, analysts may choose to specify different covariates in Z; and X, but the marginal
mean interpretations of a do not change with different specifications of Z;. In a simulation
study of Poisson generated counts with extra zeros, the marginalized ZIP model had percent
relative bias of three percent or less with as few as 100 observations. In all scenarios
considered, the marginalized ZIP had smaller percent relative bias than Poisson regression
and provided appropriate Type | error; each Poisson regression, including after
overdispersion adjustment either through Pearson scaling or robust standard error
estimation, yielded inflated Type | error under each scenario.

Despite the increasing popularity of the ZIP model in health-related fields, the idea of latent
class effects can be troublesome for many investigators to communicate, often yielding
misleading or incorrect statements. For example, Preisser et al. [5] found that many dental
caries researchers interpreted the Poisson parameters of the ZIP model with respect to the
overall caries incidence, rather than the correct model-based interpretation relating to caries
incidence within the at-risk population. This pattern of misinterpretation suggests that
investigators when genuinely interested in marginal inference for count data in the presence
of many zeros may sometimes be led to use ZIP models simply because of goodness-of-fit
considerations. Generally, the research goal should lead to the identification of a class of
models that can address the question of interest; only when considering competing models
within the identified class should goodness-off-it considerations prevail. This approach to
model selection based on collaboration between investigators and biostatistical scientists
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discourages purely empirical model fitting exercises. The marginalized ZIP model is viewed
as belonging to a different model class than the traditional ZIP model and so choosing
between them should be based on the research question.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A. SAS NLMIXED Code

The following SAS NLMIXED code fits the marginalized ZIP model to the SafeTalk data
from the motivating example in section 5. In order utilize this code, a statistical analyst

would need to specify the forms of logit_psi and log_nu, logit(1;)=Z;~v and log(;)=X;cx
respectively. Additionally, the null initial parameter values statement would require
alteration depending on the number of parameters required for estimation.

proc nlmixed data=work.for_analysis seed=31415 maxiter=500 gpoints=50 cov
hess;

/* null initial parameter values */

parms g0 0 g1 0 g2 0 g3 0 g4 O

a0 0 al 0 a2 0 a3 0 a4 O;

/* linear predictor for the zero-inflation probability */

/* logit(psi)=Z\gamma */

logit_psi = g0 + gl*arm + g2*site2 + g3*site3 + g4*baseline_uavi;

/* Useful functions of psi */

psil = exp(logit_psi)/(1+exp(logit _psi)); /*psi = exp(Z\gamma)/(1l+exp(Z
\gamma)) */

psi2 = 1/(1+exp(logit_psi)); /*1-psi = (1+exp(Z\gamma)) -1 */

/* Overall mean \nu */

/* log(nu) = X\alpha */

log_ nu = a0 + al*arm + a2*site2 + a3*site3d + ad*baseline_uavi;

delta = log(psi2**(-1)) + log_nu;

/* Build the mzZIPlog likelihood */

it outcome=0 then

11 = log(psil + psi2*(exp(-exp(delta))));

else 11 = log(psi2) - exp(delta) + outcome*(delta) - Igamma(outcome + 1);
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model outcome general(1l);

run;

Note that this SAS NLMIXED code does not provide the robust standard error estimates
presented in Table 5, for which separate SAS IML programming would be needed (see
online supplementary material for example code).

B. Likelihood Derivations

First, we focus on the derivation of the MLE of (y, a) by constructing the likelihood. From
Equation (1), we can derive the MLE’s of y and a using Newton-Raphson algorithm, as well
as derive the analytic variance of these MLE’s.

-1 -1 ’
Lo, dly)= [ 1% +e o000 (o) T [(4e%7) emo0@ehn = [(+e%) [T (%7+e o000 ] |
y;=0 ;>0 Yi y;=0 ;>0
r =1 ’ ’ ’
Ly, aly)=T[(+e?7) ] (e (tontonenxio)
Yi y;=0

H e —(1+exp(Z;7))exp(X; a)(1.|_ezz7) X Y/ ()]
yi>0

l(’77a|y):—zlog(1—|—ezﬂ)+Zlog(ezn—l—e_e"p(xia)(l"'exp(zﬂ)))—|—Z (—(l—l—ezﬂ)eXia—|—yilog(1—|—ezﬂ)—|—X;ayi—]c
i = y; >0

Using this log-likelihood, the score equations are

Z/ ! —ex (X/a)(1+ez;7) X/a+Z, ! Z/ /
e7iNZte TP (zei 77 Z; yie™ o Xtz "z, Ze "2,
/ /
eZ;7+67exp(X£a)(1+exp(Zi’Y)> S01+eZi i 1+ezﬂ

k3

i

8[(*}/, a) _8logL:7 Z (1+6Z;7)6X£ae—exp(X; a)(l—l—exp(Z;’y))X;

b da = By een(X @) (texp(Zi)

+ (i—eXi (1+e%7) X =Y [(yi — X% (1e?
7

Y >0

Substituting the link functions logit(1;)=2;~ and log(1;)=X;c these expressions of the
score equations are equivalent to those presented in Section 2.2. The matrix of second
derivatives of the log-likelihood has the form

8% 9%
9oy Iy’

921 921
dady’  dada’

where
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I(yi_o)eZ;’y(eexp(X{a)(l—',-exp(Z,.'y) —6 y ) /ﬂ(yi _ 1)

9vo~y o~ | oy o7 (X, 0) (I exp(Zi7)) 4 1 1+-eZ:7 -

82l o ol o
5 [ 7 {Ezi

— I(yi>0)eXia+Zi7] } :_2

921 :i {%}/:% {ZX'L {(yz_e 1‘1(14_@ ))I(yl>0) (1+6Z{‘/) XAaI(yZ —I} ZX {

dada’ Oa Z 'yecxp(X ) (14-exp( Z i )+1J
Pl ooy 0 [ (LteZmeXier(y=0) | [ uis
R Pl R X — _ za 1 T i 0 2 X Xill+Zi’yI
ovyoal { } Z 5y |_ e ( +eZi )) (yi>0) — o2 gexp(X, ) (Irexp(Z4) +1J Z e
In order to obtain the Fisher information matrix, we calculate the negative expectations of
the above second derivatives. First, we note that
P(Yi=0) =i+ (1 —gp)e 0707 ot (e (100 )
P(Yi>0) =(1 - 4)(1 - e 7w
EY;,) =iy
Then
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Table 5

Marginalized ZIP Model Results: SafeTalk Example

Model-Based Robust
Parameter Std Error Std Error

Zero-Inflation Model
Intercept Yo 1.8485 0.2373 0.2444
Treatment Y1 -0.0242 0.2905 0.3488
Site 2 Y2 0.1055 0.3141 0.3396
Site 3 Y3 -0.1856 0.5824 0.6183
Baseline UAVI 4 Y4 -0.1679 0.0421 0.0476
Marginalized Mean Model
Intercept ap —-0.7338 0.2189 0.2335
Treatment a; -0.0666 0.2630 0.3837
Site 2 ap 0.3146 0.2863 0.3648
Site 3 ag 1.4169 0.4974 0.5487
Baseline UAVI ay 0.1169 0.0266 0.0378
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