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Abstract

The zero-inflated Poisson (ZIP) regression model is often employed in public health research to 

examine the relationships between exposures of interest and a count outcome exhibiting many 

zeros, in excess of the amount expected under sampling from a Poisson distribution. The 

regression coefficients of the ZIP model have latent class interpretations, which correspond to a 

susceptible subpopulation at risk for the condition with counts generated from a Poisson 

distribution and a non-susceptible subpopulation that provide the extra or excess zeros. The ZIP 

model parameters, however, are not well suited for inference targeted at marginal means, 

specifically, in quantifying the effect of an explanatory variable in the overall mixture population. 

We develop a marginalized ZIP model approach for independent responses to model the 

population mean count directly, allowing straightforward inference for overall exposure effects 

and empirical robust variance estimation for overall log incidence density ratios. Through 

simulation studies, the performance of maximum likelihood estimation of the marginalized ZIP 

model is assessed and compared to other methods of estimating overall exposure effects. The 

marginalized ZIP model is applied to a recent study of a motivational interviewing-based safer sex 

counseling intervention, designed to reduce unprotected sexual act counts.
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1. Introduction

Zero-inflated count data exist in many areas of medical and public health research. Because 

Poisson regression is often inadequate in describing count data with many zeros [1], 

Mullahy [2] proposed the zero-inflated Poisson (ZIP) regression model, based on a mixture 

of a Poisson distribution and a degenerate distribution at zero. The ZIP model has two sets 
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of regression parameters that have latent class interpretations, one for the Poisson mean and 

the other for the probability of being an excess zero. These latent classes are often thought to 

classify some at-risk and not-at-risk populations, indicating a difference in susceptibility 

between the two groups. In a manufacturing example as described by Lambert [3], a 

subpopulation of imperfect machines produce defective output at some rate and all other 

machines produce perfect output; thus, zero observations are a mixture of perfect machines 

and imperfect machines with no defective output. In contrast, hurdle models consider all 

zero observations separately from positive realizations, with the notion that all zeros arise 

from the same data-generating mechanism, distinct from the process producing positive 

observations [2].

While the ZIP model parameters have latent class interpretations on these two 

subpopulations, researchers sometimes seek to make inference on the marginal mean of the 

sampled population. Examples include population-based sample surveys aimed at describing 

an entire population, intervention studies that target populations where all members are 

considered to have some risk for the outcome of interest or where interest is in the global 

effect in the population as a whole. Albert et al. [4] argue that insufficient emphasis has 

been given to the effects of risk factors on the overall population from which the study 

sample was drawn and propose estimators of overall exposure effects using a causal 

inference perspective under the zero-inflated modeling framework. Although such marginal 

effects of predictors are commonly sought, some analysts may find estimating them to be 

difficult in the traditional ZIP model framework. While transformation techniques, such as 

those employing the delta method for variance estimation, may be employed to estimate 

marginal effects of an exposure of interest, these can prove tedious, and the treatment of 

covariates is not straightforward [5].

The search for easily implementable overall exposure effect estimation in the ZIP model 

leads to the consideration of the marginalized models literature. Heagerty [6] proposed 

marginalized multilevel models, which directly model the marginal means by linking 

marginal and conditional models with a function of covariates, marginal parameters and 

random effects specification. Lee et al. [7] explore hurdle models in the context of 

marginalized models to analyze clustered data with excess zeros, marginalizing over the 

random effects. Combining overdispersion, random effects and marginalized models 

methods, Iddi and Molenberghs [8] obtain population-averaged interpretations for discrete 

outcomes. These methods for regression of correlated outcomes combine the desire for 

population average interpretations with the convenience of estimation with a likelihood 

function constructed with random effects. In a comparatively simple implementation of the 

principle of marginalization, the marginalized models approach can be adapted in the ZIP 

model in order to achieve population-wide parameter interpretations for independent count 

responses with many zeros. Instead of integrating (averaging) over mixtures of distributions 

defined by random effects, our approach marginalizes over the Poisson and degenerate 

components of the two-part ZIP model to obtain overall effects.

