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Abstract
We present closed form sample size and power formulas motivated by the study of a psycho-social
intervention in which the experimental group has the intervention delivered in teaching subgroups
while the control group receives usual care. This situation is different from the usual clustered
randomized trial since subgroup heterogeneity only exists in one arm. We take this modification
into consideration and present formulas for the situation in which we compare a continuous
outcome at both a single point in time and longitudinally over time. In addition, we present the
optimal combination of parameters such as the number of subgroups and number of time points
for minimizing sample size and maximizing power subject to constraints such as the maximum
number of measurements that can be taken (i.e. a proxy for cost).
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1. Introduction
Often times besides treatment regimens having strong physical side effects (e.g. anemia)
they also have strong psychological side effects (e.g. depression), which could lead to non-
adherent medication taking behaviors. In the case of Hepatitis C treatment, as is probably
true for most diseases, non-adherence to medication leads to a decreased chance of reaching
a sustained virologic response (SVR), i.e. “cure” [1][2]. Therefore, a proposed method for
helping to deal with the psychological side-effects is a therapy intervention where patients
meet in groups, facilitated by a psychologist, over the course of treatment. They learn ways
of coping with the side-effects of treatment and form a support group to help manage these
side-effects with the primary goal of keeping medication taking adherence high, and thus
increase their chances of SVR. To test this psycho-social intervention, subjects would be
randomized to receive treatment, and therefore be clustered within teaching subgroup, or
control, i.e. usual care where each individual would be their own subgroup (i.e. no clusters).
Therefore, sample size calculations for this design would only need to factor in subgroup
cluster effects for the intervention group.
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Standard sample size formulas for individuals in a randomized trial with a continuous
outcome assume independence between subjects. It turns out that simply applying the
standard methods will result in an underestimation of sample size if subgroup heterogeneity
exists [3]. Donner et al [4] show that the standard sample size estimates should be inflated
by a factor 1 + (n − 1)ρ to provide the same statistical power if the individual randomized
studies were carried out, where ρ is the intracluster correlation coefficient (ICC) describing
the relationship of the between to within cluster variance, and n is the average cluster size.

Other work with clustered randomized trials with a continuous outcome has mainly focused
on the completely clustered randomized design, where both the treatment and the control
arms have subgroup heterogeneity. Hoover [3] provides methods to compare a single
measure between two interventions where the magnitude of the subgroup heterogeneity is
allowed to vary between the arms. In the appendix of this article, Hoover provides a one-
sided approach which allows for the control group to have a small (possibly no)
heterogeneous effect, but also assumes the intervention will not be harmful. Heo and Leon
[5] consider sample size requirements for cluster randomized trials where there are three
level hierarchical data. Their model allows for reduction to two level and one level data,
however, they do not discuss this reduction in only one of the arms. Liu et al. [6] provide
power and sample size procedures for clustered repeated measurements using generalized
estimating equations. Here randomization into the two arms of the study is cluster based.
Teerenstra et al. [7] provide sample size and power formulas for 3-level cluster randomized
trials and provide some guidance for number of clusters, number of subjects per cluster and
number of evaluations; again, assuming clustering in both groups.

Since we are dealing with the situation where we have subgroup heterogeneity within the
experimental group, but no subgroup heterogeneity within the control group, methods that
assume clustering in both groups as discussed above will overestimate the needed sample
size, while methods that completely ignore clustering in both groups will underestimate the
needed sample size. Therefore, in Section 2 we proposed modified approaches to sample
size and power calculations to accommodate the situation where subgroup heterogeneity
exists in only one arm of the trial. More specifically, we discuss a modified t-test approach
in Section 2.1, expanding on the methodology introduced by Hoover [3], but allowing for
the fact that the intervention could possibly be harmful (two-sided test); we address the
longitudinal setting in Section 2.2; and we discuss optimal allocation in Section 2.3. In
Section 3, we present simulation studies comparing the empirical and estimated power and
type I error rates for the tests derived in Sections 2.1 and 2.2 and present the power curves
when trying to optimize resources in the longitudinal setting. In Section 4, we present an
example and examine ways to maximize power given limited resources. Finally, in Section 5
we provide a brief discussion of the methods and results and give suggestions for areas of
future research.