In studies of risky sexual behavior among HIV-positive individuals, one zero-inflated count 

variable often studied is the Unprotected Anal and Vaginal Intercourse count (UAVI), the 

number of unprotected anal or vaginal intercourse acts with any partner over a specified 
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time period. Golin et al. [9] developed the SafeTalk program, a multicomponent, 

motivational interviewing-based, safer sex intervention for this at-risk population to reduce 

the number of unprotected sexual acts. In several populations, sexual behavior count data 

have displayed a distribution with excess zeros [10, 11], and population-averaged effects of 

covariates on sexual behavior are often desired.

To obtain inference across the marginalized means of the ZIP model, this article proposes a 

new method for zero-inflated counts in which overall exposure effect estimates are easily 

obtained via a model for the marginal mean count. Section 2 reviews the traditional ZIP 

model and outlines issues with overall exposure effect estimation in the ZIP model. Section 

3 introduces the marginalized ZIP model that includes parameters with log-incidence density 

ratio (IDR) interpretations which are estimated by a maximum likelihood procedure. Section 

4 presents a simulation study, which examines the properties of the marginalized ZIP and 

compares it to existing methods for estimating marginal effects. Section 5 presents analysis 

of the SafeTalk sexual behavior data, using the marginalized ZIP model. A discussion 

follows in Section 6.

2. Traditional ZIP Model

The ZIP regression model allows the count variable of interest, say Yi, i = 1, …, n to take the 

value of zero from a Bernoulli distribution, with probability ψi, or be drawn from a Poisson 

distribution, with mean μi, with probability 1 − ψi. Thus,

The likelihood for this ZIP model is

(1)

Lambert [3] proposed models for the parameters μi and ψi:  and 

, where γ = (γ1, …, γp1)′ is a (p1 × 1) column vector of parameters associated 

with the excess zeros, β = (β1, …, βp2)′ is a (p2 × 1) vector of parameters associated with the 

Poisson process, and  and  are the vectors of covariates for the ith individual 

for excess zero and Poisson processes, respectively.

Importantly, the parameters γ and β have latent class interpretations; that is, γj is the log-

odds ratio of a one-unit increase in the jth element of Z on the probability of being an excess 

zero and βj is the log-incidence density ratio of a one-unit increase in the jth element of X on 

the mean of the susceptible subpopulation. In general, no simple summary of the exposure 

effect on the overall population mean of the outcome is directly available. Specifically, 

consider the marginal mean of Yi, say νi ≡ E[Yi], often the primary interest of investigators. 

The relationship between νi and the parameters from the ZIP model is
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(2)

In (2), the population mean is a function of all covariates and parameters from both model 

parts. For the jth covariate in a ZIP model where Zi = Xi as is commonly specified, the ratio 

of means for a one-unit increase in xij is

where x̃i indicates all covariates except xij and γ̃ is created by removing γj from γ. Thus, 

unless γj = 0, the incidence density ratio (IDR) is not constant across various levels of the 

extraneous covariates included in the logistic portion of the ZIP model. Additionally, in 

order to make statements regarding the variability of any IDR estimates at fixed levels of the 

non-exposure covariates, formal statistical techniques, such as the delta method or bootstrap 

resampling methods, are required [4]. The computational tools needed for these 

transformations are typically not readily available in standard software packages, meaning 

that these calculations can be arduous for many applied analysts.

3. Marginalized ZIP Model

Because population-wide parameter interpretations are desired, the overall mean νi can be 

modeled directly to give overall exposure effect estimates. The marginalized ZIP model 

specifies

(3)

Then,

(4)

allows log-IDR interpretations of the elements of α. Thus, exp(αj) is the amount by which 

the mean νi is multiplied per unit change in xj, providing the same interpretation as in 

Poisson regression. In order to utilize the ZIP model likelihood framework, we redefine μi = 

exp(δi), where δi is not necessarily a linear function of model parameters. Rather, solving νi 

= (1 − ψi)μi, with substitution for (3), provides

Substituting  and μi = exp(δi) into (1), the likelihood of the 

marginalized ZIP model for (γ,α) is
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(5)

with score equations  where

and νi = νi(α) and ψi = ψi(γ). Given the Fisher information I(γ,α), the model-based standard 

errors of the parameter estimates are

To address possibly overdispersed counts relative to the ZIP model, the robust (empirical) 

estimates of the standard errors are

with substitution of the MLE’s γ̂ and α̂ for γ and α, respectively [12].