2. General Methodology
2.1. Single Measurement

Below we discuss sample size calculations for the difference in the mean responses between
two arms, one which has subgroup heterogeneity and the other which does not. The primary
interest is testing whether the intervention works, i.e. whether there is a difference in the
means of the two arms. If we simply use the traditional two-sample t-test and ignore the
clustering in the intervention arm, we utilize more information than we actually have and
will therefore, overestimate the power, resulting in an insufficient sample size to reach the
desired results.
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Similar to the notation used by Hoover [3], we first assume kE > 1 subgroups in the
experimental arm with subgroup size ni for the ith subgroup, i = 1, …, kE. Therefore, the

total sample size in the experimental arm is given by  and nC represents the total

number of subjects in the control arm. Let , k = 1, …, nC denote the outcome for the kth

subject in the control arm. Assuming that for individuals in the control arm, the model can

be expressed as , where μ0 is the pre-intervention mean outcome and the εk (k = 1,
…, nC) denote the errors which are independent and identically distributed normal random

variables with mean 0 and variance , accounting for the individual heterogeneity in the

control arm. Let  represent the outcome for the jth subject within the ith subgroup in the
experimental arm, i = 1, …, kE, j = 1, …, ni. For the experimental arm, in addition to the
individual heterogeneity, we need to take into account the heterogeneous treatment cluster

effects. The model can be written as , where δ is the treatment effect due to
experimental intervention (i.e. if δ is different from 0, then on average patients in the
intervention arm will have responses different from that of the control arm.), the εij (i = 1,
…, kE, j = 1, …, ni) are assumed to be independently and normally distributed with mean 0

and variance , where the individual error may be different from that in the control arm,
and bi represents the random effect in each subgroup i, independently and normally

distributed with mean 0 and variance , where the magnitude of the variation  will
depend on the performances of different therapists or different group dynamics.

Hoover [3] presented several approaches to compare two arms, both with subgroup
heterogeneity. We consider methods for the setting with only one arm having subgroup
heterogeneity. If we are interested in detecting a clinically meaningful difference δ, we
define a modified t-test, which allows for different variances in the two groups under the

null. Let  denote the mean for subgroup i in the experimental arm and

 denote the sample mean of experimental arm which weights each subgroup

(SG) equally. If we let , then  estimates

 with , the variance of . Note that if the inverse of ni

do not vary greatly,  can be approximated with a chi-square distribution with kE − 1
degrees of freedom. We let Y̅C represent the sample mean of the control arm and estimate

the variance of , with , where . The modified t-
test statistic is then given by the following:

The null hypothesis (H0 : δ = 0) is rejected for values of , where  denotes the (1
− α/2)th percentile of the t-distribution with r degrees of freedom where r comes from
Satterthwaite’s approximation [8], given by
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Thus, a close approximation to the power of the modified t-test, 1 − β, is given by the
following:

where , and the non-centrality parameter 
[9]. Since the design effect is 1 + (n − 1)ρ, where n is the planned average subgroup size, the
effective sample size for the nkE subjects in the experimental arm is thus nkE/(1 + (n − 1)ρ),

where . We set nC = nkE/(1 + (n − 1)ρ). For r̃ ≥ 120, we can approximate
the t-distribution with a standard normal distribution [3]. Hence to detect a clinically
meaningful difference δ between the two group mean responses with 1 − β power at α
significance level, assuming an average subgroup size of n in the experimental arm, the
required minimal number of subgroups kE is the smallest integer kE satisfying

(1)

If we assume that the individual effect  for simplicity, and express the
difference in terms of a standardized effect size, Δδ = δ/ σ0, kE is then given by

where Φ denotes the cumulative distribution of the standard normal. In the situation where r̃
< 120, the number of subgroups should be determined directly from (1) by adjusting kE until
the power achieves the desired level.

2.2. Longitudinal Measurements
If instead of a single time point, each subject will be measured repeatedly over a period of
time, measurements from the same subject could be correlated and therefore, these
correlations must be accounted for when computing sample size for a repeated measures
study design. Under these circumstances, we can fit a mixed-effects linear model for the
purpose of testing the difference in outcome between the experimental and control arms over
time. The resulting model will have three levels of data for the experimental arm, but only
two levels in the control arm, since subjects in the control arm are independent. Heo and
Leon [5] provided the power and sample size formulae to detect the interaction effects
between intervention and time based on maximum likelihood estimates for a perfectly
balanced design (i.e. the same number of subgroups in the two arms as well as the same
number of subjects per subgroup) assuming clustering in both arms. In this subsection we
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will provide the formulae for sample size and power using similar methodology under our
setting, i.e. only one arm with subgroup heterogeneity.

Recall that for the experimental arm, the intervention is delivered by teaching subgroups,
indexed by i, i = 1, …, kE, with j subjects, j = 1, …, ni, nested within each subgroup.

 is the planned average subgroup size. In this multi-level setting, the first level
includes repeated measures on subjects, the second level includes subjects, and the third
level includes therapists/groups. Subjects in the control arm are independent (i.e, no
variation stems from different teaching subgroups), hence, no level three random effects
exist. We abuse notation slightly by letting i = nkE + 1, …, nkE + nC with j ≡ 1 index
subjects in the control arm. Note that i denotes subgroups in the experimental arm while in
the control arm, i actually indexes subjects, since each subject forms a subgroup. We assume
subjects are observed nT times over the course of the study at some common time points. Let
l, l = 1, …, nT, index the repeated measurements and let Yijl be the lth response of the jth

subject in the ith teaching subgroup (experimental arm), or the lth response of the ith subject
(control arm), and Tl represent the measurement time of Yijl (measured as time since
enrollment in the study). In addition, let Trti be the treatment indicator with Trti=1 for
subgroup i (i = 1, …, kE) in the experimental arm and Trti = 0 for patient i (i = nkE + 1, …,
nkE + nC) in the control arm.

The primary interest is testing whether the treatment effect varies over time (i.e. the rate of
change in the outcome of the subjects in the experimental arm is different from that in the
control arm). If we let ηE and ηC denote the rates of change in the experimental and control
arm, respectively, we can express the null hypothesis as:

An unbiased estimate of γ is given by γ̂ = η̂E − η̂C [5], where

 is the mean time point and  is the variance of the
time variable T. In planning we want an equal number of participants in each subgroup
which is common in practice; we thus assume an equal subgroup size n in all formulas from
this point on.

A mixed level mixed-effects linear model can be fit as follows:

(2)

Esserman et al. Page 5

Stat Med. Author manuscript; available in PMC 2014 May 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where β0 and β0 + β1 represent the pre-intervention main effects for the control group and
experimental group, respectively, β2 represents the main effect for time, and γ is the
interaction effect between intervention and time we are interested in testing. The εijl are the

error terms, normally distributed as ; the bj(i) which are assumed to follow a normal

distribution with mean 0 and variance , represent the random effects at level two, the
subject level; and the bi, the level three random effects for subgroups, are distributed as

. It is assumed that the bi and bj(i) are independent of each other and the εijl.

Based on (11), it can be shown that E(Yijl) = β0 + β1 + (β2 + γ)Tl and 

for participants in the experimental arm and E(Yijl) = β0 + β2Tl and  for
participants in the control arm. Therefore, the ICC among repeated subgroup observations

for the experimental arm is  and the correlation for
observations from a given subject from the experimental arm is

(3)

and for the control arm is

Note that a more general model can be considered, which allows the random effects for
subgroup and subject levels to interact with time. The correlation between observations
based on the more general model can be derived in a similar way. See the Appendix for
details. For practical purposes, we stay with the current model to derive the sample size
formula. The variance of γ̂ can therefore be written as

The second equation can be obtained via expansion of Var(η̂E) and Var(η̂C) separately,
using the specific form of variance and covariance between different subjects. Interested
readers can refer to Heo and Leon [5] for more details.

Based on (3), we have , where . Therefore, given the total
variance for the experimental arm σ2, the test statistic can be constructed as:

.

According to the large sample theory, as the sample size increases, the test statistic D will
approach a standard normal distribution under the null. Under the alternative, (γ̂ − γ)/se(γ̂)
~ N(0, 1). Thus the power for the test statistic D is given by
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(4)

where Δγ = γ/σ is the standardized effect size for the slope difference, which is the
difference between the rates of change in two groups scaled by the standard deviation.