While parameter estimation can be implemented using various techniques, such as MCMC 

methods or the EM algorithm, all results herein are obtained through nonlinear optimization 

by the quasi-Newton method, implemented in SAS 9.3 IML (SAS Institute, Cary, NC). SAS 

NLMIXED can also be utilized to estimate parameters, and sample code has been provided 

in the Appendix. As SAS NLMIXED does not readily provide robust variance estimates, the 

SAS IML code to calculate the robust estimates of standard error for our motivating 

example has been provided in the online supplementary material. Additionally, the 

likelihood derivations, as well as those used to obtain the Fisher information, are provided in 

the Appendix.

4. Simulation Study

Simulation studies were performed to examine the properties of the new marginalized ZIP 

model under different scenarios, implemented in SAS 9.3 IML. Let Yi be the zero-inflated 

Poisson outcome of interest for the ith participant. Also, let xi1 be the exposure variable of 

interest and let xi2 be an additional covariate desired in a regression model. In the SafeTalk 

example, Yi is the UAVI count, xi1 is an indicator of randomization to SafeTalk intervention, 

and the additional covariate xi2 is the baseline UAVI count. Thus the simulated marginalized 

ZIP regression model is
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To examine the finite sample performance of the marginalized ZIP in estimating specific 

parameter estimates, we simulated data using the above model. Specifically, xi1 ~ 

Bernoulli(0.5) and xi2 follows the standard lognormal distribution, where xi1, xi2 are 

generated independently for a fixed sample size, creating an essentially balanced covariate 

xi2 across the binary exposure of interest xi1. Together with fixed vectors of γ and α, these 

xi1 and xi2 were used to define ψi and μi, which were employed to randomly generate excess 

zeros and Poisson counts, the latter through μi = νi = (1 − ψi). Then the marginalized ZIP 

model was fit to these simulated data and all parameter estimates retained for examination; 

the simulation was performed 10,000 times and summary measures were calculated. 

Specifically, for sample sizes of 100, 200 and 1000, Table 1 presents the relative median 

bias, simulation standard deviation, median model-based and robust standard errors and their 

corresponding coverage probabilities for each parameter in the model; 95% Wald-type 

confidence intervals are used. In Table 1, the true parameter values are {γ0 = 0.60, α0 = 

0.25, γ1 = −2, α1 = log(1.5), γ2 = α2 = 0.25}.

From Table 1, we note that the marginalized ZIP has low bias for α and the bias generally 

decreases with increasing sample size. For sample size of 1000, the model-based standard 

errors are similar to the standard deviation of the simulated parameter estimates, implying 

adequate estimation of the standard error of the parameter estimates; otherwise, standard 

errors are slightly underestimated for smaller sample sizes and more so for γ̂ than α̂. For all 

sample sizes, Wald-type confidence intervals of most the marginalized ZIP parameters have 

model-based coverage probabilities near the expected 0.95, and coverage probabilities 

created using the robust standard error have fractionally less coverage. For the sample size 

of 100, the marginalized ZIP Wald-type confidence intervals have slightly less than 

desirable coverage for the skewed extraneous covariate parameters γ2 and α2, but the 

coverage nears the expected 0.95 as the sample size increases.

Additionally, a simulation study was performed to compare the new marginalized ZIP model 

to several existing methods for estimating overall exposure effects, namely Poisson 

regression, both with and without Pearson scaling for overdispersion. Using data generation 

as described above, the marginalized ZIP and Poisson models were both applied, examining 

estimates of the log-IDR and standard error of log-IDR. Additionally, 95% Wald-type 

confidence intervals for the log-IDR were created using the point estimate and respective 

standard error. For all methods described, Table 2 presents the relative median bias in 

estimating the IDR and log-IDR, Table 3 presents coverage probabilities and Table 4 

displays power. For the marginalized ZIP and Poisson regression models, robust estimators 

of the covariance matrix were also employed to calculate the 95% Wald-type confidence 

intervals, as well as their corresponding coverage probabilities and power. Results are 

presented for varying levels of the true incidence density ratio eα1, where {γ0 = 0.60, α0 = 

0.25, γ1 = −2, α1 = {log(1), log(1.25), log(1.5), log(2)}, γ2 = α2 = 0.25}.
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With regards to bias, Table 2 shows that the marginalized ZIP model has low relative bias in 

estimating both the log-IDR and IDR while the Poisson model consistently overestimates 

the overall exposure effect. Although the bias of the Poisson model generally decreases with 

increasing sample size, the marginalized ZIP relative median bias is notably smaller for each 

effect and sample size.