Note that the ICC for the repeated subgroup measurements in the experimental arm

, where  is the variance component among clusters. The effective sample size
for nkE subjects is nkE/(1 + (n − 1)ρ2), and we set it equal to nC, i.e.

(5)

Based on Equation (4), we can obtain the required number of teaching subgroups kE given
the other parameters. For a desired statistical power 1 − β at significance level α, kE is the
smallest integer such that

(6)

and nC is the smallest integer such that nC = nkE/(1 + (n − 1)ρ2). On the other hand, we can
also calculate nT as the smallest integer such that

Holding all other factors constant, the relationship between nT and kE is reciprocal, i.e, to
achieve the same power, we can reduce the number of repeated measures nT while
increasing the number of subgroups in the experimental arm or vice versa.

2.3. Allocation of Resources
Often times in planning a study, we not only need to consider the power/sample size
requirements, but also need to take into account available resources (e.g. cost). For a fixed
number of subgroups kE in the experimental arm, larger subgroup sizes and/or more
measurement time points can increase power; however, the costs will also be increased. We
attempt to find a combination of subgroup sizes and time points which maximize the power
to detect a clinically meaningful effect when the budget is fixed and/or minimize the study
costs as long as the desired power is achieved. For simplicity, we consider the situation
when the number of subjects in each subgroup equals n in the experimental arm. We assume
that the total number of measurements that can be taken for the entire study is nM, where

(7)

Given this constraint (used as a proxy for controlling cost), our goal is to maximize the
power given by (4) under certain scenarios.

By plugging nkE = (1 + (n − 1)ρ2)nC into (7), we have the following constraints on the
relationship between n, kE and nC
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(8)

(9)

If we pre-specify the subgroup size (n) and the number of planned repeated measurements
(nT), the number of subgroups in the experimental arm and the number of subjects in the
control arm are determined. On the other hand, if we are willing to be more flexible in
choosing the subgroup size, but need to fix the number of clusters kE in advance, n is
determined by solving (9)

(10)

for fixed kE, nT and nM, where ⌊x⌋ is the largest integer not greater than x.

Figure 1 provides a visual display of the interrelationship among kE, nT, n and ρ2 imposed
by (5) and (7). According to Figure 1, the total number of subjects required for the
experimental group is reduced with larger kE or nT. From Figure 1(a), we can see that there
is an increment in the control group size when increasing the number of subgroups kE while
holding nT fixed. On the other hand, the number of subjects in the control group will
decrease as more repeated measures are chosen holding kE fixed in Figure 1(b). Considering
kE as a function of the effects of ρ2, according to Figure 1(c), we find that more subgroups
in the experimental arm will be needed as ρ2 increases, assuming that nM and n are fixed. In
this situation, we would need to recruit more subjects in the experimental group and less to
the control group. Given fixed total number of measurements (nM) and number of repeated
measures (nT), Figure 1(d) shows that less subgroups are required when more participants
are included in each subgroup and the total number of subjects will be increased in the
experimental arm, while decreased in the control arm. With the constraints imposed on the
combination of (n, kE, nC, nT), we want to find combinations which give us better power.
Plugging (8) and (9) into (4), we can obtain the power under constraints (5) and (7). If the
interest is in choosing the best combination of (nT, kE) to achieve the most power for given
ρ1, ρ2, nM, Δγ and Var(T) from several possible combinations of (nT, kE), we can use (10)
to calculate the corresponding subgroup size for each combination of (nT, kE). We then
calculate the corresponding power based on (4). Thus the combination that yields the best
power can be chosen accordingly.

Generally, we can increase power by either increasing the number of measurement times
(nT) or the number of subgroups (kE) for a fixed subgroup size (n) in the experimental
group, yet that may not always be feasible. Practical concerns for the cost of conducting
longer trials or enrolling extra subgroups and therapists must be considered. We provide
detailed illustrations in Section 3.3, where under the constraint of a fixed number of total
measurements, we can identify some equivalent combinations in terms of power.

3. Simulations
3.1. Modified t-test power

The simulation studies presented below were conducted to verify the power formula for the
modified t-test given by (1). In addition, we were interested in comparing the modified t-
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test, denoted as method I, in which subgroup heterogeneity exists only in the experimental
arm, with method II, in which we ignore all subgroup heterogeneity and assume all subjects
are independent, i.e. the standard t-test, and method III, in which we consider subgroup
heterogeneity in both arms using the method described in [3]. To study the performances of
different tests, without loss of generality, we assumed an equal subgroup size n = 10, and
there were kE = 10 subgroups in total. Two different values for ICC ρ = 0 and 0.2 were
considered. To generate data, we first calculate nC based on setting nC = nE/(1 + (n − 1)ρ)
for a given combination (step 1). More specifically, for each combination, we follow these
steps:

1. Calculate the sample size in the control arm given ρ and nE;

2. Calculate the variance component σE for given σ0 and ρ based on ;

3.
Generate the outcome data for the control arm , with 

following a , in the scenario of no subgroup heterogeneity.

4. Generate the outcome data for the experimental arm , with

 following a , where ΣE is a block diagonal

matrix with each block consisting of , and there are kE such blocks.  is an n
× n matrix with all the entries equal to 1.

5. Conduct test with method I by considering subgroup heterogeneity in the
experimental arm only;

6. Conduct test with method II using two sample t—test ignoring subgroup
heterogeneity in the experimental arm;

7. Conduct test with method III by assuming subgroup heterogeneity in both arms,
randomly separating the control group into kE subgroups;

8. Retain p-values, denoted by pI,s(δ), pII,s(δ), and pIII,s(δ) for the sth simulated data
set (for s = 1, 2, …, 5000) for the three methods, respectively, obtained from testing
the null hypothesis δ = 0;

9. Obtain the empirical power or type I error ϕ̃m from 5000 simulations by

Figure 2 presents the empirical type I error and power curves for the three methods
described. The type I error rate for the modified t-test is close to the nominal level in all
three ICC scenarios. As can be seen in the left panel, which corresponds to an ICC of 0,
there is almost no difference between the traditional t-test and modified t-test; the two power
curves from traditional and modified t-test almost overlap. Indeed, in the case where ICC =
0, we are testing mean difference between two groups in which subjects are independent. In
this scenario, the modified t-test will reduce to a standard t-test. The middle panel
summarizes the results with an ICC of 0.1 and, as expected, the type I error is inflated when
the subgroup heterogeneity is ignored, while the test is conservative if we assume clustering
in both groups. The right panel shows the results when ICC equals to 0.2. The type I error
rate is close to the nominal level when assuming subgroup heterogeneity in both arms. This
is possibly due to a small sample size required in the control arm (nC = 36) when ICC = 0.2.
When the 36 subjects are divided into 10 subgroups, the cluster size is very small relative to
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the number of independent subgroups. Under such situation, the test assuming subgroup
heterogeneity in both arms seems to preserve the type I error well, although slightly under
powered compared to the modified t-test.

Table 1 presents a comparison between the empirical power and the theoretical power
calculated from (1). Different scenarios are presented below with the simulation parameters
specified as: δ = 0, 0.25, 0.5; kE = 5, 10, 20 and an equal subgroup size n = 10,
corresponding to an experimental group size of nkE = 50, 100, 200; and six different values
for ICC: ρ= 0.2, 0.15, 0.1, 0.05, 0.01 and 0. Without loss of generality the pre-intervention
mean level μ0 is set at 0 and the random individual effects in both arms are generated from a
standard normal distribution (σ0 = 1). In all scenarios, the theoretical power is estimated
well. Note that the number of participants to enroll in the control arm varies with the value
of ρ. In addition to the power, we calculated the empirical type I error for all scenarios,
where the difference between means, δ, is set to 0. The error rates are well controlled at 0.05
level. For the scenarios presented, the number of subjects per therapy subgroup is fixed at n
= 10. If the number of participants per subgroup is decreased, the power is lower for
detection of a difference given the other parameters remain the same; increasing the
subgroup size will lead to more powerful results (results not shown).