Table 3 displays the coverage probabilities for the 95% confidence intervals for each method 

described. While the marginalized ZIP model has appropriate coverage across effect size 

and sample size, each of the various Poisson methods have less than desirable coverage, 

which is not surprising given the relative bias results in Table 2. Examining the power from 

each method, the marginalized ZIP model has increasing power with increasing effect size 

and sample size (Table 4). Table 4 also provides observed Type I error rates for each model, 

where α1 = 0. Note the inflated Type I error for each of the Poisson models, which increases 

with sample size. Tables 2, 3 and 4 collectively show the inability of the Poisson model to 

consistently and efficiently estimate overall exposure effects in the presence of a highly 

skewed independent covariate, which can arise in practice as seen in our motivating 

example.

In addition to the simulation scenario with a lognormal covariate presented here, the 

marginalized ZIP model performance was also assessed in the presence of a binary 

covariate. Under this binary covariate scenario, both the Poisson model with robust variance 

estimates and Poisson model scaled for overdispersion had comparable bias, coverage 

probabilities and power to the marginalized ZIP model (results presented in the online 

supplementary material).

Finally, simulation results which compare the marginalized ZIP model performance to the 

traditional ZIP model with delta method transformations at fixed levels of the covariate, as 

well as the average predicted value ratio from Albert et al. [4] are presented in the online 

supplementary material. In the presence of the lognormal extraneous covariate, the 

traditional ZIP model has increased relative median bias compared to the marginalized ZIP, 

less than desired coverage probabilities and inflated Type I error. However, in the presence 

of a binary covariate, the traditional ZIP model with transformations at the mean covariate 

value yielded similar bias, coverage and power performance to the marginalized ZIP model. 

Unlike the marginal inference of the marginalized ZIP and Poisson regression models 

presented, the traditional ZIP model method does not estimate the marginal mean, but the 

‘overall’ mean at fixed covariate levels.

5. Motivational Interviewing Intervention Example

Reducing risky sexual behavior among people living with HIV/AIDS is one area of focus 

among infectious disease researchers, and one measure of risky behavior is the UAVI count, 

the number of Unprotected Anal or Vaginal sexual Intercourse acts within a given time 

period. The SafeTalk program was developed as a motivational interviewing-based 

intervention to reduce sexual behavior, particularly UAVI [9,13]. To assess SafeTalk’s 

efficacy at reducing unprotected sex acts in this population, a randomized clinical trial was 

performed with subjects recruited at three sites being randomized to receive either SafeTalk 
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or a nutritional intervention as control. The participants were then surveyed every four 

months for one year to measure their self-reported sexual acts in the previous three-month 

period. The primary research question for this study is whether those in the SafeTalk 

intervention have lower UAVI than those in the control at the eight-month follow-up visit, 

indicating cross-sectional methods are appropriate despite the longitudinal nature of the data 

collection.

For this analysis, there are 357 participants with non-missing UAVI counts at the 8-month 

visit, excluding eight participants with UAVI counts greater than 18 for the purposes of this 

illustration. Figure 1 shows the distribution of UAVI counts, which contains 300 (84%) 

zeros and 8 ‘10+’ counts (2.2%). Since the randomization scheme stratified by site, the 

marginalized ZIP model to be fit is

where xi1 is an indicator of whether the ith participant received the SafeTalk intervention and 

xi2 and xi3 are indicators of whether the ith participant was randomized at the second and 

third study sites, respectively. Additionally, the analysis controls for baseline UAVI count 

xi4.