3.2. Longitudinal Study to Test the Treatment Effects over Time
We conducted simulation studies to verify the power formula given by (4). Assuming an
equal subgroup size n, for given nT, Tl, n and Δγ, we calculated the number of subgroups
needed based on (6) with 80% power and 0.05 type I error. The theoretical power is then
calculated based on (4) using the calculated kE. After generating the data, we used PROC
MIXED in SAS (Cary, NC) to estimate the variance components and obtain the empirical
power. Specifically, we assume equally spaced common time points with Tl = l − 1. To test
the effect size of interaction, we formulated it in terms of the standardized between-group
mean difference ΔγTend at the end of trial, where Tend = nT − 1. Scenarios with ΔγTend =

Δγ(nT − 1) = 0.4, 0.6 are considered. Let β0 = β1 = 0, β2 = −1, . Other
simulation parameters are specified as nT = 3, 6, 12, ρ1 = 0.4, 0.5, 0.6, ρ2 = 0.05 and the
subgroup size is fixed at n = 10. The following steps are used for the simulations:

1. Calculate γ = σΔγ and Var(T);

2. Calculate the number of subgroups kE in the experimental arm and the sample size
nC in the control arm;

3. Calculate the variance component , with

;

4. Generate treatment indicators, with Trti = 1, i = 1, …, kE representing subgroups in
the experimental arm, Trti = 0, i = nkE + 1, …, nkE + nC for the subjects in the
control arm.

5. Generate bi, i = 1, …, kE from  independently;

6. For each bi, i = 1, …, kE, generate bj(i) following  independently for j = 1,
…, n;

7. For each combination of bi and bj(i), generate εijl, l = 1, …, nT from 
independently;

8. Generate the outcome data for the experimental arm with
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9. Generate bj(i) following  independently for i = nkE + 1, …, nkE + nC, j = 1;

10. For each bj(i), i = nkE + 1, …, nkE + nC, j = 1, generate εijl, l = 1, …, nT from

 independently;

11. Generate the outcome data for the control arm with

12. Use PROC MIXED to fit a mixed level mixed-effects linear model to the data set;

13. Retain pvalues, denoted by ps(γ) for the sth simulated data set (for s = 1,2, …,
5000), obtained from testing the null hypothesis γ = 0;

14. Obtain the empirical power or type I error ϕ̃m from 5000 simulations by

Table 2 provides simulation results for different combinations of nT, ρ1 and ΔγTend. The
parameters kE and nC are estimated based on 80% power and 0.05 type I error. The
empirical type I error rate (α̃) and the empirical (ϕ̃) and theoretical power (ϕ) are presented.
Both the empirical type I error rate and power agree well with the theoretical values.

Simulations were also conducted to investigate the effect of each parameter on the power.
We see increasing power with an increase in the number of time points measured with all
the other factors fixed. There is a loss of power with smaller cluster sizes n for the same ρ1,
ρ2, kE and nT. In addition, increasing ρ2 leads to a reduction in the power as the available
information is reduced with higher correlation within clusters (data not shown).

3.3. Allocation of Resources
For different combinations of (n, kE, nC, nT), in order to detect a clinically meaningful
effect, we can find the combinations which give us a specified power, given the fixed
number of total measurements constraint. We can obtain contour plots similar to Figures 3
and 4. For example, if we are interested in identifying an effcient combination of (nT, kE),
where the subgroup size n can vary accordingly, we compute the power for a grid of values
of the parameters (nT, kE) subject to fixed number of total measurements. Assuming that
Tend = 9, we set Tl = Tend(l − 1)/(nT − 1), l = 1, …, nT. The contours in Figure 3 give
different levels of power for ρ1 = 0.4 and ρ2 = 0.05 when nT = 3, …, 10 and kE = 3, …, 15.
The combinations of (nT, kE) with corresponding subgroup size n calculated from (10) are
equivalent on the same contour in terms of the power obtained. Obviously, the power for
detecting a slope difference Δγ of 0.04 is not sufficient with total number of measure nM =
500, (i.e. no combination reaches power ≥ 80%). More measurements are required to reach a
sufficient power. Therefore, we can increase nM to 1000, where the right panel on the top
shows that several different combinations of (nT, kE) give the power greater than 0.8.
Depending on the practical considerations, we can either choose kE = 15 subgroups with nT
= 5 measurement time points, which requires a subgroup size of n = 7, or we can form less
subgroups in the experimental arm with less follow up sessions, say kE = 6 and nT = 4 while
increase n to 29.
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Similarly, Figure 4 can be used to find the combinations of (n, kE), where n = 5, …, 20 and
kE = 3, …, 15, which give a specified power, with nT determined correspondingly. In this
case, we see that greater power can be reached with larger subgroup size or number of
subgroups by comparing contours with the same total number of measurements (nM). To
achieve 80% power with nM = 1000, we can either choose kE = 15 subgroups with subgroup
size n = 7, which requires nT = 5, or we can form less subgroups in the experimental arm
with bigger subgroups size, say kE = 8 and n = 13, while keeping nT = 5.

4. An Example
The example described below was motivated by a proposed psycho-social intervention for
patients receiving treatment for Hepatitis C. As part of the usual care, all patients receiving
treatment are scheduled for routine check-ups in the clinic every month for the first 6
months on treatment. Those randomized to the experimental group would receive the
therapy intervention to coincide with these check-ups. Thus, measurements would be
obtained at baseline, and months 1, 2, 3, 4, 5, and 6, resulting in nT =7 and Tend = 6. We
sought to investigate an efficient and practical design for this study making assumptions
about the parameters in the model. In addition to the 7 repeated measures we also explore an
nT =5, where measurements would be obtained at baseline and months 1.5, 3, 4.5 and 6.
Since time points are equally spaced, we set Tl = l − 1, l = 1, …, nT for nT = 7 and Tl = 1.5(l
− 1), l = 1, …, nT for nT = 5. Qualitative research indicates that groups of 6–10 participants
are ideal to maximize group participation [10]; therefore, we explored subgroups of size 6,
8, and 10. We also assumed small and medium effect sizes, ΔγTend of 0.2 and 0.5,
respectively, where the between-group mean difference at the end of the trial is deemed
small (medium) if it is 20% (50%) of the standard deviation. We assumed values of 0.3, 0.5
and 0.7 for ρ1 and 0.05 for ρ2. Table 3 gives the required number of subgroups based on (6)
and the corresponding total sample size needed to achieve at least 80% power with a 5%
type I error rate given all combinations of the above parameters. Note that the required
sample size in the control group can be calculated using (5). As can be seen when holding
all other parameters constant, to achieve 80% power: increasing n decreases the required
number of subgroups; increasing ρ1 decreases the required number of subgroups; increasing
nT decreases the required number of subgroups; and increasing ΔγTend decreases the
required number of subgroups.

Secondly, we fixed the total number of measurements (nM) to 500, 1000 or 2000 and
calculated the power for the above scenarios. The results are presented in Table 4. More
power is associated with larger ρ1 value, however, the investigator will have little control
over it. As expected, increasing nM, which the investigator has more control over depending
on the budget resources, will result in higher power.

Table 3 indicates that to achieve an equivalent power, more follow-ups (nT) with less
number of subgroups (kE) require more total number of measurements (nM). Similarly, there
was a slight decrease in the achieved power when increasing nT from 5 to 7 in Table 4 for
fixed nM, ρ1, ρ2 and n. Therefore from a budget standpoint, it might be better to have fewer
follow up sessions. With smaller nT, the investigator will need to enroll more participants,
which could be easier than having to retain smaller number of participants for more
measurements. Table 3 also recommends a larger subgroup size provided that the
measurement time is fixed, which requires less total number of measurements, although the
difference is not substantial.

If we are interested in designing a study with ρ1 = 0.3, ρ2 = 0.05 and nM = 500, to detect
ΔγTend = 0.5 with 80% power at .05 significance level, we first calculate kE based on (9) for
the given subgroup size n and a set of options of nT. Then we calculate the power based on
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(4). We then choose the nT with the power closest to 80% for a given n and the results are
presented in Table 5. From Table 5, we can see that if the group size is 6, we need 11 groups
in the experimental group with 4 visits, equally spaced at baseline and months 2, 4 and 6. If
the group size is 10, we need 9 groups with 3 visits scheduled at baseline, months 3 and 6.
The latter combination might be more feasible in practice.

5. Discussion
Most of the literature addressing sample size calculations in clustered randomized trials
assumes that subgroup heterogeneity occurs in both arms. We present closed form sample
size and power formulas for the situation in which there is subgroup heterogeneity in only
one arm of the trial. We have demonstrated through simulation that our formulas estimate
the theoretical power and type I error rates well for both the modified t-test and the
longitudinal setting.