In order to calculate the ‘overall’ effect of the SafeTalk treatment for the traditional ZIP 

model, the proportions observed at Site 2 (0.3221) and Site 3 (0.0588) and mean baseline 

UAVI count (0.9748) are used for the delta method calculations. For the traditional ZIP with 

delta method, the log-IDR for the intervention is 0.2133 (0.2872), which yields an IDR 

estimate of 1.2378 and 95% confidence interval (0.705, 2.173). For Sites 1, 2 and 3, the IDR 

(and corresponding 95% confidence intervals) from the transformed ZIP with fixed mean 

baseline UAVI count are 1.2360 (0.706, 2.165), 1.2399 (0.704, 2.184), and 1.2429 (0.701, 

2.203), respectively. Examining the range of IDR across baseline UAVI counts, the IDR and 

corresponding 95% confidence intervals for zero and 18 baseline UAVI counts are 1.2487 

(0.702, 2.222) and 0.9598 (0.727, 1.267). For this particular example, there does not appear 

to be much difference in the IDR of treatment across sites, but note the moderate change in 

IDR estimates for the different baseline UAVI counts. Although none of these estimates are 

statistically significant, the estimates for different combinations of covariates demonstrate 

the lack of a single IDR measure when using traditional ZIP with the delta method. In fact, 

particular transformed ZIP analyses may yield very different IDR estimates for various 

combinations of covariate values. Also, notice the transformed ZIP methods require more 

effort and expertise in deriving and programming than the direct estimation of the log-IDR 

through the marginalized ZIP model.

Table 5 presents the results of the marginalized ZIP analysis on the SafeTalk example. By 

exponentiating α1, the estimate of the IDR for treatment is exp(−0.0666) = 0.9355; thus, the 

marginalized ZIP model reveals those on SafeTalk intervention have 6% fewer unprotected 

sexual acts at the eight-month followup visit than those participants randomized to control. 

The 95% model-based Wald-type confidence interval for the treatment IDR is (0.559, 

1.567), implying there is no significant difference between the two treatment groups. 

Long et al. Page 8

Stat Med. Author manuscript; available in PMC 2015 December 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



However, this illustrative analysis is not considered definitive due to the deletion of large 

UAVI counts. Because the traditional ZIP with delta method is limited by the substitution of 

specific levels of the extraneous covariates, the overall effect of SafeTalk is difficult to 

summarize briefly. However, the marginalized ZIP model gives one IDR of SafeTalk 

intervention, adjusted for all the other covariates. In terms of model fit, the full likelihood 

values for the marginalized ZIP and traditional ZIP models are −291.28 and −288.51, 

indicating that the two models have similar fit to the SafeTalk data.

6. Conclusion

A marginalized ZIP model was proposed for population-averaged inference of count data 

with many zeros. The new statistical approach directly models the marginal means of 

mixtures of two discrete distributions, one consisting of Poisson counts and the other of 

structural zeros. This model formulation offers meaningful statements about an exposure 

effect on an entire population in contrast to the traditional ZIP model whose regression 

parameters have interpretations for unobservable latent classes. Whereas an ‘average’ effect 

of an exposure in a population can be determined with additional computations following 

the fit of a traditional ZIP model, the modeling approach proposed in this article provides 

direct estimates of a homogeneous exposure effect that does not require post-modeling 

computations. Indeed, the proposed model’s marginal effects of interest are given by log 

incidence density ratios that have the same interpretations as in Poisson regression. Also, an 

offset term can easily be included in the marginalized ZIP model to allow more flexibility 

through modeling incidence densities. The logistic model part for excess zeros in the new 

formulation is not of primary interest, but rather its role is to provide adjustment for 

overdispersion due to excess zeros. Based on the research question and perceived data 

structure, analysts may choose to specify different covariates in Zi and Xi, but the marginal 

mean interpretations of α do not change with different specifications of Zi. In a simulation 

study of Poisson generated counts with extra zeros, the marginalized ZIP model had percent 

relative bias of three percent or less with as few as 100 observations. In all scenarios 

considered, the marginalized ZIP had smaller percent relative bias than Poisson regression 

and provided appropriate Type I error; each Poisson regression, including after 

overdispersion adjustment either through Pearson scaling or robust standard error 

estimation, yielded inflated Type I error under each scenario.