We have explored how to allocate resources. We present plots in which we fix the total
number of measurements which can be used as a proxy for cost. With these plots, we have
demonstrated which scenarios will achieve the same power and how to maximize power.
For a fixed number of subgroups (and fixed subgroup size and correlations), we can increase
power by increasing the number of measurement times; similarly, for a fixed number of
follow-up visits, we can increase power by increasing the number of subgroups.

In addition, we have presented a real world application of these formulas, which will
become more important as more and more psycho-social interventions are developed and
need to be tested. Through our simulations we demonstrate that given fixed values of the
correlations, for a set power, we can decrease the required number of subgroups by
increasing the size of the subgroups and the number of measurement times. It must be noted
that the investigator will likely have limited control over some of the parameters and is more
likely to increase power by increasing the total number of measurements that can be taken.

One concern in study planning is accounting for missing data. Since we can only know the
impact and amount of missing data after the data have been observed, a common practice
when designing a study is to assume no missing data and then inflate the sample size
according to the expected amount of missing data. In this study, with subgroup
heterogeneity in only one of the arms, we recommend assuming non-differential missing
data and inflating the sample size in both the experimental and control arms using the same
factor. One possible suggestion for the longitudinal setting would be to increase the total

number of measurements nM by calculating /(proportion expect to observe), and then

calculate the required combination of n, kE, and nT based on .

This paper addresses both the simple and longitudinal settings with continuous outcomes in
which subgroup size in the intervention group may very. Other things to consider for future
studies may include: dichotomous outcomes; attrition over time; and the addition of other
covariates to the models.
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Appendix
A more general mixed level mixed-effects linear model which allows the random effects for
subgroup and subject levels to interact with time is:

(11)

where β0 and β0 + β1 represent the pre-intervention main effects for the control group and
experimental group, respectively, β2 represents the main effect for time, and γ is the
interaction effect between intervention and time we are interested in testing. The εijl are the

error terms, normally distributed as ; the b1,j(i) and b2,j(i) which are assumed to

follow normal distribution with mean 0 and variance  respectively, represent the
random effects at level two, the subject level; and the b1,i and b2,i, the level three random

effects for subgroups, are distributed as . It is assumed that the level
two and level three random effects are independent of each other and the εijl. Note that the
random effects interact with the time by including b2,i and b2,j(i), considering that some
individual or subgroups may benefit more from the intervention than others over time.

Based on (11), it can be shown that E(Yijl) = β0 + β1 + (β2 + γ)Tl and

 for participants in the experimental arm and E(Yijl) =

β0 + β2Tl and  for participants in the control arm. Therefore, the
ICC among repeated subgroup observations for the experimental arm is

and the correlation for observations from a given subject from the experimental arm is

and for the control arm is
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Figure 1.
The Inter-relation among kE, nT, ρ2 and the total number of participants in the Experimental
Arm and the Control Arm with nM = 3000
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Figure 2. Power Curves for Different Test
Method I refers to the modified t-test. Method II refers to the standard t-test. Method III
refers to the test considering subgroup heterogeneity in both arms. The number of subgroups
in the experimental arm kE is 10, within each subgroup there are 10 subjects. Panel on the
left corresponds to the scenario where ICC is set to 0, panel in the middle corresponds to the
scenario where ICC is set to 0.1, and panel on the right corresponds to the scenario where
ICC is set to 0.2.
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Figure 3.
Power to Detect a γ of 0.04 Standard Deviation between Two Groups with Different
Combinations of (nT, kE) under Various Cost Constraint with ρ1 = 0.4 and ρ2 = 0.05
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Figure 4.
Power to Detect a γ of 0.04 Standard Deviation between Two Groups with Different
Combinations (n, kE) under Various Cost Constraint with ρ1 = 0.4 and ρ2 = 0.05
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Table 5

Number of Visits and Subgroups Required to Achieve at Least 80% Power for the Example with nM = 500, ρ1

= 0.3 and ρ2 = 0.05

nT kE

n = 6 4 11

n = 8 3 11

n = 10 3 9
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