Despite the increasing popularity of the ZIP model in health-related fields, the idea of latent 

class effects can be troublesome for many investigators to communicate, often yielding 

misleading or incorrect statements. For example, Preisser et al. [5] found that many dental 

caries researchers interpreted the Poisson parameters of the ZIP model with respect to the 

overall caries incidence, rather than the correct model-based interpretation relating to caries 

incidence within the at-risk population. This pattern of misinterpretation suggests that 

investigators when genuinely interested in marginal inference for count data in the presence 

of many zeros may sometimes be led to use ZIP models simply because of goodness-of-fit 

considerations. Generally, the research goal should lead to the identification of a class of 

models that can address the question of interest; only when considering competing models 

within the identified class should goodness-off-it considerations prevail. This approach to 

model selection based on collaboration between investigators and biostatistical scientists 
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discourages purely empirical model fitting exercises. The marginalized ZIP model is viewed 

as belonging to a different model class than the traditional ZIP model and so choosing 

between them should be based on the research question.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

A. SAS NLMIXED Code

The following SAS NLMIXED code fits the marginalized ZIP model to the SafeTalk data 

from the motivating example in section 5. In order utilize this code, a statistical analyst 

would need to specify the forms of logit_psi and log_nu,  and 

respectively. Additionally, the null initial parameter values statement would require 

alteration depending on the number of parameters required for estimation.

proc nlmixed data=work.for_analysis seed=31415 maxiter=500 qpoints=50 cov 

hess;

/* null initial parameter values */

parms g0 0 g1 0 g2 0 g3 0 g4 0

a0 0 a1 0 a2 0 a3 0 a4 0;

/* linear predictor for the zero-inflation probability */

/* logit(psi)=Z\gamma */

logit_psi = g0 + g1*arm + g2*site2 + g3*site3 + g4*baseline_uavi;

/* Useful functions of psi */

psi1 = exp(logit_psi)/(1+exp(logit_psi)); /*psi = exp(Z\gamma)/(1+exp(Z

\gamma)) */

psi2 = 1/(1+exp(logit_psi)); /*1−psi = (1+exp(Z\gamma))ˆ−1 */

/* Overall mean \nu */

/* log(nu) = X\alpha */

log_nu = a0 + a1*arm + a2*site2 + a3*site3 + a4*baseline_uavi;

delta = log(psi2**(−1)) + log_nu;

/* Build the mZIPlog likelihood */

if outcome=0 then

ll = log(psi1 + psi2*(exp(−exp(delta))));

else ll = log(psi2) − exp(delta) + outcome*(delta) − lgamma(outcome + 1);
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model outcome ˜ general(ll);

run;

Note that this SAS NLMIXED code does not provide the robust standard error estimates 

presented in Table 5, for which separate SAS IML programming would be needed (see 

online supplementary material for example code).

B. Likelihood Derivations

First, we focus on the derivation of the MLE of (γ, α) by constructing the likelihood. From 

Equation (1), we can derive the MLE’s of γ and α using Newton-Raphson algorithm, as well 

as derive the analytic variance of these MLE’s.

Using this log-likelihood, the score equations are

Substituting the link functions  and , these expressions of the 

score equations are equivalent to those presented in Section 2.2. The matrix of second 

derivatives of the log-likelihood has the form

where
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In order to obtain the Fisher information matrix, we calculate the negative expectations of 

the above second derivatives. First, we note that

Then
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Figure 1. 
Histogram of UAVI Counts
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Table 5

Marginalized ZIP Model Results: SafeTalk Example

Parameter
Model-Based

Std Error
Robust

Std Error

Zero-Inflation Model

Intercept γ0 1.8485 0.2373 0.2444

Treatment γ1 −0.0242 0.2905 0.3488

Site 2 γ2 0.1055 0.3141 0.3396

Site 3 γ3 −0.1856 0.5824 0.6183

Baseline UAVI 4 γ4 −0.1679 0.0421 0.0476

Marginalized Mean Model

Intercept α0 −0.7338 0.2189 0.2335

Treatment α1 −0.0666 0.2630 0.3837

Site 2 α2 0.3146 0.2863 0.3648

Site 3 α3 1.4169 0.4974 0.5487

Baseline UAVI α4 0.1169 0.0266 0.0378
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